The contents of the electronic sequence listing (M065670369US02-SEQ-HCL.xml; Size: 119,626 bytes; and Date of Creation: Aug. 25, 2022) is herein incorporated by reference in its entirety.
Availability of nitrogen is one of the principal elements limiting growth and development of crops, particularly in agricultural soils for plant production of food, feed, fiber and fuel. Excessive use of synthetic fertilizer to meet the food demands of growing population poses an environmental threat in that it can cause harmful algal blooms and disrupt beneficial soil microbial community [1]. On the other hand, over-farming in many developing countries with a scant supply of fertilizer damages agricultural land and makes small farmers suffer from the poor yield of their crops [2].
Successful endophytic colonization of plants by human-pathogenic bacteria such as Salmonella enterica, Pseudomonas aeruginosa, Burkholderia cepacia, Escherichia coli O157:H7 has been demonstrated [3-5]. Salmonella can recognize plants as a suitable host and colonize in root tissues of alfalfa and barley [6,7].
The invention, in various aspects, relates to a method for providing fixed nitrogen from atmospheric nitrogen, comprising delivering a modified bacteria having an exogenous nif cluster to a cereal plant, or to soil where a cereal plant or seed is growing or is to be planted, wherein the modified bacteria provides fixed nitrogen.
In some embodiments, the nif cluster is a native nif cluster. In some embodiments, the nif cluster is a refactored nif cluster.
In other embodiments, the modified bacteria is a gamma-proteobacteria. In some embodiments, the modified bacteria is a Salmonella typhimurium.
In some embodiments, the Salmonella typhimurium strain is selected from SL1344, LT2, and DW01.
In other embodiments, the modified bacteria is a E. coli, optionally of strain H7:0157.
In other embodiments, the nif cluster is a Klebsiella wild-type nif cluster, a Pseudomonas Stutzi nif cluster, or a Paenibacillus cluster. In some embodiments, the nif cluster is a refactored nif clusters.
In some embodiments, the cereal plant is selected from wheat, rye, barley, triticale, oats, millet, sorghum, teff, fonio, buckwheat, quinoa, corn and rice.
In some embodiments, the invention further comprises an exogenous gene encoding a plant growth-stimulating peptide.
In some embodiments, the exogenous gene encoding the plant growth-stimulating peptide is regulated by a type 3 secretion system (T3SS).
In some embodiments, the plant growth stimulating peptide is directly delivered into root or stem tissues.
Aspects of the invention include a method, comprising delivering a modified non-pathogenic bacteria having exogenous genes for enabling plant endosymbiosis to a cereal plant, or to soil where a cereal plant or seed is growing or is to be planted.
In some embodiments, the non-pathogenic bacteria is E. coli.
In some embodiments, the genes encode effectors or apparatus for a secretion system.
In other embodiments, the apparatus for a secretion system is type 3 secretion system (T3SS).
Aspects of the invention include compositions comprising an agriculturally suitable or compatible carrier, and a gamma-proteobacteria having an exogenous nif cluster present on or in the agriculturally suitable or compatible carrier.
In some embodiments, the proteobacteria is a Salmonella typhimurium or E. coli.
In other embodiments, the nif cluster is a native nif cluster.
In some embodiments, the nif cluster is a refactored nif cluster.
In some embodiments, the invention further comprises an exogenous gene encoding a plant growth-stimulating peptide.
In some embodiments, the agriculturally suitable or compatible carrier is selected from the group consisting of seeds, seed coats, granular carriers, soil, solid carriers, liquid slurry carriers, and liquid suspension carriers. In other embodiments the agriculturally suitable carrier includes a wetting agents, a synthetic surfactant, a water-in-oil emulsion, a wettable powder, granules, gels, agar strips or pellets, thickeners, microencapsulated particles, or liquids such as aqueous flowables or aqueous suspensions.
In other embodiments the exogenous nif cluster or gene includes a controller. The controller may be a nucleic acid encoding an IPTG inducible T7 RNA polymerase. Alternatively the controller may be a partitioning system encoded by the two par operons (parCBA and parDE). In some embodiments the partitioning system is a RK2 par system.
A seed or seedling of a cereal plant having a modified bacteria associated with an external surface of the seed or seedling is provided in other aspects of the invention. In some embodiments the modified bacteria has an exogenous nif cluster.
In other aspects the invention is a cereal plant having a modified bacteria in the plant, wherein the modified bacteria has an exogenous nif cluster.
The nif cluster may be a native nif cluster or a refactored nif cluster. In some embodiments the nif cluster is a Klebsiella wild-type nif cluster, a Pseudomonas Stutzi nif cluster, or a Paenibacillus cluster. In some embodiments the modified bacteria is a gamma-proteobacteria such as a Salmonella typhimurium, optionally a Salmonella typhimurium strain selected from SL1344, LT2, and DW01 or an E. coli, optionally of strain H7:0157.
The cereal plant in some embodiments is selected from wheat, rye, barley, triticale, oats, millet, sorghum, teff, fonio, buckwheat, quinoa, corn and rice.
Optionally the seed or seedling further includes an exogenous gene encoding a plant growth-stimulating peptide. The exogenous gene encoding the plant growth-stimulating peptide, in some embodiments, is regulated by a type 3 secretion system (T3SS).
In some embodiments the exogenous gene is in root or stem tissues of the cereal plant.
In some embodiments the modified bacteria may be provided in form of solutions, dispersions, sclerotia, gel, layer, cream, coating, or dip.
In some embodiments the plant, parts of plants or the area surrounding the plants is selected from leaf, seed, branches, soil, stems, roots. In some embodiments the modified bacteria is associated with (i.e. admixed, in physical contact with or present near) the plant, parts of plants or the area surrounding the plants or is incorporated therein. In some embodiments the seeds are inoculated or coated with the modified bacteria. In certain embodiments, the modified bacteria is disposed in an amount effective to be detectable within a target tissue of the mature agricultural plant selected from a fruit, a seed, a leaf, or a root, or portion thereof.
In other embodiments, the plant, the seed or seedling comprises at least about 100 CFU, for example, at least about 200 CFU, at least about 300 CFU, at least about 500 CFU, at least about 1,000 CFU, at least about 3,000 CFU, at least about 10,000 CFU, at least about 30,000 CFU, at least about 100,000 CFU or more, of the modified bacteria on its exterior surface.
In another embodiment, the modified bacteria is disposed on an exterior surface or within a tissue of the plant, the seed or seedling in an amount effective to be detectable in an amount of at least about 100 CFU, for example, at least about 200 CFU, at least about 300 CFU, at least about 500 CFU, at least about 1,000 CFU, at least about 3,000 CFU, at least about 10,000 CFU, at least about 30,000 CFU, at least about 100,000 CFU.
Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention. This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
Endophytic bacteria that are symbiotic with host plants can be genetically engineered to deliver proteins to the host and thereby regulate properties of plants. In non-cereal plants bacteria can be used to provide fixed nitrogen, reducing the need for nitrogen rich fertilizer. In cereal plants, however, bacterial systems for providing fixed nitrogen have never been developed despite many attempts over the years to develop such systems. A method for manipulating endophytic bacteria such that they are capable of providing fixed nitrogen to cereal plants has been discovered according to the invention. Endophytes may occupy the intracellular or extracellular spaces of plant tissue, including the leaves, stems, flowers, fruits, seeds, or roots.
The methods of the invention are useful for several purposes such as reducing fertilization needs, reducing fertilization pollution, providing an eco-friendly crop production, enhanced crop production, improved oil content in plants, improved protein content in plants, the reduction of nitrogen contamination of water, and the enrichment of the carbon content relative to nitrogen and carbon in relation to a soil's organic phase.
A limiting factor for crop productivity of agricultural crops is the nitrogen content in soil and water. The supply of this element has dwindled over time as crop demands increased. Nitrogen is one of the primary nutrients essential to all forms of life, including plants. However, nitrogen must first be converted to a form that plants can utilize. Biological Nitrogen Fixation (BNF) is the conversion of atmospheric nitrogen (N2) to ammonia (NH3) using the enzyme nitrogenase. This reaction consumes a tremendous amount of energy as N2 contains a triple bond. The bond energy in a nitrogen molecule is about 225 kcal/mol. Few BNFs are performed in nature as a result of a symbiotic relationship between plants and several bacterial species that make up a “nitrogenase enzymatic complex.”
The bacterial species that produce the nitrogenase enzymatic complex include diazotrophs such as cyanobacteria, azotobacteraceae, rhizobia, and frankia. However, only a few plant species can live in a symbiotic relationship with diazotrophs. For example, the pea plant from the legume family lives in symbiosis with bacteria from the rhizobia family. In particular, rhizobia bacteria penetrate the pea plant's roots creating root nodules that contain bacteria that fix nitrogen (to ammonia) while the plant donates carbon (sugar). Improving either the symbiosis, or extending the host range would therefore be beneficial for plant survival, but achieving this goal includes many challenges including the complexity of the process and lack of basic knowledge.
Biological nitrogen fixation is carried out by a complex of three proteins (nitrogenase), encoded by nifH, rifD and nifK, which are assembled and activated by an additional 17 genes [8]. Transferring a nif cluster to a new host is challenging because of the fact that the pathway is very sensitive to small changes in gene expression and the regulatory control in many organisms is not well established [8,9]. As shown in the Examples, a refactoring method was applied to a 16 gene nif cluster from Klebsiella oxytoca M5a1 to engineer a system for regulating nif. The method modularized the gene cluster into a set of well-characterized genetic parts. Refactoring can be used as a platform for large-scale part substitutions that facilitate the swapping of regulation to that which will function in a new host. Refactoring also is valuable in eliminating the response to signals that repress the native nif cluster, including ammonia and oxygen.
Quite surprisingly, it was discovered that nif clusters, both wild type and refactored nif, transferred into endophytic bacteria enable the bacteria to provide fixed nitrogen in cereal plants. This is the first demonstration that the transfer of native and synthetic nif clusters into endophytic bacteria can be used to provide fixed nitrogen to crops. The experiments presented in the Examples below demonstrate that genetic sensors connected to refactored nif clusters successfully regulated nitrogen fixation pathway at three different Salmonella strains in response to a chemical signal. The refactored nif clusters allows the testing of large populations of enteric bacteria isolated from plants for efficient symbiosis that delivers nitrogen to crops.
Synthetic nucleic acids encoding wild type and refactored nif clusters can be used to produce genetically modified bacteria. The modified bacteria useful according to the invention are endophytes which are endosymbionts. Endosymbionts do not cause apparent disease in plants for some or all of its life cycle. Bacterial endophytes may belong to a broad range of taxa, including α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Firmicutes, and Actinobacteria. It is particularly preferred according to methods of the invention to use γ-Proteobacteria.
In some embodiments, examples of endophytic bacteria that are γ-Proteobacteria include but are not limited to Salmonella spp., Yersinia pestis, Vibrio cholerae, Pseudomonas aeruginosa, Escherichia coli, Xanthomonas axonopodis pv. citri and Pseudomonas syringae pv. actinidiae. In preferred embodiments γ-Proteobacteria include Salmonella and Escherichia coli.
The modified bacteria of the invention, are used to promote fixed nitrogen from atmospheric nitrogen. The term “plant” as used herein refers to cereal plants. The term includes all parts of a plant such as germinating seeds, emerging seedlings and vegetation including all below ground portions (such as the roots) and above ground portions. Cereals are the cultivated forms of grasses (Poaceae) and include for example wheat (inclusive spelt, einkorn, emmer, kamut, durum and triticale), rye, barley, rice, wild rice, maize (corn), millet, sorghum, teff, fonio and oats. The term cereal plants also includes pseudocereals, such as amaranth, quinoa and buckwheat.
Additionally, the modified bacteria can be genetically engineered to deliver other factors such as plant growth-stimulating peptides directly into root or stem tissues. For instance, genes expressing proteins that affect plants can be engineered into a type 3 secretion system (T3SS). Synthetic control will be able to be regulated by expressing of T3SS in bacteria. Methods of engineering bacteria in this manner are described in Widmaier, D. M. et al. [3].
Thus, the methods according to the invention can also involve genetically modifying bacteria to further treat the cereal plants. The term “genetically modified bacteria” refers to bacteria whose genetic material has been modified by the use of recombinant DNA techniques to include an inserted sequence of DNA that is not native to that bacterial genome or to exhibit a deletion of DNA that was native to that species' genome. Often, a particular genetically modified bacteria will be one that has obtained its genetic modification(s) by a recombinant DNA technique. Typically, one or more genes have been integrated into the genetic material of a genetically modified bacteria. The gene may be inserted into the T3SS region.
A nif cluster is a collection of genes encoding enzymes involved in the fixation of atmospheric nitrogen into a form of nitrogen available to living organisms. The primary enzyme encoded by the nif genes is the nitrogenase complex which is in charge of converting atmospheric nitrogen (N2) to other nitrogen forms such as ammonia which the organism can use for various purposes. Besides the nitrogenase enzyme, the nif genes also encode a number of regulatory proteins involved in nitrogen fixation. The nif genes are found in both free-living nitrogen-fixing bacteria and in symbiotic bacteria associated with various plants. The expression of the native nif genes are induced as a response to low concentrations of fixed nitrogen and oxygen concentrations (the low oxygen concentrations are actively maintained in the root environment of host plants). Refactored nif clusters can be designed to be regulated by exogenous factors and/or constitutively regulated.
As used herein, a “genetic cluster” refers to a set of two or more genes that encode gene products. A target, naturally occurring, or wild type genetic cluster is one which serves as the original model for the refactoring. In some embodiments, the gene products are enzymes. In some embodiments, the gene cluster that is refactored is the nif nitrogen fixation pathway.
Each genetic cluster is organized into transcriptional units which are composed of a plurality of modular units. A modular unit is a discreet nucleic acid sequence that is made up of one or more genetic components. A genetic component may include anything typically found in a genetic fragment. For instance a genetic component incudes but is not limited to genes, regulatory elements, spacers, non-coding nucleotides. Some or all of these are found within each modular unit. Within the modular unit one or more of the synthetic regulatory elements may be genetically linked to one or more protein coding sequences of the genetic cluster.
While multiple modular units may be composed of the same gene and regulatory elements, the units may differ from one another in terms of the orientation, position, number etc. of the gene and regulatory elements. Other modular units may have some elements in common with other modular units but include some different elements. Yet other modular units may be completely distinct and do not overlap with other modular units. The great diversity of the modular units is what leads to the diversity of the assembled genetic clusters in a library.
The modular units within the genetic cluster are arranged such that the plurality of distinct non-naturally occurring genetic clusters are distinct from a naturally occurring genetic cluster based on the number, the order, and/or the orientation of particular genetic components. The number of genetic components within a modular unit may be easily varied. For instance, one modular unit may have a single promoter or terminator, whereas another modular unit may have 5 promoters and 2 terminators. The variation that may be achieved by manipulation of this factor is significant. Additionally the order of the components within a modular unit may be varied dramatically. Multiple sets of modular units may be generated where a single order of two components may be switched. This factor would also generate significant diversity. Switching the orientation of a component in the modular unit is also a viable way of generating diversity. While it may be expected that switching the orientation of one or more genetic components might interfere with functionality it has been demonstrated herein that genetic nif clusters having different orientations are actually functional.
The refactoring process involves several levels of restructuring genetic clusters. For example, the codons of essential genes in a genetic cluster, such as the nif cluster, are changed to create a DNA sequence divergent from the wild-type (WT) gene. This may be achieved through codon optimization. Recoded genes may be computationally scanned to identify internal regulators. These regulatory components may then be removed. They are organized into operons and placed under the control of synthetic parts (promoters, ribosome binding sites, and terminators) that are functionally separated by spacer parts. Finally, a controller consisting of genetic sensors and circuits that regulate the conditions and dynamics of gene expression may be added.
The genetic components in the refactored genetic cluster typically will include at least one synthetic regulatory element. A synthetic regulatory element is any nucleic acid sequence which plays a role in regulating gene expression and which differs from the naturally occurring regulatory element. It may differ for instance by a single nucleotide from the naturally occurring element. Alternatively it may include one or more non-natural nucleotides. Alternatively it may be a totally different element. In each case, it may be considered to be an exogenous regulatory element (i.e. not identical to the naturally occurring version). Thus, a “regulatory element” refers to a nucleic acid having nucleotide sequences that influence transcription or translation initiation or rate, or stability and/or mobility of a transcription or translation product. Regulatory regions include, without limitation, promoter sequences, ribosome binding sites, ribozymes, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5′ and 3′ untranslated regions (UTRs), transcriptional start sites, transcription terminator sequences, polyadenylation sequences, introns, and combinations thereof.
In some embodiments, the regulatory sequence will increase the expression of a gene. In other embodiments, the regulatory sequence will decrease the expression of a gene. In some embodiments the regulatory sequence may be a protein-binding sequence, for example a transcription factor binding site. In some embodiments, the regulatory sequence may be a polymerase-binding site. In some embodiments, the regulatory sequence is a terminator. The terminator may require an additional factor to indicated the end of the sequence for transcription, for example a rho-dependent terminator. In some embodiments, a regulatory sequence is a sequence that binds a ribosome, such as a ribosome-binding site (RBS). In some embodiments, the regulatory sequence indicates where translation will begin. It will be evident to one of ordinary skill in the art that regulatory sequences differ in their strength of regulation. For example, there exist strong promoter sequences, gene expression from which is higher than gene expression from a weak promoter sequence. Similarly, there exist strong RBS sequences that recruit and bind ribosomes with higher affinity than a RBS sequence that is characterized as weak. In some embodiments, the regulatory sequence may be an inducible or conditional regulatory sequence. In some embodiments, the regulatory sequence will exist 5′ or upstream of a protein-coding sequence. In other some embodiments, the regulatory sequence will exist 3′ or downstream of a protein-coding sequence. In still other embodiments, the regulatory sequence may be present within a protein-coding sequence. Any given protein-coding sequence may be regulated by one or more regulatory sequences. Non-limiting examples of regulatory sequences include the bacteriophage T7 promoter, sigma 70 promoter, sigma 54 promoter, lac promoter, rho-dependent terminator, stem-loop/rho-independent terminator.
“Exogenous” with respect to a nucleic acid indicates that the nucleic acid is part of a recombinant nucleic acid construct, or is not in its natural environment. For example, an exogenous nucleic acid can be a sequence from one species introduced into another species, i.e., a heterologous nucleic acid. Typically, such an exogenous nucleic acid is introduced into the other species via a recombinant nucleic acid construct. An exogenous nucleic acid also can be a sequence that is native to an organism and that has been reintroduced into cells of that organism. An exogenous nucleic acid that includes a native sequence can often be distinguished from the naturally occurring sequence by the presence of non-natural sequences linked to the exogenous nucleic acid, e.g., non-native regulatory sequences flanking a native sequence in a recombinant nucleic acid construct. In addition, stably transformed exogenous nucleic acids typically are integrated at positions other than the position where the native sequence is found. The exogenous elements may be added to a construct, for example using genetic recombination. Genetic recombination is the breaking and rejoining of DNA strands to form new molecules of DNA encoding a novel set of genetic information.
“Expression” refers to the process of converting genetic information of a polynucleotide into RNA through transcription, which is catalyzed by an enzyme, RNA polymerase, and into protein, through translation of mRNA on ribosomes.
Promoters may be constitutive or inducible. Examples of constitutive promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart et al, Cell, 41:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter [Invitrogen].
Inducible promoters allow regulation of gene expression and can be regulated by exogenously supplied compounds, environmental factors such as temperature, or the presence of a specific physiological state, e.g., acute phase, a particular differentiation state of the cell, or in replicating cells only. Inducible promoters and inducible systems are available from a variety of commercial sources, including, without limitation, Invitrogen, Clontech and Ariad. Many other systems have been described and can be readily selected by one of skill in the art. Examples of inducible promoters regulated by exogenously supplied promoters include the zinc-inducible sheep metallothionine (MT) promoter, the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter, the T7 polymerase promoter system [WO 98/10088]; the ecdysone insect promoter [No et al, Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)], the tetracycline-repressible system [Gossen et al, Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)], the tetracycline-inducible system [Gossen et al, Science, 268:1766-1769 (1995), see also Harvey et al, Curr. Opin. Chem. Biol., 2:512-518 (1998)], the RU486-inducible system [Wang et al, Nat. Biotech., 15:239-243 (1997) and Wang et al, Gene Ther., 4:432-441 (1997)] and the rapamycin-inducible system [Magari et al, J. Clin. Invest., 100:2865-2872 (1997)]. Still other types of inducible promoters which may be useful in this context are those which are regulated by a specific physiological state, e.g., temperature, acute phase, a particular differentiation state of the cell, or in replicating cells only.
The regulatory elements may be in some instances tissue-specific. Tissue-specific regulatory sequences (e.g., promoters, enhancers, etc.) are well known in the art. Exemplary tissue-specific regulatory sequences include, but are not limited to the following tissue specific promoters: a liver-specific thyroxin binding globulin (TBG) promoter, an insulin promoter, a glucagon promoter, a somatostatin promoter, a pancreatic polypeptide (PPY) promoter, a synapsin-1 (Syn) promoter, a creatine kinase (MCK) promoter, a mammalian desmin (DES) promoter, a α-myosin heavy chain (a-MHC) promoter, or a cardiac Troponin T (cTnT) promoter. Other exemplary promoters include Beta-actin promoter, hepatitis B virus core promoter, Sandig et al., Gene Ther., 3:1002-9 (1996); alpha-fetoprotein (AFP) promoter, Arbuthnot et al., Hum. Gene Ther., 7:1503-14 (1996)), bone osteocalcin promoter (Stein et al., Mol. Biol. Rep., 24:185-96 (1997)); bone sialoprotein promoter (Chen et al., J. Bone Miner. Res., 11:654-64 (1996)), CD2 promoter (Hansal et al., J. Immunol., 161:1063-8 (1998); immunoglobulin heavy chain promoter; T cell receptor α-chain promoter, neuronal such as neuron-specific enolase (NSE) promoter (Andersen et al., Cell. Mol. Neurobiol., 13:503-15 (1993)), neurofilament light-chain gene promoter (Piccioli et al., Proc. Natl. Acad. Sci. USA, 88:5611-5 (1991)), and the neuron-specific vgf gene promoter (Piccioli et al., Neuron, 15:373-84 (1995)), among others which will be apparent to the skilled artisan.
In some instances the modular units or genetic clusters may be designed to lack in restriction recognition sites. Restriction endonucleases cleave DNA with extremely high sequence specificity and due to this property they have become indispensable tools in molecular biology and molecular medicine. Over three thousand restriction endonucleases have been discovered and characterized from a wide variety of bacteria and archae. Comprehensive lists of their recognition sequences and cleavage sites can be found at REBASE.
As used herein the term “isolated nucleic acid molecule” refers to a nucleic acid that is not in its natural environment, for example a nucleic acid that has been (i) extracted and/or purified from a cell, for example, an algae, yeast, plant or mammalian cell by methods known in the art, for example, by alkaline lysis of the host cell and subsequent purification of the nucleic acid, for example, by a silica adsorption procedure; (ii) amplified in vitro, for example, by polymerase chain reaction (PCR); (iii) recombinantly produced by cloning, for example, a nucleic acid cloned into an expression vector; (iv) fragmented and size separated, for example, by enzymatic digest in vitro or by shearing and subsequent gel separation; or (v) synthesized by, for example, chemical synthesis. In some embodiments, the term “isolated nucleic acid molecule” refers to (vi) an nucleic acid that is chemically markedly different from any naturally occurring nucleic acid. In some embodiments, an isolated nucleic acid can readily be manipulated by recombinant DNA techniques well known in the art. Accordingly, a nucleic acid cloned into a vector, or a nucleic acid delivered to a host cell and integrated into the host genome is considered isolated but a nucleic acid in its native state in its natural host, for example, in the genome of the host, is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a small percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein.
Methods to deliver expression vectors or expression constructs into cells are well known to those of skill in the art. Nucleic acids, including expression vectors, can be delivered to prokaryotic and eukaryotic cells by various methods well known to those of skill in the relevant biological arts. Methods for the delivery of nucleic acids to a cell in accordance to some aspects of this invention, include, but are not limited to, different chemical, electrochemical and biological approaches, for example, heat shock transformation, electroporation, transfection, for example liposome-mediated transfection, DEAE-Dextran-mediated transfection or calcium phosphate transfection. In some embodiments, a nucleic acid construct, for example an expression construct comprising a fusion protein nucleic acid sequence, is introduced into the host cell using a vehicle, or vector, for transferring genetic material. Vectors for transferring genetic material to cells are well known to those of skill in the art and include, for example, plasmids, artificial chromosomes, and viral vectors. Methods for the construction of nucleic acid constructs, including expression constructs comprising constitutive or inducible heterologous promoters, knockout and knockdown constructs, as well as methods and vectors for the delivery of a nucleic acid or nucleic acid construct to a cell are well known to those of skill in the art.
In one embodiment, a genetic clusters includes a nucleotide sequence that is at least about 85% or more homologous or identical to the entire length of a naturally occurring genetic cluster sequence, e.g., at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50% or more of the full length naturally occurring genetic cluster sequence). In some embodiments, the nucleotide sequence is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% homologous or identical to a naturally occurring genetic cluster sequence. In some embodiments, the nucleotide sequence is at least about 85%, e.g., is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% homologous or identical to a genetic cluster sequence, in a fragment thereof or a region that is much more conserved, such as an essential, but has lower sequence identity outside that region.
Calculations of homology or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows. To determine the percent identity of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is at least 80% of the length of the reference sequence, and in some embodiments is at least 90% or 100%. The nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein nucleic acid “identity” is equivalent to nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
In many cases the nucleic acids described herein having naturally occurring nucleotides and are not modified. In some instances, the nucleic acids may include non-naturally occurring nucleotides and/or substitutions, i.e. Sugar or base substitutions or modifications.
One or more substituted sugar moieties include, e.g., one of the following at the 2′ position: OH, SH, SCH3, F, OCN, OCH3 OCH3, OCH3 O(CH2)n CH3, O(CH2)n NH2 or O(CH2)n CH3 where n is from 1 to about 10; Ci to C10 lower alkyl, alkoxyalkoxy, substituted lower alkyl, alkaryl or aralkyl; Cl; Br; CN; CF3; OCF3; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; SOCH3; SO2 CH3; ONO2; N3; NH2; heterocycloalkyl; heterocycloalkaryl; aminoalkylamino; polyalkylamino; substituted silyl; an RNA cleaving group; a reporter group; an intercalator; a group for improving the pharmacokinetic properties of a nucleic acid; or a group for improving the pharmacodynamic properties of a nucleic acid and other substituents having similar properties. Similar modifications may also be made at other positions on the nucleic acid, particularly the 3′ position of the sugar on the 3′ terminal nucleotide and the 5′ position of 5′ terminal nucleotide. Nucleic acids may also have sugar mimetics such as cyclobutyls in place of the pentofuranosyl group.
Nucleic acids can also include, additionally or alternatively, nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include adenine (A), guanine (G), thymine (T), cytosine (C) and uracil (U). Modified nucleobases include nucleobases found only infrequently or transiently in natural nucleic acids, e.g., hypoxanthine, 6-methyladenine, 5-Me pyrimidines, particularly 5-methylcytosine (also referred to as 5-methyl-2′ deoxycytosine and often referred to in the art as 5-Me-C), 5-hydroxymethylcytosine (HMC), glycosyl HMC and gentobiosyl HMC, isocytosine, pseudoisocytosine, as well as synthetic nucleobases, e.g., 2-aminoadenine, 2-(methylamino)adenine, 2-(imidazolylalkyl)adenine, 2-(aminoalklyamino)adenine or other heterosubstituted alkyladenines, 2-thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 5-propynyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl)adenine, 6-aminopurine, 2-aminopurine, 2-chloro-6-aminopurine and 2,6-diaminopurine or other diaminopurines. See, e.g., Kornberg, “DNA Replication,” W. H. Freeman & Co., San Francisco, 1980, pp 75-T7; and Gebeyehu, G., et al. Nucl. Acids Res., 15:4513 (1987)). A “universal” base known in the art, e.g., inosine, can also be included.
In the context of the present disclosure, hybridization means base stacking and hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. Complementary, as the term is used in the art, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an nucleic acid is capable of hydrogen bonding with a nucleotide at the same position of a second nucleic acid, then the two nucleic acids are considered to be complementary to each other at that position. The nucleic acids are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides that can hydrogen bond with each other through their bases. Thus, “specifically hybridizable” and “complementary” are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the nucleic acids. 100% complementarity is not required.
Various aspects of the embodiments described above may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co pending patent applications) cited throughout this application are hereby expressly incorporated by reference.
As shown in the examples, the refactoring approach has been applied to the nif gene cluster from Klebsiella oxytoca encoding the nitrogen fixation pathway for converting atmospheric N2 to ammonia. The native gene cluster consists of 20 genes in seven operons and is encoded in 23.5 kb of DNA. The refactored gene cluster may share little DNA sequence identity with the wild type (WT).
When the nif cluster is a native nif cluster, it may have the DNA sequence of any naturally occurring nif cluster. For example it may have the sequence of a naturally occurring nif cluster from Klebsiella oxytoca (SEQ ID NO. 4) Pseudomonas stutzi nif cluster (SEQ ID NO. 5) and Paenibacillus nif cluster. Refactored nif clusters may be any refactored nif cluster which is active in producing the proteins involved in promoting N2 conversion to other nitrogen forms.
The following exemplary DNA sequences of nif clusters are useful according to the invention.
Paenibacillus WLY78 nif cluster
Klebsiella oxytoca M5a1 nif cluster
Pseudomonas stutzeri A1501 nif cluster
The modified bacteria described herein are capable of colonizing a host plant. In certain cases, the modified bacteria can be applied to the plant, by foliar application, foliar sprays, stem injections, soil drenches, immersion, root dipping, seed coating or encapsulation using known techniques.
Successful colonization can be confirmed by detecting the presence of the bacterial population within the plant. For example, after applying the bacteria to the seeds, high titers of the bacteria can be detected in the roots and shoots of the plants that germinate from the seeds. In addition, significant quantities of the bacteria can be detected in the rhizosphere of the plants. Therefore, in one embodiment, the endophytic microbe population is disposed in an amount effective to colonize the plant. Colonization of the plant can be detected, for example, by detecting the presence of the endophytic microbe inside the plant. This can be accomplished by measuring the viability of the microbe after surface sterilization of the seed or the plant: endophytic colonization results in an internal localization of the microbe, rendering it resistant to conditions of surface sterilization.
In some cases, the modified bacteria is mixed with an agriculturally suitable or compatible carrier. The carrier can be a solid carrier or liquid carrier. The carrier may be any one or more of a number of carriers that confer a variety of properties, such as increased stability, wettability, or dispersability. Wetting agents such as natural or synthetic surfactants, which can be nonionic or ionic surfactants, or a combination thereof can be included in a composition of the invention. Water-in-oil emulsions can also be used to formulate a composition that includes the modified bacteria of the present invention. Suitable formulations that may be prepared include wettable powders, granules, gels, agar strips or pellets, thickeners, and the like, microencapsulated particles, and the like, liquids such as aqueous flowables, aqueous suspensions, water-in-oil emulsions, etc. The formulation may include grain or legume products, for example, ground grain or beans, broth or flour derived from grain or beans, starch, sugar, or oil.
In some embodiments, the agricultural carrier may be soil or plant growth medium. Other agricultural carriers that may be used include fertilizers, plant-based oils, humectants, or combinations thereof. Alternatively, the agricultural carrier may be a solid, such as diatomaceous earth, loam, silica, alginate, clay, bentonite, vermiculite, seed cases, other plant and animal products, or combinations, including granules, pellets, or suspensions. Mixtures of any of the aforementioned ingredients are also contemplated as carriers, such as but not limited to, pesta (flour and kaolin clay), agar or flour-based pellets in loam, sand, or clay, etc. Formulations may include food sources for the cultured organisms, such as barley, rice, or other biological materials such as seed, plant parts, sugar cane bagasse, hulls or stalks from grain processing, ground plant material or wood from building site refuse, sawdust or small fibers from recycling of paper, fabric, or wood. Other suitable formulations will be known to those skilled in the art.
In one embodiment, the formulation can comprise a tackifier or adherent. Such agents are useful for combining the modified bacteria with carriers that can contain other compounds (e.g., control agents that are not biologic), to yield a coating composition. Such compositions help create coatings around the plant or seed to maintain contact between the microbe and other agents with the plant or plant part. In one embodiment, adherents are selected from the group consisting of: alginate, gums, starches, lecithins, formononetin, polyvinyl alcohol, alkali formononetinate, hesperetin, polyvinyl acetate, cephalins, Gum Arabic, Xanthan Gum, Mineral Oil, Polyethylene Glycol (PEG), Polyvinyl pyrrolidone (PVP), Arabino-galactan, Methyl Cellulose, PEG 400, Chitosan, Polyacrylamide, Polyacrylate, Polyacrylonitrile, Glycerol, Triethylene glycol, Vinyl Acetate, Gellan Gum, Polystyrene, Polyvinyl, Carboxymethyl cellulose, Gum Ghatti, and polyoxyethylene-polyoxybutylene block copolymers.
The formulation can also contain a surfactant. Non-limiting examples of surfactants include nitrogen-surfactant blends such as Prefer 28 (Cenex), Surf-N(US), Inhance (Brandt), P-28 (Wilfarm) and Patrol (Helena); esterified seed oils include Sun-It II (AmCy), MSO (UAP), Scoil (Agsco), Hasten (Wilfarm) and Mes-100 (Drexel); and organo-silicone surfactants include Silwet L77 (UAP), Silikin (Terra), Dyne-Amic (Helena), Kinetic (Helena), Sylgard 309 (Wilbur-Ellis) and Century (Precision).
In certain cases, the formulation includes a microbial stabilizer. Such an agent can include a desiccant. As used herein, a “desiccant” can include any compound or mixture of compounds that can be classified as a desiccant regardless of whether the compound or compounds are used in such concentrations that they in fact have a desiccating effect on the liquid inoculant. Such desiccants are ideally compatible with the modified bacteria used, and should promote the ability of the microbial population to survive application on the seeds and to survive desiccation. Examples of suitable desiccants include one or more of trehalose, sucrose, glycerol, and methylene glycol. Other suitable desiccants include, but are not limited to, non reducing sugars and sugar alcohols (e.g., mannitol or sorbitol).
The formulations may also include one or more agents such as a fungicide, an antibacterial agent, an herbicide, a nematicide, an insecticide, a plant growth regulator, a rodenticide, and a nutrient. Such agents are ideally compatible with the agricultural seed or seedling onto which the formulation is applied (e.g., it should not be deleterious to the growth or health of the plant).
When the formulation is a liquid solution or suspension, the modified bacteria can be mixed or suspended in aqueous solutions. Suitable liquid diluents or carriers include aqueous solutions, petroleum distillates, or other liquid carriers.
A formulation that is a solid composition can be prepared by dispersing the modified bacteria in or on an appropriately divided solid carrier, such as peat, wheat, bran, vermiculite, clay, talc, bentonite, diatomaceous earth, fuller's earth, or pasteurized soil. When such formulations are used as wettable powders, biologically compatible dispersing agents such as nonionic, anionic, amphoteric, or cationic dispersing and emulsifying agents can be used.
Solid carriers useful in aspects of the invention include, for example, mineral carriers such as kaolin clay, pyrophyllite, bentonite, montmorillonite, diatomaceous earth, acid white soil, vermiculite, and pearlite, and inorganic salts such as ammonium sulfate, ammonium phosphate, ammonium nitrate, urea, ammonium chloride, and calcium carbonate. Also, organic fine powders such as wheat flour, wheat bran, and rice bran may be used. The liquid carriers include vegetable oils such as soybean oil and cottonseed oil, glycerol, ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, etc.
The modified bacteria herein can be combined with one or more of the agents described herein to yield a formulation suitable for combining with a plant, a seed or seedling. The modified bacteria can be obtained from growth in culture, for example, using a synthetic growth medium. In addition, the microbe can be cultured on solid media, for example on petri dishes, scraped off and suspended into the preparation. Microbes at different growth phases can be used. For example, microbes at lag phase, early-log phase, mid-log phase, late-log phase, stationary phase, early death phase, or death phase can be used.
In some embodiments the invention also includes containers or equipment with the modified bacteria, with or without the plants, seeds or seedlings. For instance, the invention may include a bag comprising at least 1,000 seeds having modified bacteria. The bag further comprises a label describing the seeds and/or said modified bacteria.
The population of seeds may be packaged in a bag or container suitable for commercial sale. Such a bag contains a unit weight or count of the seeds comprising the modified bacteria as described herein, and further comprises a label. In one embodiment, the bag or container contains at least 1,000 seeds, for example, at least 5,000 seeds, at least 10,000 seeds, at least 20,000 seeds, at least 30,000 seeds, at least 50,000 seeds, at least 70,000 seeds, at least 80,000 seeds, at least 90,000 seeds or more. In another embodiment, the bag or container can comprise a discrete weight of seeds, for example, at least 1 lb, at least 2 lbs, at least 5 lbs, at least 10 lbs, at least 30 lbs, at least 50 lbs, at least 70 lbs or more. The bag or container comprises a label describing the seeds and/or said modified bacteria. The label can contain additional information, for example, the information selected from the group consisting of: net weight, lot number, geographic origin of the seeds, test date, germination rate, inert matter content, and the amount of noxious weeds, if any. Suitable containers or packages include those traditionally used in plant seed commercialization.
A substantially uniform population of seeds comprising the modified bacteria is provided in other aspects of the invention. In some embodiments, at least 10%, for example, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95% or more of the seeds in the population, contains the modified bacteria in an amount effective to colonize a plant. In other cases, at least 10%, for example, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95% or more of the seeds in the population, contains at least 100 CFU on its surface, for example, at least 200 CFU, at least 300 CFU, at least 1,000 CFU, at least 3,000 CFU, at least 10,000 CFU, at least 30,000 CFU, at least 100,000 CFU, at least 300,000 CFU, or at least 1,000,000 CFU per seed or more.
Alternatively a substantially uniform population of plants is provided. The population comprises at least 100 plants, for example, at least 300 plants, at least 1,000 plants, at least 3,000 plants, at least 10,000 plants, at least 30,000 plants, at least 100,000 plants or more. The plants are grown from the seeds comprising the modified bacteria as described herein. The increased uniformity of the plants can be measured in a number of different ways.
In some embodiments, there is an increased uniformity with respect to the modified bacteria within the plant population. For example, in one embodiment, a substantial portion of the population of plants, for example at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95% or more of the seeds or plants in a population, contains a threshold number of the modified bacteria. The threshold number can be at least 100 CFU, for example at least 300 CFU, at least 1,000 CFU, at least 3,000 CFU, at least 10,000 CFU, at least 30,000 CFU, at least 100,000 CFU or more, in the plant or a part of the plant. Alternatively, in a substantial portion of the population of plants, for example, in at least 1%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, at least 90%, at least 95% or more of the plants in the population, the modified bacteria that is provided to the seed or seedling represents at least 10%, least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, or 100% of the total microbe population in the plant/seed.
This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Acetylene reduction assay was used to measure nitrogenase activity of bacteria in free-living conditions. Cultures were initiated by inoculating a single colony into 1 mL of LB medium with appropriate antibiotics in a 15 mL culture tube. Cultures grown with shaking at 250 rpm at 37° C. for 12 h were diluted 100-fold in 1 mL of minimal medium plus 17.1 mM NH4Ac with appropriate antibiotics in 96-well deep well plates. The plates were incubated with shaking at 900 rpm at 30° C. for 20 h. Cultures were diluted an OD600 of 0.5 in 2 mL of nitrogen-free minimal medium supplemented with appropriate antibiotics and inducers in 10 mL glass vials with PTFE-silicone septa screw caps (Supelco Analytical, Bellefonte, Pa., cat. #SU860103). Headspace in the bottles was replaced with 100% argon gas using a vacuum manifold equipped with a copper catalyst oxygen trap. Acetylene freshly generated from CaC2 in a Burris bottle was injected to 10% (vol/vol) into each culture vial to begin the reaction. Cultures were allowed to grow for 20 h at 30° C. with shaking at 250 rpm, followed by quenching via the addition of 0.3 mL of 4 M NaOH to each vial. Ethylene production was analyzed by gas chromatography on an Agilent 7890A GC system (Agilent Technologies, Inc. Santa Clara, Calif. USA) equipped with a PAL headspace autosampler and flame ionization detector as follows. 0.25 mL headspace preincubated to 35° C. for 30 s was injected and separated for 5 min on a GS-CarbonPLOT column (0.32 mm×30 m, 3 micron; Agilent) at 60° C. and a He flow rate of 1.8 ml/min. Detection occurred in a FID heated to 300° C. with a gas flow of 35 ml/min H2 and 400 ml/min air. Acetylene and ethylene were detected at 3.0 min and 3.7 min after injection, respectively. Ethylene production was quantified by integrating the 3.7 min peak using Agilent GC/MSD ChemStation Software.
For surface-sterilization, Zea mays B73 seeds (U.S. National Plant Germplasm System, IA) first were washed with 70% ethanol and immersed in 2% sodium hypochlorite solution (25% commercial bleach) for 15 min with shaking at 50 rpm and subsequently washed three times with sterile water. Surface-sterilized seeds were placed on 1% Bacto agar plate supplemented with 1 μM of gibberellic acid (Sigma-Aldrich, MO) and incubated under dark at room temperature up to 6 days before germination. A regular weight germination paper (Ancor Paper Co., Mn) soaked in 10 mL of sterile water was placed on the bottom of nitrogen-free Fahräeus agar plate. The germinated seeds were transplanted at the top of the germination paper in Fahräeus agar plate (4 seedling/plate). After establishing rooting system for 2 days, maize roots were flooded with 50 mL of bacteria (OD600=1) resuspended in sterile water and incubated at room temperature. Bacteria were removed by pipetting after 1 h of incubation. The plant growth was continued under 24 h constant light at 26° C. for additional two weeks before the assays.
Two weeks post-inoculation, only plant roots were retained by removing leave and seeds from the seedling using a razor blade. To determine internal colonization, each root was immersed in 20 mL of 1.6% sodium hypochlorite solution (20% commercial bleach) in 50 mL falcon tube and vortexed vigorously for 1 min followed by four times washes with 25 mL of sterile water. The surface sterilized roots were vortexed in 5 mL of PBS for 1 min following the last wash and subsequently plated on LB agar plate to quantify residual bacteria. The sterilized roots were crushed using a mortar and pestle in 5 mL of PBS for 5 min and the extracts were serially diluted in PBS and plated on LB agar plates with or without a selective marker to determine the presence of bacteria and the plasmid stability. The plates were incubated at 37° C. for 24 h before analyzing colony forming unit (CFU).
Acetylene reduction assay was used to measure nitrogenase activity of maize seedlings. Two weeks post-inoculation of bacteria, the intact seedlings were transferred into 30 mL volume anaerobic culture tubes (Chemglass Life Sciences, NJ) containing 2 mL of nitrogen-free Fahräeus medium sealed with a rubber stopper without headspace replacement. For the maize seedlings inoculated with the bacteria strain carrying the refactored cluster, 25 mL of 0.5 M IPTG was applied on seedling roots grown 13 days after inoculation of bacteria, after which the seedlings were incubated under constant light for 12 h before transfer into anaerobic culture tubes containing 2 mL of nitrogen-free Fahräeus medium with 10 mM IPTG. Acetylene freshly generated from CaC2 in a Burris bottle was injected to 7% (vol/vol) into each culture tube to start the reaction. The reaction was continued under a light regimen of 18 h of light and 6 h of dark at 28° C. up to 4 days. Ethylene production was quantified by gas chromatography. 0.5 mL of headspace was sampled and analyzed in a manner identical to that described above.
Transfer of Nif Clusters into Salmonella Strains.
Transfer of native and refactored nif clusters of Klebsiella was proven to be functional in K. oxytoca M5a1 and E. coli such as K12 MG1655. However, it hasn't been shown that heterologous expression of nif clusters would be active in other enteric bacteria that can colonize into crop cereals. We have collected pathogenic Salmonella strains that can infect various hosts ranging from humans to plants. We transferred native and refactored nif clusters into diverse Salmonella strains to test nitrogen fixation in a free living condition. Also, together with the refactored cluster, the controller plasmid encoding a sensor and circuit that drives the expression of the entire nif cluster in response to IPTG was introduced into Salmonella strains.
Particularly, S. typhi strains containing the native or refactored nif cluster showed higher nitrogenase activity among diverse Salmonella strains. Salmonella dublin, newport and pomona only exhibited nitrogenase activity from the native nif cluster to a lesser extent than those of the nitrogen fixing S. typhi strains (
Internal Colonization of Zea mays B73 Roots by S. typhi
To determine whether a Salmonella strain can be a bacterial endophyte in maize plants, we inoculated bacteria onto the roots of Zea mays B73 that is an important commercial crop variety. S. typhi ATCC 14028 showing one of the highest nitrogenase activity by heterologous nif expression was selected for internal colonization assay. 14 days post-inoculation, internal colonization by S. typhi ATCC 14028 was analyzed using the roots of plant seedlings. No CFU of S. typhi ATCC 14028 was detected after surface sterilization of the roots. To assess internally colonized bacteria cells, the surface sterilized roots of each plant seedling were crushed in PBS and plated on LB plates. We detected endophytic colonization of ˜106 CFU/plant by S. typhi ATCC 14028 from the crushed root extracts, but no CFU by E. coli MG1655 in the same setting (
14 days post-inoculation, we analyzed nitrogenase activity from the plant seedlings infected with the genetically modified S. typhi ATCC 14028 strains by acetylene reduction assay. More than 30 plants from each group were analyzed. 18% and 51% of the plants inoculated with S. typhi ATCC 14028 carrying the native nif cluster and the refactored nif cluster, respectively, displayed increased ethylene production compared to those plants inoculated with S. typhi ATCC 14028 expressing no nif cluster (
Improvement of Stability of Genetic Systems
Plasmid-based engineering of the clusters and controllers relies on plasmid stability during cell division. Such selective pressure for plasmid stability as antibiotic use can be easily applied and maintained in an in vitro setup. However, plasmids are cured from the host bacteria over time without selective antibiotic pressure in an in vivo setup.
In order to increase stability of the genetic system in bacteria, two engineering strategies were used. First, we introduced a controller that encodes an IPTG inducible T7 RNA polymerase and a selective marker into a target genome using the mini-Tn7 system [Choi, K. H., (2005). A Tn7-based broad-range bacterial cloning and expression system. Nature methods, 2(6), 443-448.]. It has been demonstrated that the transposition with the mini-Tn7 system is broad-host range and site-specific. Genome integration occurs at the Tn7 attachment site (attTn7) located downstream of the essential gene glmS. Salmonella contains a single glmS gene that ensures a single-copy insertion of an introduced genetic system. A new controller plasmid pR6K-T7RW designed for genome integration consists of a T7 RNA polymerase and a selection marker flanked by two Tn7 ends (Tn7L and Tn7R). To minimize interference by transcriptional read-through from the upstream glmS expression, a constitutive promoter-driven selection marker and a sensor protein lad are oriented opposite to the glmS. A T7 RNA polymerase read-through was blocked by a terminator between the device and the genome. We transformed a controller plasmid pR6K-T7RW and a helper plasmid pTNS3 encoding the TnsABCD transposase into Salmonella ATCC14028. The insertion site of a controller device was verified by PCR. We identified that the device is integrated 25 bp downstream of the glmS stop codon in Salmonella. We tested plasmid stability based on a selective marker in the internally colonized Salmonella strains containing either a genome-based controller or a plasmid-based controller two weeks after inoculation of germinated maize seeds. There was no marker loss from the genome-based system, whereas only about 20% of strains from the plasmid-based system were retained on the plates supplemented with antibiotics, indicating that the controller device on the Salmonella genome was stable without selective pressure over two weeks in the plant seedlings (
The nif clusters were constructed on a broad-host range plasmid pBBR1 such that the optimal expression levels of the nif genes in diverse contexts can be rapidly accessed by swapping genetic parts of the clusters on a plasmid. To keep the versatility and engineerablity of a plasmid-based nif system, we sought to explore an alternative to genome-based engineering while ensuring the stability of the nif clusters on the plasmid. The partitioning system encoded by the two par operons (parCBA and parDE) contributes to stable maintenance of a plasmid RK2 [Easter, C. L., Schwab, H., & Helinski, D. R. (1998). Role of the parCBA operon of the broad-host-range plasmid RK2 in stable plasmid maintenance. Journal of bacteriology, 180(22), 6023-6030.]. However, the transferability of the function of the RK2 par system has not been tested on other types of plasmids. We integrated the RK2 par system into the nif plasmids built upon a plasmid pBBR1 and analyzed plasmid stability in the Salmonella strain from the colonized roots. The nif plasmid stability without the par system decreased to 4% in the absence of a selective pressure after 14 days of inoculation into the plants. On the other hand, adding the par system on the nif plasmids resulted in plasmid stability of 96% under the identical conditions, which suggesting the RK2 par system works as a module to improve the stability of other plasmid types (
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
All references, including patent documents, disclosed herein are incorporated by reference in their entirety.
This application is a divisional of U.S. application Ser. No. 15/766,122, entitled “NITROGEN FIXATION USING REFACTORED NIF CLUSTERS,” filed Apr. 5, 2018, which is a national stage filing under U.S.C. § 371 of PCT International Application PCT/US2016/055429, entitled, “NITROGEN FIXATION USING REFACTORED NIF CLUSTERS,” filed Oct. 5, 2016, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/237,426, entitled “NITROGEN FIXATION IN SALMONELLA USING REFACTORED NIF CLUSTERS”, filed Oct. 5, 2015, which are herein incorporated by reference herein in their entirety.
This invention was made with government support under IOS1331098 awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
62237426 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15766122 | Apr 2018 | US |
Child | 17822740 | US |