The present invention relates to ultra fast optoelectronic switching using telecommunications wavelengths, suitable for digital sampling of analog waveforms.
Existing optoelectronic switches for this purpose have used Gallium Arsenide-based material systems, which require the absorption of light at 800-1180 nm wavelengths from lasers which are traditionally bulky and are limited in their use in the field. The technology for producing such Gallium Arsenide ultra fast materials with repeatable direct current and temporal characteristics is also problematic, and this has increased unit cost. Previous telecommunications wavelength switches have been created using heavy ion implantation of Indium Gallium Arsenide with Gold and Bromine, but the effect of the amorphous region, where implanted ions come to rest in the underlying Indium Phosphide substrate, has been detrimental to switch performance, because this layer is too conductive and defects can migrate into the switch active region with time, altering switch performance. This has been overcome by the removal of the amorphous region from the devices, but the removal of the layer produces very thin devices, typically much less than 100 μm, which are difficult to handle. Radio frequency transmission through these devices is also compromised by the very thin substrates that are produced.
Accordingly, the purpose of the present invention is to provide a reliable device responsive to laser sources at telecommunications wavelengths, which will allow for the system integration of the switching device, to give the device a smaller footprint at a lower cost, for the sampling of waveforms.
The invention provides a method of manufacturing a semiconductor device suitable for optoelectronic switching in response to light of wavelengths in the range 1200 nm to 1600 nm, comprising forming an undoped InGaAs layer on an insulative semiconductor substrate and bonded on opposed sides to a pair of electrical contact layers adapted to constitute the electrodes of a switch, comprising forming bulk point defects by irradiating the InGaAs layer with Nitrogen ions.
The invention further provides a method of using a device, or a switch incorporating such a device, made in accordance with the invention, comprising irradiating the InGaAs layer with light of wavelengths in the range 1200 nm to 1600 nm modulated in intensity to switch on and off repeatedly an electronic input signal applied to one of the ohmic or non-ohmic contact layers whereby to generate a sample of the input signal at the output.
The invention also provides a method of use of such a device or switch to generate or to detect picosecond or sub-picosecond length pulses for applications in the frequency range of 100 GHz to 10 THz and/or to sample microwave frequency signals.
The following publications provide background to the present invention, and may be referred to for more detailed explanation of the relevant technology:
Nitrogen Ion implanted Gallium Arsenide:
Some competing technologies will now be described briefly, to place the invention in its context.
Table 1 below provides a summary of the performance of competing materials indicating the applicable wavelength range and the suitability of the device as a sampling switch:
The use of Nitrogen ion implantation to produce the device in accordance with the invention leads to material of consistent electrical and temporal characteristics which can be produced on a repeatable basis. In Nitrogen implanted devices, the inert nature of the amorphous region means that no substrate removal is required after implantation. This enables the devices to be robust, since no thinning is required, and this robustness provides a consistent radio frequency transmission characteristic over a range of substrate depths when using coplanar waveguides, for example.
The absorption of radiation of 1200 to 1600 nm wavelengths by Nitrogen-ion implanted Indium Gallium Arsenide absorbing regions produces photo carriers which reduce the device resistance to such an extent that it acts as a low resistance area in series for example with a 50 ohm character impedance waveguide. The non-illuminated resistance of the device is typically several kilohms, and its illuminated resistance is typically 100 ohms or less. By using high energy Nitrogen ion implantation, typically over 1 MeV, the switch-off time of the device can be reduced to a few ps or less, and this short duration allows the device to be used as a sampling switch capable of Nyquist sampling for example of a 20 GHz waveform which is transmitted through the microwave planar waveguide.
In this context, Nitrogen ion “implantation” is intended to mean irradiation with a Nitrogen ion beam such that the radiation penetrates the Indium Gallium Arsenide layer and comes to rest outside that layer, typically within an adjacent Indium Phosphide substrate. Virtually no Nitrogen ions remain in the Indium Gallium Arsenide layer.
The device is switchable by 1200 to 1600 nm wavelength laser pulses to produce on and off states of electrical transmissivity which are required for waveform sampling. The switches embodying the invention are capable of ultra fast characteristics, such that the switch-off time can be below 10 ps.
The present invention has distinct advantages over the competing technologies mentioned above, in that it absorbs light at the required wavelengths typical for telecommunications, it is simple in its design and manufacture, it has high carrier mobility, and it requires no processing steps for the removal of any residual implanted ions.
In order that the invention may be better understood, a preferred embodiment will now be described, by way of example only, with reference to the accompanying diagrammatic drawings, in which:
a illustrates the layout of the device embodying the present invention having a mesa structure with interdigitated electrodes;
b illustrates the structure of an optoelectronic switch in accordance with the embodiment of
c illustrates, to an enlarged scale, the mesa structure of an alternative embodiment to that of
a illustrates a coplanar waveguide including an optoelectronic switch device as shown in
b shows the same switch but on a microstrip waveguide rather than a coplanar waveguide;
a to 4h illustrate diagrammatically the fabrication steps for a switch structure such as that of
An ultra fast optoelectronic switch embodying the invention, and illustrated below in greater detail with reference to the accompanying drawings, comprises a coplanar waveguide formed on a layer of Indium0.53 Gallium0.47 Arsenide grown epitaxially upon an underlying substrate of semi-insulating Indium Phosphide. The coplanar waveguide has parallel ground paths on either side of a conductor which forms a signal path. The signal path is broken, terminating at a pair of opposed electrodes which are coupled to respective ohmic conductive regions connected to the Indium Gallium Arsenide layer. This structure enables part of the Indium Gallium Arsenide layer selectively to switch on and off the path between the electrodes of the signal path. A picosecond or femtosecond laser of suitable wavelength is arranged over the device to project a laser beam onto the switch region, to cause the Indium Gallium Arsenide to switch the conductive path on and off. An input signal waveform at one end of the waveguide is thereby sampled to provide a sample of the input signal at the output.
The mechanism of switching is that the laser beam causes a rapid increase in electrical carriers in the Indium Gallium Arsenide material, so reducing its resistance. Once the laser beam is switched off, the electrical carriers are rapidly absorbed in the Indium Gallium Arsenide, in carrier traps as described in greater detail below, so switching off the device electrically. The off-state resistance is typically of the order of several kilohms, and its on-state resistance is designed to be around 50 ohms using the appropriate laser intensity to achieve this. The selection of 50 ohms is designed to be consistent with typical impedances used as a standard in radio frequency waveguides.
During the illumination of the device, a radio frequency signal at its input is transmitted on the 50 ohm transmission line signal path across the 50 ohm load and it is detected at the output of the device. Upon extinction of the pulse, the device reverts to high resistance and the input signal is attenuated. With appropriate holding and analog-to-digital circuitry, the sampled output may then be processed digitally.
In order to sample signals of at least several GHz, the switch-off time of the device must ideally be reduced to less than 10 ps, and this is achieved, in accordance with the present invention, by greatly increasing the density of carrier traps in the photoconductive semiconductor material. By reducing the switch-off time, such high frequency signals may successfully be sampled, so that the sampled output provides an accurate digital profile of the analog input waveform.
In an ultra fast material such as Indium Gallium Arsenide, there is an intermediate level energy band pinned between the semiconductor conduction band and the valence band, and this intermediate level traps the photogenerated carriers during the recombination time, to allow the switch to switch off. This effect has been observed in LT GaAs, though the large band gap makes this material unsuitable for absorption at 1200 to 1600 nm. LT-Indium Gallium Arsenide is an option, but this is too conductive. The present invention causes the generation of deep level defects in Indium Gallium Arsenide through Nitrogen ion irradiation, to generate ultra fast behaviour without the disadvantages of prior structures, and Indium Gallium Arsenide is switched at 1200 to 1600 nm.
The recombination mechanism using the carrier traps is known as Shockley-Read-Hall recombination, and is described in greater detail in publications referred to above. This SRH recombination mechanism is dependent upon the presence of non-stoichiometric features within the semiconductor lattice. As with LT-Gallium Arsenide, this deep energy level in Indium Gallium Arsenide is created by the displacement of Gallium and Arsenic sites.
The reduction of the carrier recombination time in Indium Gallium Arsenide, from a few ns down to below 5 ps and sometimes below 1 ps can be achieved by the creation of the deep level defects by the irradiation with high energy Nitrogen ions. The majority of the trapping levels are caused by the interactions between disturbed interstitial Arsenic atoms and vacant Gallium sites. This mechanism is known as the EL-2 deep level defect.
In all semiconductors, imperfections in the lattice structure will induce SRH recombination; however, the concentrations of these carrier traps have a negligible effect upon the photo carrier recombination time, as direct recombination is the major process. In ultra fast materials, the much-increased trap concentration can reduce the recombination time to sub ps durations. With reference to the graph shown in
where τρ=recombination time, Vth=carrier thermal velocity, σn=capture cross section, and Nt=trap density.
The structure of a switch device embodying the invention will now be described with reference to
An alternative structure is shown in
In this embodiment the electrode gap g is typically in the range of 3-5 μm depending on the design required although if suitable lithography is available it can advantageously be reduced to under 1 μm.
As shown in cross section in
As described below, an upper layer of the substrate 4 is largely devoid of implanted Nitrogen ions, which instead come to rest in an amorphous region in a lower layer of the substrate.
The Indium Gallium Arsenide layer is formed as layer 7 in direct contact with, and bonded to, the Indium Phosphide layer 4, to a thickness typically of 300 nm. A central portion of this layer 7 is exposed to allow it to be irradiated with Nitrogen ions, as described below.
On each side of the opening, there remains an n-InP etch stop layer 8 over the layer 7, and an n-Indium Gallium Arsenide ohmic layer 9 over layer 8. Each of the layers 8 and 9 has a thickness typically of 50 nm. Electrodes 6a and 6b are formed on each side of the Indium Gallium Arsenide layer 7 and over the respective ohmic layers 9, and these electrodes are connected integrally to the waveguide conductors as described below with reference to
A typical coplanar waveguide structure for radio frequency signals is shown in
A microstrip waveguide with a switch having the mesa structure 1 is shown in
The manufacturing process of the device as described with reference to
The next step is etching an ohmic layer mesa structure, shown in
The next fabrication step is etching an Indium Gallium Arsenide mesa structure of 300 nm thickness using H3PO4/H2O2/H2O for 3 minutes. This produces the structure shown in
The next stage is electrode and waveguide pattern exposure and development. Ultraviolet at 25 mJ/cm2 exposure is undertaken for 5 seconds, and developed for 40 seconds. As shown in
As shown in
The sample is then annealed by heating it to 400° C. in a Nitrogen atmosphere for 5 minutes.
As shown in
As shown in
Finally, the device is cleaved (not shown).
The ion irradiation is illustrated in
The direct current characteristic of the switch, formed in accordance with the invention, in its on state, is illustrated in
With reference to
where v is voltage and t is time.
The performance of the device in its on and in its off states is illustrated in
The capacitance of these optoelectronic switches was found to be at a maximum value of about 10 fF, while the radio frequency response indicated that the switch capacitance on the 50 ohm coplanar waveguide was approximately 12 fF. The measurement of the radio frequency output of the switch in the off state showed that the pre-implanted switch and the post-implanted switch had similar frequency responses, indicating that the relative permittivity of the implanted material at 13.9 had not been affected by the increased lattice defect number.
The carrier trap concentration should preferably be in the range of 1016 to 1016 cm−3, preferably about 5×1017 cm−3.
The device may be used with 1200 nm to 1600 nm wavelength pulsed light to switch an electronic signal applied to one of the ohmic or non ohmic contact layers to generate an output digital signal which is effectively a sample of the input signal. It may be used to generate or detect pulses of less than 10 ps width and optionally a few ps or even sub-picosecond width. This has applications in the sampling of microwave frequency signals.
An alternative structure to that of
Whilst certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel devices, methods and products described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the devices, methods and products described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
Number | Date | Country | Kind |
---|---|---|---|
1112977.2 | Jul 2011 | GB | national |