NLP-based sentiment analysis

Information

  • Patent Grant
  • 8838633
  • Patent Number
    8,838,633
  • Date Filed
    Thursday, August 11, 2011
    13 years ago
  • Date Issued
    Tuesday, September 16, 2014
    10 years ago
Abstract
Methods, systems, and techniques for providing sentiment analysis and for presenting the results of such analysis Example embodiments provide a Sentiment Analysis System (“SAS”), which provides tools to enable authors, programmers, users, developers, and the like to incorporate sentiment analysis into their content, such as into their web pages, and other web blogs or textual content. In one embodiment, the SAS provides a Sentiment Analysis Engine, an SAS API, and one or more user interface tools for presenting sentiment analysis.
Description
TECHNICAL FIELD

The present disclosure relates to methods, techniques, and systems for providing sentiment analysis and, in particular, to methods, techniques, and systems for providing sentiment analysis using natural language processing to determine sentiment of objects in a corpus.


BACKGROUND

Every minute of every day people express their sentiments and write them down in news articles, blog posts, other web content, and the like. Some people may regard themselves as too famous to write down their sentiments, but journalists, bloggers and other content creators are more than willing to document their feelings. Often times a famous radio commentator will bash a politician, or a politician will thrash a Hollywood actress. On occasion, a true act of heroism will be recognized, and all sorts of famous folk will follow with praise. Whether depressing or uplifting, disturbing or unnerving, tapping in to the sentiments of key actors on the world stage can be highly informative and engaging.


Determining the underlying sentiment of an article using a computing system may be difficult because of the variety of styles people employ in expressing sentiment—a comment may be an offhanded compliment in amongst an otherwise negative article, for example. Current techniques often involve traditional keyword searching for particular negative or positive words (verbs) such as “hate,” “like,” “distaste,” etc. to guesstimate the underlying sentiment of an article.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1H illustrate example screen displays of an example user interface widget provided by an example embodiment of a Sentiment Analysis System.



FIG. 2 illustrates an example screen display of another example user interface widget provided by an example embodiment of a Sentiment Analysis System.



FIG. 3 is an example block diagram of an example computing system that may be used to practice example embodiments of the Sentiment Analysis System.



FIG. 4 is an example flow diagram of an example process performed to build the example widget of FIGS. 1A-1H according to an example embodiment of an Sentiment Analysis System.



FIG. 5 is an example flow diagram of an example ranking and aggregation process of sentiment relationships performed according to an example embodiment of an Sentiment Analysis System.



FIGS. 6A-6N illustrate example screen displays of an example user interface provided by an example embodiment of a Sentiment Analysis System.





DETAILED DESCRIPTION

The headings employed herein are used to assist in the presentation and organization of the material and are not to be used to limit the scope of the described techniques.


A. Overview


Embodiments described herein provide enhanced computer- and network-based methods, techniques, and systems for providing sentiment analysis and for presenting the results of such analysis. Example embodiments provide a Sentiment Analysis System (“SAS”), which provides tools to enable authors, programmers, users, developers, and the like to incorporate sentiment analysis into their content, such as into their web pages, and other web blogs or textual content. In some embodiments such tools are provided in the form of an Application Programming Interface (“API”). In other embodiments, such tools are provided in the form of an “ready-made” Sentiment Widget, which is programmed to analyze sentiment for a particular topic, entity, or facet (e.g., characteristic of an entity). Other embodiments provide other mechanisms and examples of user interfaces which incorporate the techniques of the SAS and deliver information via NLP-based sentiment analysis to a consumer of such results.


The SAS works to understand the sentiments, or positive and negative expressions by and about entities. Many types of applications can be built using the sentiment API in areas including, but not limited to: market intelligence, market research, sports and entertainment, brand management, product reviews and more. For example, using the sentiment API, one can:


Find the percentage of positive and negative expressions of sentiment made by an entity, or about an entity. For example, one can find out what percentage of things being written about the iPhone are positive and which percent are negative.


Discover who is criticizing and who is praising a particular person, place or thing. For example, see who is criticizing and praising IBM right now.


Read what praisers and critics are saying about an entity. For example, see what the GOP are saying about the Democrats.


Discover who or what your favorite entity is bashing and why. For example, see who Lance Armstrong is complaining about.


Discover who or what your favorite entity is praising and why. For example, see who the World Health Organization is commending and why.


The SAS uses natural language based processing techniques, such as parts of speech tagging and relationship searching, to identify sentence components such as subjects, verbs, and objects, and to disambiguate and identify entities so that the SAS can recognize whether the underlying relationships (e.g., between subjects, verbs, and objects) in the content are expressed in a negative or positive sentiment. Example relationship searching technology, which uses natural language processing to determine relationships between subjects and objects in ingested content, is described in detail in U.S. Pat. No. 7,526,425, issued on Apr. 28, 2009, and entitled “METHOD AND SYSTEM FOR EXTENDING KEYWORD SEARCHING FOR SYNTACTICALLY AND SEMANTICALLY ANNOTATED DATA,” and entity recognition and disambiguation technology is described in detail in U.S. patent application Ser. No. 12/288,158, filed Oct. 15, 2008, and entitled “NLP-BASED ENTITY RECOGNITION AND DISAMBIGUATION,” both of which are incorporated herein by reference in their entireties. As explained therein, relationship searching uses queries which attempt to understand the underlying content through the use of natural language processing and to recognize and understand the various relationships between entities (e.g., persons, locations, things, events, and the like) using syntactic and semantic analysis of the underlying content. The use of relationship searching, enables the SAS to establish second order (or greater order) relationships between entities and to store such information.


Although the example embodiments described below utilize the EVRI™ relationship searching described in the above listed references to achieve more robust and precise sentiment analysis, other natural language systems and Boolean keyword matching systems may be used to identify content of a particular sentiment, which can then be integrated into the user interface and presentation tools of an SAS as described further herein.


In addition, as used herein, entities are generally identifiable people, places or things, such as people, locations, organizations, products, events, and the like. Facets are generally more finely granular characteristics of entities such as categories, types, and/or characteristics of certain entities such as actor, politician, nation, drug, automobile, and the like. Topics are subjects of interest that may involve a group of entities and/or facets. Any hierarchy or non-hierarchical division of the subjects (e.g., nouns and modifiers) and objects (e.g., nouns and modifiers) searched for in content may be used.


In one example embodiment, the Sentiment Analysis System comprises one or more functional components/modules that work together to provide sentiment analysis of a set of content stored in, for example, a corpus of documents. For example, a SAS may comprise an analysis engine, an API, and example user interface tools such as real time updated widgets that are embeddable in other content (for example, a third party website). The sentiment analysis engine is responsible for determining and categorizing the various relations (e.g., S-A-O triplets, or other forms) in the underlying content according to their sentiment. Different embodiments of the sentiment analysis engine may use different techniques for discovery of sentiment, for example, relationship searching using particular verbs, phrases, and heuristics, and/or modifications of same incorporating machine learning techniques. Example implementations of the sentiment analysis engine are discussed further below.


The sentiment analysis API (application programming interface) provides a programmatic interface to the capabilities of the sentiment analysis engine to uncover sentiment from underlying content. The API may provide different forms of the results of analyzing and categorizing the content such as in summary form or with specific details. For example, EVRI™ currently supports an API adhering to a REST interface (a REST API) that is found on www.evri.com/developer in the Reference API Specification and the descriptions of the various available functions. With the EVRI API, a developer or other would be consumer of relationship query data can automatically, cost effectively and in a fully scalable manner: analyze text, get recommendations, discover relationships, mine facts and get popularity data. A particular REST API, the GetSentiment API, is provided to query and organize content according to positive and negative sentiment. A full description of this “GET sentiment” API is provided below in Section D, “Example Sentiment API Specification.” The GET sentiment API offers summary data of content sentiment as well as particular details of sentiment data according to a specified source of the sentiment, type of sentiment, and/or subject (target) of the sentiment. Other API can similarly be incorporated into the SAS to provide the sentiment data, which can then be displayed with the user interface tools of the SAS.


Example user interface tools (or widgets) are shown in FIGS. 1A-1H and in FIG. 2. These widgets can be built, for example, using the API described below in Section D, “Example Sentiment API Specification.” FIGS. 1A-1H illustrate a widget externally configured to be about the entity Barack Obama corresponding to the EVRI URI: /person/barack-obama-0x16f69 (a particular entity ID).


B. Example User Interface Tools



FIG. 1A displays the overall percentage of positive sentiment and negative sentiment expressed by Barack Obama in a particular corpus, for example, a set of documents, web pages, blogs, indexed from the world-wide web. The left column displays the specific top entities being praised by Barack Obama, and the right column displays the specific entities being criticized. For example, the right column shows that Barack Obama has been criticizing the GOP, Rush Limbaugh, the ACLU, Al Zawahiri, and Israel, This sentiment summary information can be obtained by calling and executing the following REST API request, for example, using the SAS API:

















/v1/sentiment/summary?sentimentSource=/person/barack-obama-



0x16f69&includeSummaryDetails=true&sort=date










When a user clicks on the “positive” link (which defaults to positive sentiment about any entity) or the “[anything]” link shown in the left column of FIG. 1B, the user is presented with FIG. 1C showing more detail on the entities that are the subject of Barack Obama's positive sentiment. For example, as illustrated in FIG. 1C, more detail on the positive sentiments about “anything” is shown to the right of the positive and negative entity columns. These results can be obtained by calling and executing the following REST API request, for example, using the SAS API:

















/v1/sentiment/about?sentimentSource=/person/



barack-obama-0x16f69&sentimentType=positive&sort=date











Here, the input parameter sentimentSource refers to Barack Obama, indicating interest in vibes or sentiment expressed by Obama, as opposed to about him. Next, the input parameter sentimentType is set to positive, indicating interest in positive sentiment expressions. Finally, the input parameter sort is set to date, indicating interest in obtaining the latest results first. A discussion of how this API may be implemented to achieve such sentiment analysis using an example embodiment of the SAS is discussed with reference to FIG. 4.


The API call results also provide a specific snippet from the article, as well as a time stamp, the article title, and a link off to the source article for each result having sentiment that corresponds to the input specification. For example, in one snippet there appears a sentence stating that “the president commended . . . ” The SAS, through the use of its advanced relationship searching mechanisms, recognizes “the president” to be the source of the vibes, or sentiment, and commendation to be the prime justification for his positive sentiment expression. As illustrated, this kind of analysis is beyond mere keyword (straight pattern matching) recognition and shows the ability of the SAS to use NLP to “understand” the underlying relationships expressed in the article.


Next, as the result of the user selecting (clicking on) the “France” link in FIG. 1D, the widget presents detail information about Obama's positive expressions regarding the entity France as illustrated in FIG. 1E. As can be seen, the article snippets to the right of the positive and negative columns have been changed by the widget to show sentiment analysis detail information regarding the entity France.



FIG. 1F illustrates a user selecting one of the entities (Rush Limbaugh) that is the subject of Barack Obama's negative sentiments, as well as the selection of the “receiving vibes” tab to switch the presentation to showing Obama as the subject (not source) of negative sentiment. Said differently, the presentation is switched to show Rush Limbaugh's negative sentiments about Barack Obama. The results of these selections are shown in FIG. 1G. These results can be obtained by calling and executing the following API request, for example, using the SAS API:

















/v1/sentiment/about?entityURI=/person/barack-obama-0x16f69



&sentimentType=negative&sentimentSource=/person/



rush-limbaugh-0x1ebf5&sort=date











The input parameter entityURI references Barack Obama, indicating that the returned sentiment is about Barack Obama. In addition, the input parameter sentimentType is set to negative, indicating that returned sentiment expressions will be negative in nature. Also, the input parameter sentimentSource references Rush Limbaugh. The URI that refers to Rush Limbaugh can be obtained from the sentiment summary results of the request shown above in reference to FIG. 1A.



FIG. 1H illustrates an example of embedding the vibology meter widget of FIGS. 1A-1G in an entity description page (EDP) used, for example, for other purposes.



FIG. 2 illustrates an example screen display of another example user interface widget provided by an example embodiment of a Sentiment Analysis system. Again, summary information 201 (as a result of an SAS API call) can be used to present percentages of positive versus negative sentiment with respect to how the source of the sentiment has expressed the sentiment with regard to the subject of the sentiment. Here, the topic 202 of the sentiment is shown as Barack Obama and the sources of the sentiment 203a-203c are displayed in the body of the widget. For example, if the topic is Barack Obama, using this widget, users, for example readers of a blog, can see by the positive summary indicator 204 that 38% of the web feels positively about him, and by the negative summary indicator 205 that 62% of the web is expressing negative sentiment about him. In the body of the widget 200, the readers can also see who Barack Obama's top critics and entities that are praising him are, and then explore exactly what they are saying about the president. The dropdown 208 with the current value of “everything” is used to select the source. The dropdown 207 with the current value of “good vibes” is used to select positive or negative sentiment. The dropdown 206 with the current value of “getting” is used to switch between getting and receiving sentiment (source versus subject). Of course other arrangements of this data are equally suitable.


Another interface/presentation of sentiment can be seen in the AttackMachine example embodiment described below in Section F, “Attack Machine Example —Specification.” The AttackMachine is an application (here, a web site) targeting an in depth assessment of all things “attack” oriented that have been written about over the indexed set of web pages, recently. It is built on top of the EVRI subject/verb/object style data extraction (using EVRI relationship searching), and can easily be extended to other verbs, or actions, such as: LoveMachine, HateMachine, KillMachine, etc. In each case, the equivalent of “attackers” and “victims” are present. For example, for LoveMachine, the source/targets of the verb love are “The lover” and “The loved”.


Other applications, interfaces, tools, and widgets can be developed using the SAS API, and equivalents that interface to the Sentiment Analysis Engine capabilities.


As mentioned above, the SAS provides a sentiment analysis engine to classify and discover sentiment in content, such as from a corpus of articles. In one embodiment, the sentiment analysis engine uses a determined list of verbs or sentiment phrases in sentiment queries against the content to derive sentiment. These lists may be pre-formulated or provided by means of an external storage so that they can be defined somewhat automatically or dynamically at runtime, or through some combination of both. Certain post filtering activities may also be incorporated, such as to compare the title of a corresponding article where a relationship having sentiment is found with a relationship found therein, to make sure the title the sentiment doesn't indicate that the relationship is a backhanded compliment or criticism or sarcastic. An example of using this technique for uncovering sentiment is discussed with reference to FIG. 4 in regard to the implementation of the example vibology meter widget of FIGS. 1A-1H.


In other embodiments, machine learning techniques can be incorporated to derive the sentiment verbs and phrases that are searched for in the relationship queries. A description of one example machine learning technique is described below with respect to Section E, “Sentiment Analysis—Machine Learning Example Embodiment.” It is intended to show a general approach to using machine learning to reveal the sentiment of content. Other approaches as they are developed can similarly be incorporated.


Example embodiments described herein provide applications, tools, data structures and other support to implement a Sentiment Analysis System to be used for presenting sentiment of certain content. Other embodiments of the described techniques may be used for other purposes, including for marketing or intelligence information, branding, advertising, and the like. Also, although described primarily with respect to textual content, the techniques described herein can be extrapolated to address visual content, or combined text and visual content, for example, when meta data labeling the visual content can be similarly mined for sentiment information. For example, in some cases the title of a picture may indicate that the picture contains positive or negative sentiment. Also, although certain terms are used primarily herein, other terms could be used interchangeably to yield equivalent embodiments and examples. In addition, terms may have alternate spellings which may or may not be explicitly mentioned, and all such variations of terms are intended to be included.


In the following description, numerous specific details are set forth, such as data formats and code sequences, etc., in order to provide a thorough understanding of the described techniques. The embodiments described also can be practiced without some of the specific details described herein, or with other specific details, such as changes with respect to the ordering of the code flow, different code flows, etc. Thus, the scope of the techniques and/or functions described are not limited by the particular order, selection, or decomposition of steps described with reference to any particular routine.


C. Example Computing System and Processes



FIG. 3 is an example block diagram of an example computing system that may be used to practice example embodiments of the Sentiment Analysis System. Note that a general purpose or a special purpose computing system suitably instructed may be used to implement an SAS. Further, the SAS may be implemented in software, hardware, firmware, or in some combination to achieve the capabilities described herein.


The computing system 300 may comprise one or more server and/or client computing systems and may span distributed locations. In addition, each block shown may represent one or more such blocks as appropriate to a specific embodiment or may be combined with other blocks. Moreover, the various blocks of the Sentiment Analysis System 310 may physically reside on one or more machines, which use standard (e.g., TCP/IP) or proprietary interprocess communication mechanisms to communicate with each other.


In the embodiment shown, computer system 300 comprises a computer memory (“memory”) 301, a display 302, one or more Central Processing Units (“CPU”) 303, Input/Output devices 304 (e.g., keyboard, mouse, CRT or LCD display, etc.), other computer-readable media 305, and one or more network connections 306. The SAS 310 is shown residing in memory 301. In other embodiments, some portion of the contents, some of, or all of the components of the SAS 310 may be stored on and/or transmitted over the other computer-readable media 305. The components of the Sentiment Analysis System 310 preferably execute on one or more CPUs 303 and manage the discovery and mining of sentiment data, as described herein. Other code or programs Y30 and potentially other data repositories, such as data repository 306, also reside in the memory 301, and preferably execute on one or more CPUs 303. Of note, one or more of the components in FIG. 3 may not be present in any specific implementation. For example, some embodiments embedded in other software may not provide means for user input or display.


In a typical embodiment, the SAS 310 includes one or more Sentiment Analysis Engines 311, one or more Entity and Relationship Identifiers 312 as described in patent application Ser. No. 12/288,158, one or more SAS APIs 313, and other (optional) support, such as machine learning support 314, rules for finding sentiment 315, for example if expressed externally to the Sentiment Analysis Engines 311. In at least some embodiments, the heuristics and rules 315 are provided external to the SAS and is available, potentially, over one or more networks 350. Other and/or different modules may be implemented.


In addition, the SAS may interact via a network 350 with application or client computing device 360 that calls the API 313 to incorporate sentiment data for other purposes, e.g., uses results computed by engine 311, one or more content sources 355, and/or one or more third-party systems 365, such as machine learning tools that can be integrated with engine 311. Also, of note, the Entity Data Store 316 and the Indexed Article Data 317 may be provided external to the system and accessible over one or more networks 350. The network 350 may be any combination of media (e.g., twisted pair, coaxial, fiber optic, radio frequency), hardware (e.g., routers, switches, repeaters, transceivers), and protocols (e.g., TCP/IP, UDP, Ethernet, Wi-Fi, WiMAX) that facilitate communication between remotely situated humans and/or devices. The mobile devices 360 include notebook computers, mobile phones, smart phones, personal digital assistants, tablet computers, desktop systems, kiosk systems, and the like.


In an example embodiment, components/modules of the SAS 310 are implemented using standard programming techniques. However, a range of programming languages known in the art may be employed for implementing such example embodiments, including representative implementations of various programming language paradigms, including but not limited to, object-oriented, functional, procedural, scripting, declarative, etc.


The embodiments described above may also use well-known or proprietary synchronous or asynchronous client-server computing techniques. However, the various components may be implemented using more monolithic programming techniques as well, for example, as an executable running on a single CPU computer system, or alternately decomposed using a variety of structuring techniques known in the art, including but not limited to, multiprogramming, multithreading, client-server, or peer-to-peer, running on one or more computer systems each having one or more CPUs. Some embodiments are illustrated as executing concurrently and asynchronously and communicating using message passing techniques. Equivalent synchronous embodiments are also supported by an SAS implementation.


In addition, programming interfaces to the data stored as part of the SAS 310 (e.g., in the data repositories 316 and 317) can be available by standard means such as through C, C++, C#, and Java APIs; libraries for accessing files, databases, or other data repositories; through scripting languages such as XML; or through Web servers, FTP servers, or other types of servers providing access to stored data. The Entity Data Store 316 and the Indexed Article Data 317 may be implemented as one or more database systems, file systems, or any other method known in the art for storing such information, or any combination of the above, including implementation using distributed computing techniques.


Also the example SAS 310 may be implemented in a distributed environment comprising multiple, even heterogeneous, computer systems and networks. For example, in one embodiment, the engine 311, the API functions 313, and the article data repository 317 are all located in physically different computer systems. In another embodiment, various modules of the SAS 310 are hosted each on a separate server machine and may be remotely located from the tables which are stored in the repositories 316 and 317. Also, one or more of the modules may themselves be distributed, pooled or otherwise grouped, such as for load balancing, reliability or security reasons. Different configurations and locations of programs and data are contemplated for use with techniques of described herein. A variety of distributed computing techniques are appropriate for implementing the components of the illustrated embodiments in a distributed manner including but not limited to TCP/IP sockets, RPC, RMI, HTTP, Web Services (XML-RPC, JAX-RPC, SOAP, REST, etc.) etc. Other variations are possible. Also, other functionality could be provided by each component/module, or existing functionality could be distributed amongst the components/modules in different ways, yet still achieve the functions of an SAS.


Furthermore, in some embodiments, some or all of the components of the SAS may be implemented or provided in other manners, such as at least partially in firmware and/or hardware, including, but not limited to one or more application-specific integrated circuits (“ASICs”), standard integrated circuits, controllers executing appropriate instructions, and including microcontrollers and/or embedded controllers, field-programmable gate arrays (“FPGAs”), complex programmable logic devices (“CPLDs”), and the like. Some or all of the system components and/or data structures may also be stored as contents (e.g., as executable or other machine-readable software instructions or structured data) on a computer-readable medium (e.g., as a hard disk; a memory; a computer network or cellular wireless network or other data transmission medium; or a portable media article to be read by an appropriate drive or via an appropriate connection, such as a DVD or flash memory device) so as to enable or configure the computer-readable medium and/or one or more associated computing systems or devices to execute or otherwise use or provide the contents to perform at least some of the described techniques. Some or all of the system components and/or data structures may be stored as non-transitory content on one or more tangible computer-readable mediums. Some or all of the system components and data structures may also be stored as data signals (e.g., by being encoded as part of a carrier wave or included as part of an analog or digital propagated signal) on a variety of computer-readable transmission mediums, which are then transmitted, including across wireless-based and wired/cable-based mediums, and may take a variety of forms (e.g., as part of a single or multiplexed analog signal, or as multiple discrete digital packets or frames). Such computer program products may also take other forms in other embodiments. Accordingly, embodiments of this disclosure may be practiced with other computer system configurations.


As described in FIGS. 1A-1H and FIG. 2, one of the functions of a Sentiment Analysis System is to mine underlying content for sentiment data. FIG. 4 is an example flow diagram of an example process performed to build the example widget of FIGS. 1A-1H according to an example embodiment of an Sentiment Analysis System. Of course, other algorithms and techniques for extracting sentiment data may be used, such as the machine learning techniques described below with respect to Section E, “Sentiment Analysis—Machine Learning Example Embodiment.”


In one example embodiment, in the Find Sentiment Data Routine 400, implements the SAS API discussed earlier. Different portions of the routine 400 may be executed, commensurate with the input parameters in the API call. In particular, in block 401, the SAS runs a relationship query using the NLP mechanisms described in detail in U.S. Pat. No. 7,526,425 to find positive sentiment. An example such query is:














* or Source > CommaSeparatedQuotedListOfPositiveVerbs > * or Subject


~ AND NOT (ListOfNegativePhrases)










where * (any matching) or a particular Source is specified as an entity type, particular entity ID, facet, topic, or string; CommaSeparatedQuotedListOfPositiveVerbs is exactly that —a comma separated list of verbs to be treated as positive verbs, e.g., “like,” “hug,” “praise,” or the like; * (any matching) or a particular Subject is specified as an entity type, particular entity ID, facet, topic, or string. Different relationship query engines may require different syntax (e.g., unquoted verbs, different separators, or the like). Note that the context operator “˜” is used to eliminate relationships that include negative phrases closely situated (within “n” sentences, configurable) with the found relationship. This attempts to eliminate relationships where the sentiment is backhanded or a parody, etc.


In block 402, the SAS runs a similar relationship query using the NLP mechanisms to find negative sentiment. An example such query is:

















* or Source > CommaSeparatedQuotedListOfNegativeVerbs > * or



Subject



~ AND NOT (ListOfNegativePhrases)











where * (any matching) or a particular Source is specified as an entity type, particular entity ID, facet, topic, or string; CommaSeparatedQuotedListOfNegativeVerbs is exactly that—a comma separated list of verbs to be treated as negative verbs, e.g., “kill,” “attack,” “hate,” or the like; * (any matching) or a particular Subject is specified as an entity type, particular entity ID, facet, topic, or string. Different relationship query engines may require different syntax (e.g., unquoted verbs, different separators, or the like). Note that the context operator “˜” is used to eliminate relationships that include positive phrases closely situated (within “n” sentences, configurable) with the found relationship. This attempts to eliminate relationships where the sentiment is a quote or a parody, etc.


In block 403, the SAS performs available post relationship filtering. For example, in some embodiments, each returned relationship is compared with the corresponding title of the article in which the relationship is found. Relationships may be eliminated if the corresponding title reflects an opposite sentiment from the relationship. Many other filtering rules containing phrases, rules, identifying specific entities to avoid, etc. may be specified at this block of execution.


In block 404, the SAS determines (computing or otherwise) the percentage of positive sentiments (e.g., number of positive relationships returned in block 401) after filtering in block 403 as a percentage of the total relationships after filtering. Similarly, in block 405, the routine determines the percentage of negative sentiments (e.g., number of negative relationships returned in block 402) after filtering in block 403 as a percentage of the total relationships after filtering. These are stored as part of the output, to support the summary statistics of the sentiment analysis API.


In block 405, the SAS ranks and aggregates the determined remaining relationships and issues resultant output, for example as specified in the API described below with respect to Section D, “Example Sentiment API Specification,” and ends the routine 400. The ranking, for example, may result in only the top most “n” recent relationships being returning for a given source or subject. The aggregation allows the ranking to be performed on like relationships.


Although many different ways are available to rank and aggregate the determined remaining relationships, one such method is provided in FIG. 5. Other methods use a default ranking, for example, built into indexing the content (for example, by date) and then applying one or more of the additional factors described below.



FIG. 5 is an example flow diagram of an example ranking and aggregation process of sentiment relationships performed according to an example embodiment of an Sentiment Analysis System. In block 501, for each relationship, the SAS determines a confidence and/or certainty score. This score may be based on factors such as certainty on the sentiment verbs (e.g., some verbs have strong, unambiguous sentiment indication, while some other verbs are less so). To do this, the SAS may assign and store different weights to different verbs and/or phrases. Another factor that may influence the certainty score is whether or not the sentence contains a conditional clause (e.g., People would like the iPad if it had more storage).


In block 502, the source and target (subject of sentiment) is determined for each relationship found in FIG. 4.


In block 503, the relationships are grouped according to their sources and targets determined in block 502. If one or more facets or categories are specified in the sentiment API, then the SAS constrains (filters) the relationships to only those whose sources and/or subjects belong to the facet/category specified, for example, by the input parameters.


In block 504, the results of block 503 are then ranked—for sources and for subjects/targets. In one embodiment, the following criteria may be used for such rankings:

    • Number of occurrences of the source/subject;
    • Corresponding article date;
    • Certainty score associated with the relationship


      In addition, the SAS then examines the facets of each source/subject and counts the frequency of each such facet. Common facets (e.g., shared between source or shared between targets) are also listed in the ranked list of sources/targets. Note as well that one or more of these steps may be eliminated as desired. Also, additional criteria or different criteria for ranking and/or aggregating may be substituted.


Routine 500 then returns an indication of the ranked and aggregated results.


As stated, routines 400 and 500 can be used to generate the summary sentiment data, shown for example in FIG. 1A or FIG. 2. When a user indicates a particular source or subject of sentiment, then the SAS executes a corresponding detail relationship query, such as:


“Barack Obama”>CommaSeparatedListOfNegativeVerbs>*


which lists the top “n” relationships in which Barack Obama has expressed negative sentiment towards any subject. Other sentiment queries can be similarly handled.


D. Example Sentiment API Specification


1.1 Input Specifications


1.1.2 HTTP Method: GET sentiment


1.1.3 Resource: Get sentiment of something about something


Description: Returns sentiment by someone or something about someone or something. A subject may or may not be specified. If a subject is specified, it may include types, facets, entities, keywords, or a Boolean combination of all. The sentimentSource may or may not be specified. If it is not, then the source of the specified sentiment is anything. If it is, it may be a specific entity (e.g., Barack Obama), one or more of a facet (e.g., actor or musician), or one or more of a type (e.g., person or organization).


Usage:


sentiment/[summary]/[about]?[inputParameters]


where applicable inputParameters include: type, facet, entityURI, phrase, search, includeDomains, excludeDomains, includeDates, includeMatchedLocations, startId, resultsPerPage, sort, and callback.


Table 1, below, describes inputParameters that are supported.













TABLE 1





Phase
Input
Description
Values
Default







1
sentimentType
A type of
One of: positive, negative
positive




sentiment


1
includeSummaryDetails
Return the source
One of: true, false
false




and subject of




sentiment in




summary




information


1
sentimentSource
The source of
A comma separated list
anything




sentiment
of entity URIs. Comma





separated entities are





treated as an OR,





meaning entity X or entity





Y are the





sentimentSource of each





returned sentiment.





A comma separated list





of facets.





Any string including





wildcard, e.g., Obama,





vict*, william





shakespeare


1
facet
A category of an
One or more facets.
None.




entity within its
Multiple facets comma




specified type.
separated are treated as





an OR, meaning entity of





facet X, or entity of facet





Y are involved in the





resource.





Multiple facets specified





as





facet=facet1&facet=facet





2& . . . facet=facetN are





treated as an AND,





meaning entity of facet X





and facet Y are involved





in the resource.





Facet parameters starting





with a ‘−’ will be treated as





a negative query





parameter. Example:





facet=−politician, actor





(entities not having a





politican or actor facet)


1
entityURI
A unique identifier
One or more entityURIs.
None.




to an entity.
Multiple entities comma





separated are treated as





an OR, meaning entity X,





or entity Y are involved in





the resource.





Multiple entities specified





as





entityURI=eURI1&entityURI





=eURI2&...entityURI=eURIN





are treated as an





AND, meaning entity X





and entity Y are involved





in the resource.


2
type
Corresponds to
One or more of: person,
None.




entity types
location, organization,





concept, product, event.





Multiple types comma





separated are treated as





an OR, meaning entity of





type X, or entity of type Y





are involved in the





resource.





Type parameters starting





with a ‘−’ will be treated as





a negative query





parameter. Example:





type=−person


2
phrase
A keyword or
Any string.
None.




phrase


2
search
A Boolean
Boolean expression in Lucene
None.




expression
syntax and involves 1 or more





of:





1. one or more entityURIs





2. one or more keywords





3. one or more types of the





form type:TYPE





4. one or more facets of the





form facet:FACET


2
sort
Type of result
One of: relevance, date
relevance




sorting









1.2 Examples: Table 2, below lists various examples of the API in use.











TABLE 2





Phase
Description
Call Syntax







1
Simple sentiment summary
/v1/sentiment/summary?sentimentSource=/organization/



for sentiment of an entity
nato-0x308f6


1
Simple sentiment summary
/v1/sentiment/summary/about?entityURI=/person/



for sentiment about an entity
barack-obama-0x16f69


1
Detailed sentiment summary
/v1/sentiment/summary/about?entityURI=/organization/



for sentiment about an entity.
nato-



Response includes sources
0x308f6&includeSummaryDetails=true



of the sentiment about the



entity.


1
Detailed sentiment summary
/v1/sentiment/summary?sentimentSource=/person/



for sentiment of an entity.
barack-obama-



Response includes subjects
0x16f69&includeSummaryDetails=true



of the persons sentiment.


1
Detailed sentiment summary
/v1/sentiment/summary/about?facet=



for sentiment about a facet.
musician&includeSummaryDetails=true



Response includes sources



of the sentiment about the



facet.


1
Positive sentiment of an
/v1/sentiment/about?sentimentSource=/person/



entity about anything
barack-obama-




0x16f69&sentimentType=positive


1
Sentiment of anything about
/v1/sentiment/about?entityURI=/person/barack-



a specific entity
obama-0x16f69&sentimentType=positive


1
Sentiment of an entity about
/v1/sentiment/about?entityURI=/person/john-



an entity
mccain-




0x2a2a7&sentimentSource=/person/barack-




obama-0x16f69&sentimentType=negative


1
Sentiment of an entity about
/v1/sentiment/about?facet=country&sentiment



any facet
Source=/person/barack-obama-0x16f69


1
Negative sentiments of
/v1/sentiment/about?facet=politician&sentiment



musicians about politicians.
Source=musician&sentimentType=negative


2
Negative sentiment of any
/v1/sentiment?&sentimentType=negative&sentiment



entity from a list of entities
Source=/person/barack-obama-0x16f69,



about anything. Returned
/person/rahm-emanuel-0x31053,



sentiment are from one of the
/person/hillary-rodham-clinton-0x2fd4a



specified sentimentSources.


2
Sentiment of anyone about a
/v1/sentiment/about?entityURI=/organization/bharatiya-



list of entities
janata-party-0x4c623,




/person/manmohan-singh-0x1a0d5,




/location/india-0x320cf


2
Sentiment of a person about
/v1/sentiment/about?facet=actor, musician,



any entity belonging to any
sports_person&sentimentSource=/person/



facet from a list of facets
barack-obama-0x16f69


2
Sentiment of a person about
/v1/sentiment/about?facet=actor&facet=



all facets in a list.
musician&sentimentSource=/person/barack-obama-




0x16f69


2
Sentiment of any person of a
/v1/sentiment/about?type=organization,location,



facet about any one entity
person&sentimentSource=facet:politician



type from a set of entity types


2
Sentiment of any person of a
/v1/sentiment/about?facet=country&sentiment



facet about any entity of a
Source=facet:politician



facet


2
Sentiment of any person of a
/v1/sentiment/about?phrase=United States of



facet about a keyword
America&sentimentSource=facet:politician


2
Sentiment of any person of a
/v1/sentiment/about?search=bailout OR



facet about one or more
economic crisis OR



keywords
economy&sentimentSource=facet:politician


2
Sentiment of a person about
/v1/sentiment/about?phrase=US&sentimentSource=



a keyword
/person/barack-obama-0x16f69


2
Sentiment of any person of a
/v1/sentiment/about?search=/person/barack-



facet about an expression
obama-0x16f69 AND (econo* OR




facet:financial_services_company OR




(type:organization AND




finance))&sentimentSource=facet:politician/


2
Sentiment of any person
v1/sentiment?sentimentSource=joe*



named joe









1.3 Result Format


Below is an output independent listing of result elements:














 format = <element name> (<element count>) -- <description>


 children nodes are indented beneath parent nodes, and attributes are


  indented underneath “attributes”


  MediaResult (1) -- top level Query Service search result wrapper


  sentimentSummaryList(0,1)


   sentimentSummary(2)


    attributes


     type(1) -- the specified type of the sentiment


    percentage(1) -- percentage of extreme sentiment


    sentimentSourceEntityList (0,1)


     entity(0..N)


      attributes


       score


       href


      name


    sentimentSubjectEntityList (0,1)


     entity(0..N)


      attributes


       score


       href


      name


  sentimentList (0,1) -- contains list of articles that have sentiment of


  a sentimentSource about subject


   sentiment(0..N)


    attributes


     type(1) -- the specified type of the sentiment


    article(1)


     content (1) -- the text that contains the sentiment by the


      sentimentSource about the subject.


     author (1) -- author/publisher of the article


     link (1) -- valid article URL


      attributes:


       href (1)


       type (1)


       hostName (1) -- name of URL host


       path (1) -- relative path to article


     published (1) -- date of publication


     title (1) -- article title


     titleMatchedLocations(0,1) - includes locations of all


      matched subjects, sources including entities, facets, types,


      keywords, actions, sentiment phrases or a combination there


      of.


      matchedLoc(0..N)


       attributes


        startPtr


        endPtr


     contentMatchedLocations (0,1) - includes locations of all


     matched subjects, sources including entities, facets, types,


     keywords, actions, sentiment phrases or a combination there


     of.


      matchedLoc (0..N)


       attributes


        startPtr


        endPtr









1.3.1 XML Example: Table 3 below shows an XML example:









TABLE 3







...


<MediaResult>


  <sentimentList>


    <sentiment type=positive>


      <content>


“Charlie Rose Show,” Geithner claimed that steady overseas demand


for U.S. Treasury debt was a vote of confidence that the Obama


administration was on the right track in countering the “deep


mess” the economy is in. “This president is going to do what is


necessary to get us through this. ... We're a terrifically strong


country with abundant resources, and we will get through this,”


said Geithner, referring to President Barack Obama's commitment


to end the more than year-long U.S. recession. But ahead of this


weekend's Group of 20 gathering of finance chiefs near London,


and a later one in April for political leaders, Geithner said the


United States will push for action by others to match the


aggressive U.S. approach. “You're going to see (President Obama)


lead an ambitious agenda to try to get the world moving with us


so that the global economy is firing on all cylinders,” he said,


adding that “getting the world to move with us (is) necessary and


critical.”


      </content>


      <sentimentSource>


        <entity href=“/person/timothy-geithner...”>


          <name>Timothy Geithner</name>


        </entity>


        <sentimentSourceMatchedLocations>


          <matchedLocation startPtr=“19” endPtr=“26”/>


        </sentimentSourceMatchedLocations>


      </sentimentSource>


      <subject>


        <entity href=“/person/barack-obama...>


          <name>Barack Obama</name>


        </entity>


        <subjectMatchedLocations>


          <matchedLocation startPtr=“120” endPtr=“124”/>


          <matchedLocation startPtr=“300” endPtr=“312”/>


          <matchedLocation startPtr=“380” endPtr=“384”/>


        </subjectMatchedLocations>


      </subject>


      <article>


        <author>Reuters</author>


        <link


href=“/log/click?url=


http%3A%2F%2Fwww.reuters.com%2Farticle%2Fbusiness


News%2FidUSTRE52976R20090311” type=“UNKNOWN”


hostName=“www.reuters.com”


path=“/article/businessNews/idUSTRE52976R20090311”/>


        <published>11 Mar 2009 17:09:15 GMT</published>


        <title>U.S.  in a deep mess  but we will fix it:


Geithner</title>


      </article>


    </sentiment>


   ...


  </sentimentList>


</mediaResult>


...









1.3.2 JSON


JSON is generated using the badgerfish convention:


[/v1/sentiment/by/person/barack-obama-0x16f69.json]


1.4 Response Codes

    • 200—given when input parameters are valid, whether there are valid quotes or not.
    • 400—given when invalid path is entered—e.g. an incorrect path like http://rd-dev:25000/v1/quotations/by/person/barack-obama-0x16f69/about
    • 404—given when the user has entered a sentimentSource or a subject that was not found, e.g. http://rd-dev:25000/v1/quotations/by/person/arun-jacob-0x23421
    • 500—internal system error


      E. Sentiment Analysis—Machine Learning Example Embodiment


An embodiment of an NLP SVO (subject-verb-object) style triplet (i.e., a relationship) extraction based sentiment extraction system (SES) includes:

    • implicit and explicit feedback collection for algorithmic training and efficacy validation based on an algorithmic seed (i.e., a basic SES pseudo-manually constructed query is used to obtain ballpark sentiment used for additional feedback collection).
    • algorithmic model construction based on training data for feature selection, algorithmic parameter determination, and dynamic rule application.
    • indexing time application of sentiment algorithm for relationship classification into sentiment categories (sentimentType) like “positive” and “negative” including a category score.
    • search time retrieval and ranking of relationships for a given sentimentType and source or subject. Ranking accounts for sentiment category score in post filtering, i.e., re-ranking of results returned from a traditional EVRI Query Language (EQL) query.
    • search time sentiment summary determination for a given source or subject where cumulative scores for relationships involving an entity are leveraged.


Training:


1. Ground Truth Construction


An explicit feedback mechanism is constructed into a sentiment user interface (SUI). The example SUI consists of the following use cases:


1.1 Summary Determination


For summary determination, the source or subject of sentiment is specified. If the source is specified, a list of subjects for sentimentType positive, and a list of subjects for sentimentType negative will be returned. For example, if the source is Barack Obama, and the returned sentimentType is negative, a list of subjects of Obama's negative sentiment will be returned such as: GOP, Rush Limbaugh, North Korea, and AIG.


1.2 Sentiment Determination


For sentiment determination, the source, sentimentType, and subject are specified. The source and subject may be an entity or facet. Either the source or subject may not be specified, indicating “anything” is an acceptable value. For example, source=Barack Obama, sentimentType=“negative”, and subject=“anything” will return a list of sentiments made up of a snippet, an article title, link to the article, and a date for the article where Barack Obama is mentioning a negative sentiment about anything. If the subject is AIG, then sentiments with Obama mentioning something negative about AIG will be returned.


The explicit feedback mechanism enables a user to rank the quality of each returned result by selecting one of the following options: “very poor”, “poor”, “average”, “good”, “great.” Users will be provided these options for both use cases shown above. The results will be stored into a ground truth style training set. For case 1 (the summary sentiment) shown above, the training consists of the corresponding source or subject entities, along with a rating and the entities rank position. For case 2 shown above, the training set consists of the article URI (or other indicator), title, snippet, rank position, and rating.


Algorithm Training:


Training of an indexing time sentiment classifier will begin against the ground truth data set. One strategy is to take a combined rule based and statistical approach. On the statistical side, compute:

















topic | positive phrase list | positive verb list | negative



phrase list | negative verb list











where the topic is determined ad hoc, such as sports, health, everything else. The idea is the word lists are likely different for each topic. Now, the word lists will have an actual score indicating the degree of positivity or negativity for the topic, likely on a 0 to 1 scale. It might help to manually eliminate undesired words.


Indexing Time Application:


For a given document, first determine its topic (simple sum of facet occurrences where each facet is mapped to 1 of the N topic sets; the topic with the greatest number of corresponding facet occurrence wins). Next, use the appropriate word lists to compute a relationship score for every relationship in the document. A given raw relationship score for a given sentimentType can be computed as follows:

    • R_r_st=w1*Jsent+w2*V


      where,
    • Jsent=simple Jaccard distance between the stemmed set of phrases (i.e., words and noun phrases) of the sentence and the phrase list for the sentimentType st.
    • wi=weighting factors
    • V=score of the corresponding verb in the verb list for the sentimentType st


Next, an average sentiment score D_st for each sentimentType is computed across all relationships in the document. The final relationship score stored is:

    • R_st=D_st*R_r_st, if and only if R_st>T


where T is the minimal score threshold required to mark the relationship as belonging to sentimentType st.


Search Time Application for Sentiment Determination:


At search time, one can search for the source/subject/sentimentType combination as follows:

    • source>*>subject #sentimentType=SENTIMENT_TYPE_VALUE


Now, for each of the returned results, a final ranking score needs to be determined that fuses the score for the relationship search itself, along with R_st.


One method is to start with a simple weighted combination of the form: w1*Rr+w2*R_st.


Search Time Application for Sentiment Summary Determination:


At search time, search for the source/subject/sentimentType combination as follows:

    • source>*>subject #sentimentType=SENTIMENT_TYPE_VALUE


Now, for each relationship, extract entities/facets, and compute the entity score as:

    • Es=w1*fc*(sum(r))+w2*Ravg_st


      where,
    • wi=weighting factors;
    • fc=frequency of occurrence across the full result set;
    • sum(r)=sum of rank_order for the occurrences of the entity/facet;
    • Ravg_st=average relationship score containing the entity/facet for the given sentimentType st.


Finally, the efficacy is computed against the ground truth, some weights are tweaked, and the process repeated. In some embodiments, the weight determination is automated.


Conclusion:


The above algorithms are examples to show how machine learning techniques may be applied to improve sentiment analysis that uses NLP based (SVO) relationship information. Nuances of the above specifics may yield more precise results and may be similarly integrated.


F. Attack Machine Example


Description


The AttackMachine is an example site targeting an in depth assessment of all things “attack” oriented. AttackMachine is intended to highlight differentiating technology available by EVRI from the EVRI API. AttackMachine is intended to showcase what can be built on top of the EVRI “triplet” or subject/verb/object style data extraction (using EVRI relationship searching). The AttackMachine site template can easily be extended to other verbs, or actions, such as: LoveMachine, HateMachine, KillMachine, etc. In each case, the equivalent of “attackers” and “victims” are present. For example, for LoveMachine, the source/targets of the verb love are “The lover” and “The loved”.


Visual Specification



FIGS. 6A-6N illustrate example screen displays of an example user interface provided by an example embodiment of a Sentiment Analysis System. In particular, the illustrated screen displays are from an example of one embodiment of the AttackMachine website.


The following functional specification and other instructions shows how to build such a site using the Sentiment Analysis API and other EVRI API. A detailed explanation of the current EVRI API can be found on the EVRI website, currently located at www.evri.com/develor/REST. It is to be understood that a variety of variations of the presentation of visuals and a variety of content can be similarly shown on a website or in other forms of content presentable through displaying or otherwise (e.g., audio, streaming, etc.) to a user or other consumer of such information.


Example Embodiment of Visual Specification


The following bullet points correspond to reference numbers indicated by numbered green dots shown in FIGS. 6A-6N:


Reference 1 in FIG. 6A indicates a Terse description of the site. Should be modifiable on a new code drop.


Reference 2 in FIG. 6A indicates getting a most popular attacker list (i.e., home page results). Note: any way of doing this can be incorporated. However, the following algorithm using EVRI functions may be used do a decent job of getting the results.


Determining the top entities:


Every “n” minutes (e.g., 15), execute the following queries:






    • 1. Get a list of attacking animals, e.g.,



















http://api.evri.com/rd/servlet/RequestDispatcherServlet?req=eq&q=



[organism]+{aggregate}%3Eattack&qd=Attacker










For any returning cell containing an entityId, convert the ID to hex and preceed with /organism/NAME-HEXID, where NAME is the cell's Desc value with case dropped and whitespace substituted with “-”. Example:
















<Row>



<Query>coyote>attack</Query>



<Count>4</Count>



-



<Cell>



<Desc>coyote</Desc>



<EntityId>3743769</EntityId>



</Cell>



</Row>



becomes



/organism/coyote-0x392019











    • 2. Get a list of attacking persons, e.g.,



















http://api.evri.com/rd/servlet/RequestDispatcherServlet?req=eq&q=



[person/name]+{aggregate}%3Eattack&qd=Attacker










For any returning cell containing an entityId, convert the id to hex and preceed with /person/NAME-HEXID (see above example)
    • 3. Repeat step 2 for: [location/name], [organization/name], [condition], [concept] or any other entities that could be “attackers.”
    • 4. Organize the information
      • A. Form 4 (or “n” depending upon what was searched) sets, set 1: persons, set 2: locations, set 3: organizations, set 4: things (organism, condition, concept) . . . .
      • B. For each entity, in each set, get the list of articles for the attacker, by executing a query something like: http://api.evri.com/v1/person/sarah-palin-0x2a889/relations/verb/attack?media=article
      • C. Sort the articles by date, and take the most recent for the date displayed in the visual specification corresponding to the entity.
      • D. Sort the entities by date within each set.
    • 5. Form a new entity set of 20 entities with slots as follows: slot 1=top person, slot 2=top thing, . . . slot 4=top location, slot 5=2nd person, slot 8=2nd location, and so on to max of slot 20.
    • 6. Sort this set by date to populate the attackers list on the home page. (Slide 3)


Reference 3 in FIG. 6A indicates getting a most popular victim list.

    • 1. Example call to get most popular victim list:
















http://api.evri.com/rd/servlet/RequestDispatcherServlet?req=eq&q=



*>attack>[person/name]+{aggregate}&qd=Victim










For remaining steps, process find top entities similarly to steps 1-6 above for most popular attacker list, making changes in the queries as appropriate.
    • 2. For step 4.b. above, use: http://api.evri.com/v1/person/hamid-karzai-0x26e7f/relations/qt/attacked-by-0xe?media=article


Reference 4 in FIG. 6A indicates Image instructions: Note that the images are not shown in the slides they are currently replaced by a placeholder “QuickTime™ and a decompressor are needed to see this picture.” In the real home page, the following algorithms can be used to supply the pictures.

    • A. Images used should be the same as those on EVRI Entity Data Page (EDP) pages. If no image is present for the corresponding URI, then an image shall be pulled based on the entity type. Generic images corresponding to attacker and victim for each of the 6 types used in this example: organism, person, place, organization, condition, concept should be provided in SVN.
    • B. In one example embodiment as shown, a maximum of 40 images, 20 for attackers, and 20 for victims is rendered on the homepage. The images may be ordered by date from left to right proceeding down the matrix as shown in the visual specification.
    • C. Below each image, the entity name and trailing wording is displayed as shown in the visual specification. In addition, the time stamp is shown as rendered. The date formatting (i.e., 1 hour ago, 14 hours ago, 3 days ago, etc.) may be the same as that used elsewhere on Evri.com.


Reference 5 in FIG. 6A indicates a FAQ: Centered below the images is a generic about FAQ style statement (not shown in the visual spec).


Reference 6 in FIG. 6E indicates unique content manually generated and programmatically accessible.

    • A. If content, such as an entity level description, is accessible at the entity level, use it; for example, no less than once every 15 minutes.
    • B. If no content is accessible at the entity level, use facet level description information, if it is available; for example, no less than once every 15 minutes.
    • C. If no entity or facet level information is available, use type level description information, if it is available; for example, no less than once every 15 minutes.
    • D. If the page is being generated for an unknown entity (no id is present because someone just used the search box), then no description is typically shown (or some type of default text or other description).


Reference 7 in FIG. 6E indicates Unique content automatically generated based on default template text, for example, from an API response. Example algorithm is as follows:

    • A. #entity attacks have been reported as recently as #timestamp by #publisher. #entity attacks have involved #N_p people, #N_μl places, #N_o organizations, and #N_t things.
    • B. In step above, #entity is the name of the entity or query term. The first letter should be capitalized. The most recent article properties should be used to populate the #publisher and #timestamp fields.
    • C. #N_t corresponds to the sum of entities with type condition, concept, or organism.
    • D. Care should be taken to ensure the sentences read in correct English syntax, for example with an “and” before the final item listed.


Reference 8 in FIG. 6E indicates a natural language statement of other entities of the same type, in this case organism (displayed as animal) attacking. In EVRI, the list of entities should be determined by calling: http://is.gd/37OuR.


Reference 9 in FIG. 6E indicates a List of people, places, or things attacked.

    • A. Make REST API call, i.e.,
















http://api.evri.com/v1/organization/republican-party-



0x3e569/relations/verb/attack?appId=attackmachine










Now, for each of the targets returned, check the type portion of the URI. Then break out the display according to the grouping described in Green Dot step 7.A. above, i.e., people, places, organization and things with things being either type condition, concept or organism.
    • B. Show a maximum of 10 items attacked.
    • C. If no results are returned, drop the hex number, and re-issue the request. For example, if:
















http://api.evri.com/v1/organism/pit-



bull-0x39716d/relations/verb/attack?appId=attackmachine










yields no results, execute:
















http://api.evri.com/v1/organism/pit-bull/relations/verb/attack?appId=



attackmachine









Reference 9.1 in FIG. 6E indicates, for this particular example visual embodiment, if the type of the entity is organism, then render videos.

    • A. The video carousel and resulting behavior can be exactly the same as that in the profile section of the Evri collections functionality.
    • B. To obtain the videos, make the REST request:
















http://api.evri.com/v1/organism/shark%20attack/media/related?type=



vide&appId=attackmachine










where shark is obtained by dropping the hex portion of the entity URI if it is present, and the word attack is appended.


Reference 10 in FIG. 6E indicates terse wording of what the page is about.


Reference 11 in FIG. 6E indicates an Article summary display. In the example visual specification:

    • A. Bolding should be applied. Note: the API does not return the matched locations for the verb attack. Do a string search for all instances of words starting with the word: attack and bold the entire word.
    • B. Maximum of 10 article results should be displayed. “More” should be displayed at the bottom of the results. If it is clicked, search for 20 results and render all.
    • C. Note: Top entities are intentionally omitted.
    • D. Attached article images should be shown as displayed whenever present.
    • E. To get articles for general entity>attack case:














http://api.evri.com/v1/organism/grizzly-bear/relations/verb/attack?media=


article&includeMatchedLocations=true&appId=attackmachine









Reference 12 in FIG. 6E indicates top 5 attackers and victims as shown on the home page stated in natural language form.


Reference 13 in FIG. 6G indicates a terse result summary statement change. Note wording. Also note: the clicked on term is now bolded.


Reference 14 in FIG. 6G indicates revised articles for specific entity>attack>entity case:
















http://api.evri.com/v1/organism/grizzly-



bear/relations/verb/attack/location/alaska-0x38fd9?media=



article&includeMatchedLocations=true&appId=attackmachine









Reference 15 in FIG. 6J indicates user searches for something specific

    • A. If the user term has only one exact match (meaning the entity names match exactly, not that only 1 entity is returned from the call) while using this API call:
















http://api.evri.com/v1/entities/find?prefix=sarah%20palin&appId=



attackmachine










then send the user to that entities attack page.
    • B. If more than one exact match exists, render a query based attack page as shown in the slide with Green Dot 22. For example, if the user types in “shark”, render the page by using the API call:
















http://api.evri.com/v1/concept/shark/relations/verb/attack?media=



article&appId=attackmachine%E2%80%89










Note: /concept/shark with no hex-id is used to represent the keyword shark.
    • C. If no results are returned from the REST call described in 15. A., then instead of the prefix call, use this API call:
    • http://api.evri.com/v1/entities?name=health care


References 16-21 in FIGS. 6L and 6M indicate Victim Rendering.


Same as the attack case, with differences addressed.


Reference 22 in FIG. 6N indicates a search result display scenario. Other Miscellaneous Preferences:

    • Home page title: “The Attack Machine”
    • Entity attack page titles: “#entity Attacks—The Attack Machine”, i.e. “Shark Attacks—The Attack Machine”
    • Entity victim page titles: “#entity—Attack Victim—The Attack Machine”, i.e., “Sarah Palin—Attack Victim—The Attack Machine”
    • URLs for entity attack pages should be of the form:
















http://www.attackmachine.net/attacker/organism/pit-bull-x39716d











    • URLs for query phrase attack pages should be of the form:

    • http://www.attackmachine.net/attacker/phrase/pit bull

    • URLs for entity victim pages should be of the form:



















http://www.attackmachine.net/victim/person/sarah-palin-0x2a889











    • URLs for query phrase victim pages should be of the form:

    • http://www.attackmachine.net/victim/phrase/hate





All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification including but not limited to U.S. Pat. No. 7,526,425, issued on Apr. 28, 2009, and entitled “METHOD AND SYSTEM FOR EXTENDING KEYWORD SEARCHING FOR SYNTACTICALLY AND SEMANTICALLY ANNOTATED DATA;” U.S. patent application Ser. No. 12/288,158, filed Oct. 15, 2008, and entitled “NLP-BASED ENTITY RECOGNITION AND DISAMBIGUATION;” and U.S. Provisional Patent Application No. 61/372,684, filed Aug. 11, 2010, and entitled “NLP-BASED SENTIMENT ANALYSIS” are incorporated herein by reference in their entireties


From the foregoing it will be appreciated that, although specific embodiments have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. For example, the methods, systems, and techniques for performing sentiment analysis discussed herein are applicable to other architectures other than an NLP architecture. Also, the methods, systems, and techniques discussed herein are applicable to differing protocols, communication media (optical, wireless, cable, etc.) and devices (such as wireless handsets, electronic organizers, personal digital assistants, tablet computers, smart phones, portable email machines, game machines, pagers, navigation devices such as GPS receivers, etc.).

Claims
  • 1. A computer-implemented method for analyzing a collection of content for sentiment data, comprising: executing a first relationship query against the content in the collection to determine and extract from the content a plurality of relationships between entities, each extracted relationship specifying a subject, an action, and an object and exhibiting positive sentiment for an entity that is a source of positive sentiment towards an entity that is a subject of the positive sentiment, wherein a relationship with positive sentiment is extracted from the content as a result of executing the first relationship query when the action of the relationship with positive sentiment matches at least one of a plurality of identified positive verbs and when negative phrases that match a negative phrase list are not found within a first determined number of sentences;executing a second relationship query against the content in the collection to determine and extract from the content a plurality of relationships between entities, each extracted relationship specifying a subject, an action, and an object and exhibiting negative sentiment for an entity that is a source of negative sentiment towards an entity that is a subject of the negative sentiment, wherein a relationship with negative sentiment is extracted from the content as a result of executing the second relationship query when the action of the relationship with negative sentiment matches at least one of a plurality of identified negative verbs and when positive phrases that match a positive phrase list are not found within a second determined number of sentences;wherein the first and second relationship queries are specified using a natural language query mechanism that uses syntactic and semantic analysis of the content to recognize and understand relationships expressed between entities in the content and wherein each query specifies a subject, an action, and an object related to the subject through the action;determining a percentage of the determined and extracted relationships exhibiting positive sentiment to a total of determined and extracted relationships exhibiting either positive or negative sentiment;determining a percentage of the determined and extracted relationships exhibiting negative sentiment to a total of determined and extracted relationships exhibiting either positive or negative sentiment; andpresenting on a display device, a user interface that indicates the percentage of the determined and extracted relationships exhibiting positive sentiment and the relationships exhibiting negative sentiment for the entity that is the source of sentiment towards the entity that is the subject of the sentiment, in conjunction with presenting, for each extracted relationship, indications of the entity that is the source of sentiment and the entity that is the subject of the sentiment.
  • 2. The method of claim 1, wherein the source of positive sentiment or the source of negative sentiment is a facet or a topic.
  • 3. The method of claim 1, wherein the subject of the positive sentiment or negative sentiment is a facet or a topic.
  • 4. The method of claim 1, wherein the collection of content is a corpus of documents.
  • 5. The method of claim 1, wherein the collection of content is a set of web pages.
  • 6. The method of claim 1, further comprising: filtering the determined and extracted relationships exhibiting positive sentiment for those contradicting a phrase of a corresponding other portion of the content in which the relationship was found.
  • 7. The method of claim 6, wherein the corresponding portion of the content is a title.
  • 8. The method of claim 1, further comprising: filtering the determined and extracted relationships exhibiting negative sentiment for those contradicting a phrase of a corresponding title of the content in which the relationship of positive sentiment or the relationship of negative sentiment was found.
  • 9. The method of claim 1, wherein the entity that is a source of positive sentiment or negative sentiment is an identified facet, topic, or string.
  • 10. The method of claim 1, wherein the entity that is a subject of the positive sentiment or the negative sentiment is any facet, topic, or string.
  • 11. The method of claim 1, further comprising: aggregating and ranking the determined and extracted relationships exhibiting negative sentiment.
  • 12. The method of claim 1, further comprising: aggregating and ranking the determined and extracted relationships exhibiting positive sentiment.
  • 13. A computer-readable memory medium containing content that, when executed, presents sentiment data of a collection of indexed content by performing a method comprising: executing a first relationship query against the content in the collection to determine and extract a plurality of relationships between entities, each extracted relationship specifying a subject, an action, and an object and exhibiting positive sentiment for an entity that is a source of positive sentiment towards an entity that is a subject of the positive sentiment, wherein a relationship with positive sentiment is extracted from the content as a result of executing the first relationship query when the action of the relationship with positive sentiment matches at least one of a plurality of identified positive verbs and when negative phrases that match a negative phrase list are not found within a first determined number of sentences;executing a second relationship query against the content in the collection to determine and extract from the content a plurality of relationships between entities, each extracted relationship specifying a subject, an action, and an object and exhibiting negative sentiment for an entity that is a source of negative sentiment towards an entity that is a subject of the negative sentiment, wherein a relationship with negative sentiment is extracted from the content as a result of executing the second relationship query when the action of the relationship with negative sentiment matches at least one of a plurality of identified negative verbs and when positive phrases that match a positive phrase list are not found within a second determined number of sentenceswherein the first and second relationship queries are specified using a natural language query mechanism that uses syntactic and semantic analysis of the content to recognize and understand relationships expressed between entities in the content and wherein each query specifies a subject, an action, and an object related to the subject through the action;determining a percentage of the determined and extracted relationships exhibiting positive sentiment to a total of determined and extracted relationships exhibiting either positive or negative sentiment;determining a percentage of the determined and extracted relationships exhibiting negative sentiment to a total of determined and extracted relationships exhibiting either positive or negative sentiment; andpresenting on a display device, a user interface that indicates the percentage of the determined and extracted relationships exhibiting positive sentiment and the relationships exhibiting negative sentiment for the entity that is the source of sentiment towards the entity that is the subject of the sentiment, in conjunction with presenting, for each extracted relationship, indications of the entity that is the source of sentiment and the entity that is the subject of the sentiment for each extracted relationship.
  • 14. A computing system comprising: a memory;a computer processor; anda sentiment analysis engine component stored in the memory and configured, when executed on the computer processor, to: execute a first relationship query against the content in the collection to determine and extract from the content a plurality of relationships between entities, each extracted relationship specifying a subject, an action, and an object and exhibiting positive sentiment for an entity that is a source of positive sentiment towards an entity that is a subject of the positive sentiment, wherein a relationship with positive sentiment is extracted from the content as a result of executing the first relationship query when the action of the relationship with positive sentiment matches at least one of a plurality of identified positive verbs and when negative phrases that match a negative phrase list are not found within a first determined number of sentences;execute a second relationship query against the content in the collection to determine and extract from the content a plurality of relationships between entities, each extracted relationship specifying a subject, an action, and an object and exhibiting negative sentiment for an entity that is a source of negative sentiment towards an entity that is a subject of the negative sentiment, wherein a relationship with negative sentiment is extracted from the content as a result of executing the second relationship query when the action of the relationship of negative sentiment matches at least one of a plurality of identified negative verbs and when positive phrases that match a positive phrase list are not found within a second determined number of sentences; wherein the first and second relationship queries are specified using a natural language query mechanism that uses syntactic and semantic analysis of the content to recognize and understand relationships expressed between entities in the content and wherein each query specifies a subject, an action, and an object related to the subject through the action;determine a percentage of the determined and extracted relationships exhibiting positive sentiment to a total of determined and extracted relationships exhibiting either positive or negative sentiment;determine a percentage of the determined and extracted relationships exhibiting negative sentiment to a total of determined and extracted relationships exhibiting either positive or negative sentiment; andpresent an indication of the percentage of the determined and extracted relationships exhibiting positive sentiment and an indication of the determined and extracted relationships exhibiting negative sentiment for the entity that is the source of sentiment towards the entity that is the subject of the sentiment, in conjunction with presenting, for each extracted relationship, indications of the entity that is the source of sentiment and the entity that is the subject of the sentiment.
  • 15. A non-transitory computer-readable medium containing instructions for controlling a computer processor to provide a user interface widget on a display device, the user interface widget further configured, when executed, to: determine and extract a plurality of relationships between entities exhibiting positive sentiment in a collection of content, the relationships determined using natural language relationship searching techniques that use syntactic and semantic analysis of the content to recognize and understand relationships expressed between entities in the content, wherein a relationship with positive sentiment having a subject, an action, and an object is extracted from the content when the action of the relationship with positive sentiment matches at least one of a plurality of identified positive verbs and when negative phrases that match a negative phrase list are not found within a first determined distance;determine and extract a plurality of relationships between entities exhibiting negative sentiment in a collection of content, the relationships determined using natural language relationship searching techniques that use syntactic and semantic analysis of the content to recognize and understand relationships expressed between entities in the content, wherein a relationship with negative sentiment having a subject, an action, and an object is extracted from the content when the action of the relationship of negative sentiment matches at least one of a plurality of identified positive verbs and when negative phrases that match a negative phrase list are not found within a second determined distance;present summary data that indicates a percentage of the determined and extracted relationships exhibiting positive sentiment and an indication of a percentage of the determined and extracted relationships exhibiting negative sentiment for the entity that is the source of sentiment towards the entity that is the subject the subject of the sentiment; andupon selection of the entity that is a source of sentiment and a presented type of sentiment, determining and presenting a subset of the determined and extracted relationships exhibiting the selected type of sentiment having the selected source of sentiment.
  • 16. The non-transitory computer-readable medium of claim 15, wherein the user interface widget is code embeddable in other content.
US Referenced Citations (114)
Number Name Date Kind
4839853 Deerwester et al. Jun 1989 A
5301109 Landauer et al. Apr 1994 A
5317507 Gallant May 1994 A
5325298 Gallant Jun 1994 A
5331556 Black, Jr. et al. Jul 1994 A
5377103 Lamberti et al. Dec 1994 A
5619709 Caid et al. Apr 1997 A
5634051 Thomson May 1997 A
5778362 Deerwester Jul 1998 A
5794050 Dahlgren et al. Aug 1998 A
5794178 Caid et al. Aug 1998 A
5799268 Boguraev Aug 1998 A
5848417 Shoji et al. Dec 1998 A
5857179 Vaithyanathan et al. Jan 1999 A
5884302 Ho Mar 1999 A
5933822 Braden-Harder et al. Aug 1999 A
5950189 Cohen et al. Sep 1999 A
5982370 Kamper Nov 1999 A
6006221 Liddy et al. Dec 1999 A
6006225 Bowman et al. Dec 1999 A
6026388 Liddy et al. Feb 2000 A
6061675 Wical May 2000 A
6064951 Park et al. May 2000 A
6122647 Horowitz et al. Sep 2000 A
6192360 Dumais et al. Feb 2001 B1
6202064 Julliard Mar 2001 B1
6246977 Messerly et al. Jun 2001 B1
6363373 Steinkraus Mar 2002 B1
6405190 Conklin Jun 2002 B1
6411962 Kupiec Jun 2002 B1
6460029 Fries et al. Oct 2002 B1
6510406 Marchisio Jan 2003 B1
6584464 Warthen Jun 2003 B1
6601026 Appelt et al. Jul 2003 B2
6728707 Wakefield et al. Apr 2004 B1
6732097 Wakefield et al. May 2004 B1
6732098 Wakefield et al. May 2004 B1
6738765 Wakefield et al. May 2004 B1
6741988 Wakefield et al. May 2004 B1
6745161 Arnold et al. Jun 2004 B1
6757646 Marchisio Jun 2004 B2
6859800 Roche et al. Feb 2005 B1
6862710 Marchisio Mar 2005 B1
6910003 Arnold et al. Jun 2005 B1
6996575 Cox et al. Feb 2006 B2
7051017 Marchisio May 2006 B2
7054854 Hattori et al. May 2006 B1
7171349 Wakefield et al. Jan 2007 B1
7283951 Marchisio et al. Oct 2007 B2
7398201 Marchisio et al. Jul 2008 B2
7403938 Harrison et al. Jul 2008 B2
7451135 Goldman et al. Nov 2008 B2
7526425 Marchisio et al. Apr 2009 B2
7788084 Brun et al. Aug 2010 B2
8132103 Chowdhury et al. Mar 2012 B1
8412557 Lloyd et al. Apr 2013 B1
20020007267 Batchilo et al. Jan 2002 A1
20020010574 Tsourikov et al. Jan 2002 A1
20020022988 Columbus et al. Feb 2002 A1
20020059161 Li May 2002 A1
20020078041 Wu Jun 2002 A1
20020091671 Prokoph Jul 2002 A1
20020103789 Turnbull et al. Aug 2002 A1
20020156763 Marchisio Oct 2002 A1
20030004716 Haigh et al. Jan 2003 A1
20030101182 Govrin et al. May 2003 A1
20030115065 Kakivaya et al. Jun 2003 A1
20030115191 Copperman et al. Jun 2003 A1
20030233224 Marchisio et al. Dec 2003 A1
20040010508 Fest et al. Jan 2004 A1
20040044669 Brown et al. Mar 2004 A1
20040064447 Simske et al. Apr 2004 A1
20040103090 Dogl et al. May 2004 A1
20040125877 Chang et al. Jul 2004 A1
20040167870 Wakefield et al. Aug 2004 A1
20040167883 Wakefield et al. Aug 2004 A1
20040167884 Wakefield et al. Aug 2004 A1
20040167885 Wakefield et al. Aug 2004 A1
20040167886 Wakefield et al. Aug 2004 A1
20040167887 Wakefield et al. Aug 2004 A1
20040167907 Wakefield et al. Aug 2004 A1
20040167908 Wakefield et al. Aug 2004 A1
20040167909 Wakefield et al. Aug 2004 A1
20040167910 Wakefield et al. Aug 2004 A1
20040167911 Wakefield et al. Aug 2004 A1
20040221235 Marchisio et al. Nov 2004 A1
20040243388 Corman et al. Dec 2004 A1
20050108262 Fawcett, Jr. et al. May 2005 A1
20050138018 Sakai et al. Jun 2005 A1
20050144064 Calabria et al. Jun 2005 A1
20050149494 Lindh et al. Jul 2005 A1
20050177805 Lynch et al. Aug 2005 A1
20050197828 McConnell et al. Sep 2005 A1
20050210000 Michard Sep 2005 A1
20050216443 Morton et al. Sep 2005 A1
20050267871 Marchisio et al. Dec 2005 A1
20060149734 Egnor et al. Jul 2006 A1
20060279799 Goldman Dec 2006 A1
20070156669 Marchisio et al. Jul 2007 A1
20080005651 Grefenstette et al. Jan 2008 A1
20080059456 Chowdhury et al. Mar 2008 A1
20080097975 Guay et al. Apr 2008 A1
20080097985 Olstad et al. Apr 2008 A1
20080288456 Omoigui Nov 2008 A1
20080306899 Gregory et al. Dec 2008 A1
20090144609 Liang et al. Jun 2009 A1
20090228439 Manolescu et al. Sep 2009 A1
20090319342 Shilman et al. Dec 2009 A1
20100010994 Wittig et al. Jan 2010 A1
20100023311 Subrahmanian et al. Jan 2010 A1
20100145940 Chen et al. Jun 2010 A1
20100299301 Busch et al. Nov 2010 A1
20100306251 Snell Dec 2010 A1
20110112995 Chang et al. May 2011 A1
Foreign Referenced Citations (12)
Number Date Country
0 280 866 Sep 1988 EP
0 597 630 Jul 2002 EP
WO 0014651 Mar 2000 WO
WO 0057302 Sep 2000 WO
WO 0122280 Mar 2001 WO
WO 0180177 Oct 2001 WO
WO 0227536 Apr 2002 WO
WO 0233583 Apr 2002 WO
WO 03017143 Feb 2003 WO
WO 2004053645 Jun 2004 WO
WO 2004114163 Dec 2004 WO
WO 2006068872 Jun 2006 WO
Non-Patent Literature Citations (11)
Entry
Abraham, “FoXQ—Xquery by Forms,” Human Centric Computing Languages and Environments, Proceedings 2003 IEEE Symposium, Oct. 28-31, 2003, Piscataway, New Jersey, pp. 289-290.
Cass, “A Fountain of Knowledge,” IEEE Spectrum Online, URL: http://www.spectrum.ieee.org/WEBONLY/publicfeature/jan04/0104comp1.html, download date Feb. 4, 2004, 8 pages.
Feldman et al., “Text Mining at the Term Level,” Proc. of the 2nd European Symposium on Principles of Data Mining and Knowledge Discover, Nantes, France, 1998.
Ilyas et al., “A Conceptual Architecture for Semantic Search Engine,” IEEE, INMIC, 2004, pp. 605-610.
Jayapandian et al., “Automating the Design and Construction of Query Forms,” Data Engineering, Proceedings of the 22ndInternational Conference IEEE, Atlanta, Georgia, Apr. 3, 2006, pp. 125-127.
Kaiser, “Ginseng—A Natural Language User Interface for Semantic Web Search,” University of Zurich, Sep. 16, 2004, URL=http://www.ifi.unizh.ch/archive/mastertheses/DA—Arbeiten—2004/Kaiser—Christian.pdf, pp. 1-84.
Liang et al., “Extracting Statistical Data Frames from Text,” SIGKDD Explorations, Jun. 2005. vol. 7, No. 1, pp. 67-75.
Littman et al., “Automatic Cross-Language Information Retrieval using Latent Semantic Indexing,” In Grefenstette, G., editor, Cross Language Information Retrieval. Kluwer, 1998.
Nagao et al., “Semantic Annotation and Transcoding: Making Web Content More Accessible,” IEEE Multimedia, IEEE Computer Society, US. 8(2):69-81, Apr. 2001.
Nguyen et al., “Accessing Relational Databases from the World Wide Web,” SIGMOD Record, ACM USA, Jun. 1996, vol. 25, No. 2, pp. 529-540.
Pohlmann et al., “The Effect of Syntactic Phrase Indexing on Retrieval Performance for Dutch Texts,” Proceedings of RIAO, pp. 176-187, Jun. 1997.
Related Publications (1)
Number Date Country
20120041937 A1 Feb 2012 US
Provisional Applications (1)
Number Date Country
61372684 Aug 2010 US