This invention relates to the art of hot melt glue guns, and in particular, to hot melt glue guns with a mechanism to reduce dripping of glue from a nozzle after termination of the glue dispensing.
An undesirable feature of many hot melt glue guns is that they leak from the nozzle opening on warm-up as well as during normal use of the gun. In the typical construction of a glue gun, a user feeds a glue stick at room temperature into a relatively short melt chamber having a temperature in the range of 250° F. to 400° F., depending on the model and the glue stick formulation.
A fundamental property of thermoplastics is its volumetric expansion as a function of temperature—commonly called thermal expansion. The coefficient of thermal expansion for most thermoplastics is known. For most EVA based formulas, the rate of thermal expansion is in the range of 100 micro-inches/inch/degree F., so this translates to about a 5% volumetric expansion.
As the user feeds a glue stick into the melt chamber, the temperature of the melt chamber temporarily drops, because the melt chamber must heat the glue stick from a temperature of about 75° F. to, for example, 350° F. in a relatively short period of time. As the temperature of the glue increases it expands, and the more quickly glue is fed into the melt chamber, the more it is affected by this thermal expansion. This volumetric expansion is the primary cause of leaking in the glue guns.
Use of a glue gun lightly requires only a small amount of cold stick be heated, resulting in a relatively small amount of thermal expansion in a given time period. However, when a glue gun is used heavily, such as when multiple glue sticks are fed serially into the melt chamber rapidly, each complete stick must be heated in a short period of time, resulting in thermal expansion of a large amount of glue in a short time.
For a typical glue stick having a diameter of about 0.450″, the thermal expansion can be calculated to be theoretically about 0.15″ of linear expansion, which is about 0.025 cubic inches of glue available to drip or drool. For a bead of glue 0.125″ in width, a bead of about 2″ in length can form from the glue that is available to drool just from thermal expansion. In practice, the glue stick naturally retracts a little bit when dispensing pressure is released, resulting from the release of the pressure on the glue stick that must be applied to open the ball check-valve in the nozzle during dispensing. This slight retraction reduces the pressure in the melt chamber, and the length of a bead of glue after the user stops feeding the glue stick into the melt chamber is in practice typically about 1 inch as the pressure relief is satisfied and the dispensing stops gradually.
In addition many glue guns experience thermal expansion of the solid glue that is already within the chamber on warm up, resulting in an inevitable drip.
In accordance with the invention, dripping is prevented by rapidly depressurizing the melt chamber when delivery of glue is terminated. In a preferred embodiment, depressurizing is achieved by drawing off, or siphoning, a small portion of the melted glue into an auxiliary chamber that is in fluid communication with the melting chamber. The melt chamber and the auxiliary chamber are connected by a small tube that carries melted glue between the two chambers. As liquid glue flows into the auxiliary chamber, the pressure of the glue throughout the melt chamber, including pressure on the nozzle, is quickly relieved to prevent dripping.
In the preferred embodiments illustrated, melted glue is drawn from the melt chamber into the auxiliary chamber by movement of a piston within the auxiliary chamber. The piston can be about the diameter of a glue stick. The piston moves in direction away from the inlet of the tube to the auxiliary chamber to draw liquid glue from the melt chamber into the auxiliary chamber by increasing the size of the auxiliary chamber and thereby reducing the pressure in the auxiliary chamber. Movement of the piston in an opposite direction forces melted glue from the auxiliary chamber back into the melt chamber. The auxiliary chamber is preferably a cavity that is cylindrical and circular in cross section but it can take other shapes. For example, the cross section need not be circular and the chamber can be other than cylindrical. The cavity can be formed in a solid material, such as plastic or metal, and is preferably formed of cast metal. The auxiliary chamber can also be formed in part of a cast metal body integral with another part forming the melt chamber.
The piston can be spring-loaded to cause it to move in a direction away from the tube upon release of a user's pulling on a trigger in a glue advancement mechanism. This draws glue from the main chamber into an auxiliary chamber and relieves pressure in the main, melt chamber. An assembly of cooperating elements is activated by the glue advancement mechanism which can push the piston toward the passage connected to the melt chamber, thus emptying this additional volume of glue in the auxiliary chamber back into the main melt chamber as glue is dispensed from the melt chamber. When the force applied to the trigger is released, the spring will again push the piston outward, drawing a volume of melted glue from the main chamber with it to relieve the pressure in the main melt chamber or, possibly, creating a slight vacuum within the melt chamber. The outward movement of the piston quickly pulls some of the melted glue away from the main melt chamber, thus also removing glue from within the nozzle to prevent dripping.
Other constructions of the auxiliary chamber are possible. For example, the piston could be replaced by a flexible diaphragm that would draw glue into a chamber of selected shape. Also the auxiliary chamber could comprise two parts with complimentary cavities that move with respect to each other to form a closed cavity of variable volume (e.g., a first tube that slides within a second tube).
With reference to the drawing figures, elements providing similar functions are generally identified by the same reference numerals.
The melt chamber 10 is heated by electric heating elements 11 (see
Adjacent the melt chamber 10 is an auxiliary chamber 16 that is connected to the melt chamber by a tubular passage 18. A piston 20 located in the auxiliary chamber 16 can move in the chamber toward and away from the tubular passage. When the piston 20 is moved in a direction away from the tubular passage 18 the pressure in the auxiliary chamber 16 and the tubular passage 18 will be lowered, and melted glue will flow from the melt chamber into the auxiliary chamber. When the piston is moved in a direction toward the tubular passage 18, the pressure of the glue in the auxiliary chamber 16 increases, forcing glue in the auxiliary chamber through the passage 18 and back into the melt chamber 10.
Preferably the auxiliary chamber is a part of a metal casting that also forms the melt chamber 10 and is heated by the same electric heating elements that heat the melt chamber 10. Thus, the temperature of the auxiliary chamber is high enough to maintain glue in the auxiliary chamber melted when the glue gun is in use and to melt any cold glue in that chamber during startup. The auxiliary chamber could, however, be formed in a separate casting and heated by the same heater that heats the melt chamber or a separate one.
When glue is to be dispensed, a user squeezes the trigger 8, pulling it toward the body 4 of the glue gun. A stem 24 on the back of the trigger engages one side of a lever 26 that is rotationally mounted to the body at a pin 28. The other side of the lever 26 engages a shaft 30 that in turn engages the rear of the piston 20, forcing the piston forward. When the piston moves forward, toward the passage 18, the glue in the auxiliary chamber is forced through the passage 18 back into the melt chamber and becomes part of the glue that is dispensed.
When the user's pressure on the trigger 8 is released, however, the force applied by the lever 26 to the shaft 30 is released, which also releases the force applied by the shaft 30 on the piston and allows the spring 22 to drive the piston away from the passage, thus drawing glue from the melt chamber 10.
The embodiment of
In the embodiment of
When a user initiates the dispensing of glue by pulling the trigger 52 toward the housing 4, projection 74 moves the lower end 72 of the bar 68 in a clockwise direction, and upper end 64 of the bar 68 engages end 62 of the piston actuation shaft to move the shaft toward the piston 20. A pressure relief spring 76 is located between end 60 of the piston actuation shaft and piston 20. Movement of the actuation shaft in a rightward direction in turn moves the piston 20 to the right to force melted glue from the auxiliary chamber 16. If the user pulls on the trigger 52 before glue in the auxiliary chamber is sufficiently melted, or there is an obstruction to free motion of the piston, spring 76 will compress to prevent damage to other parts of the glue-gun mechanism.
In the embodiment illustrated in
When a user releases pressure on the trigger 52, a spring 82 in the glue advancement mechanism urges trigger 52 toward its initial position, and spring 22 urges piston 20 to the left of
In use, the glue gun disclosed operates to force glue out of the auxiliary chamber 16 when a user pulls on the trigger, by pushing the piston toward the passage 18. This returns the glue in the auxiliary chamber to the melt chamber for mixing with the glue already in the melt chamber for dispensing. Conversely, when the user releases pressure on the trigger, the spring 22 pushes the piston 20 away from passage 18, thus drawing glue from the melt chamber and relieving the pressure in the chamber to reduce dripping.
As noted above, glue experiences a thermal volume expansion of about 5% during melting. Thus, advancement of the glue stick into the melt chamber during discharge of melted glue through the nozzle adds solid glue to the melt chamber, which expands as it melts. Upon termination of glue discharge, the volume of glue withdrawn into the auxiliary chamber fully or at least partially empties the nozzle. Even partial emptying of the nozzle greatly reduces or even eliminates dripping of the glue from the nozzle. The volume withdrawn can also be large enough to include the glue expansion resulting from heating un-melted glue added to the melt chamber by advancing the glue stick during discharge. In an embodiment, the auxiliary chamber withdraws a volume of melted glue in the range of 25-35% of the volume of solid glue added to the chamber during a discharge.
Use of the auxiliary chamber described above with a ball check valve in the nozzle, as illustrated in
While the auxiliary chamber has been illustrated as extending essentially parallel to the melt chamber, it can be oriented in other directions. For example, the auxiliary chamber can be oriented such that the piston moves transversely to the longitudinal axis of the melt chamber. As well, it is within the scope of the invention that the auxiliary chamber can extend into the melt chamber. Alternatively, the piston alone can be arranged to move into and out of the melt chamber to withdraw melted glue into the space occupied by the piston during dispensing.
It will be appreciated that in the disclosed embodiments, movement of the piston is coordinated with the operation of a glue-stick advancing mechanism. In the embodiments disclosed, movement of the piston is mechanically controlled by such operation, but it is within the scope of the disclosure to provide for other methods of control, such as electronic, pneumatic, or fluid.
Modifications within the scope of the appended claims will be apparent to those of skill in the art.
This application claims priority from U.S. provisional application Ser. No. 62/642,759, which was filed on Mar. 14, 2018, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2995159 | Berggren | Aug 1961 | A |
3877610 | Dickey | Apr 1975 | A |
3960296 | Nord | Jun 1976 | A |
3964644 | Wallace | Jun 1976 | A |
4033484 | Ornsteen | Jul 1977 | A |
4317529 | Leibhard | Mar 1982 | A |
4378076 | Stirnweiss | Mar 1983 | A |
4379516 | Barlogis | Apr 1983 | A |
4664296 | Dziki | May 1987 | A |
4776490 | Wingert | Oct 1988 | A |
4804110 | Sperry et al. | Feb 1989 | A |
5026187 | Belanger | Jun 1991 | A |
5105987 | Quinn | Apr 1992 | A |
5215230 | Lee | Jun 1993 | A |
5375766 | Sweeney | Dec 1994 | A |
5664701 | Massena | Sep 1997 | A |
5881924 | Bokros | Mar 1999 | A |
5901881 | Wang | May 1999 | A |
6065888 | Maayeh | May 2000 | A |
6105824 | Singleton | Aug 2000 | A |
6152386 | Bullock et al. | Nov 2000 | A |
6170709 | Huang | Jan 2001 | B1 |
6460736 | D'Agostino | Oct 2002 | B1 |
6558059 | Hillinger | May 2003 | B1 |
7367474 | Lin | May 2008 | B2 |
7775403 | Monfeli | Aug 2010 | B2 |
20040232165 | Lee | Nov 2004 | A1 |
20060144859 | Lin | Jul 2006 | A1 |
20060191957 | Axinte | Aug 2006 | A1 |
20060196888 | Agronin | Sep 2006 | A1 |
20080073448 | Kendall | Mar 2008 | A1 |
20140054319 | Shin | Feb 2014 | A1 |
20150083752 | Shin | Mar 2015 | A1 |
20150209820 | Ono | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
2006047090 | May 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20190283073 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62642759 | Mar 2018 | US |