The present invention relates to liners such as tray liners for use in a sterilization process, and more particularly to an absorbent two-ply liner providing an advantageous moisture absorption functionality during and after completion of a sterilization process. The liner may be used as a base pad, a tray corner guard, or for cushioning of surgical instruments during and after the sterilization process.
As is well known, surgical instruments used in the healthcare industry must be sterilized before and/or after each use. Sterilization, of course, frees instruments from microorganism contamination, to prevent infections and the spread of diseases among patients. All medical procedures rely upon a stringent program of sterilization.
The medical device industry has addressed the sterilization requirements in the surgical field by offering two general types of surgical instruments: reusable instruments and single use, or disposable, instruments. Reusable instruments are typically composed of stainless steel and are typically sterilized before their initial use and then cleaned and resterilized prior to each subsequent use thereof. Single use or disposable instruments, on the other hand, are often fabricated primarily from plastic materials, thereby reducing costs associated with manufacture, and are discarded after use in a single procedure.
With respect to reusable surgical instruments, e.g., forceps, graspers, dissectors, probes, hemostats, scissors and the like, sterilization and resterilization had historically been accomplished using various sterilization modalities. In a broad sense, these sterilization processes generally involve placing instruments to be sterilized in a tray, wrapping the instruments and the tray with a sterilization wrap, and placing the wrapped tray and instruments in a sterilization chamber, where the instruments are exposed to a sterilization medium. In order to protect the instruments, a tray liner is typically placed on the tray, and then the surgical instruments are placed on the tray liner. In order to protect the tray itself, the tray is typically placed on corner guards or a base pad before it is wrapped and placed in the sterilization chamber.
One long and continuing problem encountered with sterilization, however, is the presence of moisture that remains on the sterilized instruments, i.e., within the sterile wrap, at the conclusion of the sterilization process. This residual moisture can range from slight levels of dampness to visible droplets on the surface of surgical instruments. Such residual moisture is both undesirable and is unacceptable because such moisture could permit migration of surface microorganisms, thereby penetrating the wrapped tray or basin and rendering its contents contaminated, and/or may cause rust or pitting of the surgical instruments. Also, the wrapped tray may become stained during sterilization or even torn during loading or removal from a sterilization chamber because of the damp condition of the sterilization wrap.
Tray liners formed of a single material, such as open or closed cell foam or a cellulose based material have been employed in the past. For example, a hydrophilic polyurethane foam trayliner is disclosed in U.S. Pat. No. 6,902,712, incorporated herein by reference. This tray liner is comprised of a single foam layer. While effective, the evaporation rate and dispersing properties of foam liners could be improved to allow for more efficient moisture absorption and multiple applications within in a sterilization system.
Two-ply liners comprised of foam backing are known in the art. Typically a foam layer is adhered to plastic or cloth. However, use of adhesive to join liners used for sterilization presents several problems. The adhesive may deteriorate when exposed to high heat, steam and/or various chemicals used in the sterilization process. The liners may delaminate or adhesive may come in contact with the sterile instruments or sterilizing equipment. The adhesive residue is often sticky and difficult to eliminate.
In addition, laminated paper products which contain at least one layer of paper bonded to a foam layer have also been known for some time. See e.g. U.S. Pat. Nos. 3,687,797; 3,285,800; 3,530,030; 3,366,532. However, these multi-layered products are also adhered together with an adhesive or thermally fused with hot rollers. U.S. Pat. No. 4,276,339 discloses a more efficient lamination process via a gelling process; however it does not allow the paper and foam to be separately purchased.
A two-ply liner comprised of foam and paper joined by flame lamination has never been taught for the purpose moisture trapping, and more specifically for use in sterilization of surgical instruments.
The present invention is intended to obviate many of the problems associated with moisture remaining on or in the trays after a sterilization process. Rather than employing a tray liner formed of a single material, such as open or closed cell foam or a cellulose based material, as has been done in the past, the present invention employs a two-ply construction to provide padding as well as absorption. More specifically, the present invention combines the cushioning properties of foam with the absorbent properties of medical grade paper in order to protect delicate instruments from impact damage as well as preventing the adverse effects of moisture, and also to trap moisture and provide protection when used as a base pad or corner guard.
As exemplified in the Figures and described in detail herein, when used as a tray liner, it has been found that positioning the inventive material with the foam layer adjacent to instruments, such that the instruments are in contact with the foam layer, provides excellent results. The instruments are well-protected and the moisture is retained in the paper layer, away from the instruments, where it spreads out through the paper in order to increase the surface area of the moisture and also thereby increase the rate of evaporation.
When used as a base pad or corner guard, it has been found that positioning the inventive material with the paper layer adjacent to the tray, such that the tray is in contact with the paper layer, provides excellent results. The tray is well-protected, and the moisture is trapped in the paper layer before it reaches the sterile wrap. Also again, the moisture spreads out through the paper in order to increase the surface area of the moisture and also thereby increase the rate of evaporation.
The inventive material may employ any of numerous types of foam material, although polyester polyurethane foam has exhibited excellent results. The inventive material may also employ any of numerous types of medical grade paper, as well.
The foam layer and the paper layer are joined together using a flame lamination technique. As is known, such a technique involves passing the foam layer through an open flame, thereby creating a thin layer of hot polymer. The hot polymer is then used as an adhesive to bond the foam layer to the paper layer to create the inventive material. By employing this method, excellent results are achieved without the need for a separate adhesive, the use of which may have its own disadvantages.
So that those having ordinary skill in the art to which the disclosed liner and associated methods pertain will more readily understand how to employ and use the same, reference may be had to the drawings wherein:
Referring to
The foam layer 12 is joined to the paper layer 11 at interface 14 through flame lamination. Flame lamination overcomes problems of the adhesives of the prior art. First, flame lamination does not have a tendency to delaminate when exposed to high temperatures, such as those used in the sterilization process. Flame lamination also prevents adhesive from leaking onto or contacting a tray or sterile instruments and consequently leaving an undesirable residue.
As shown, absorbent liner 16 is of rectangular configuration; however, alternative geometries are contemplated, e.g., as may be appropriate for specific sterilization tray configurations. Absorbent tray liners 16 may be dimensioned depending upon the application. Preferred absorbent liners 16 measure 9 to 15 inches in width and 0.1 inches to 1 inch in thickness. More preferred absorbent liners 16 measure 9, 12 or 15 inches in width, and are approximately ⅛ inch in thickness. Tray liner 16 preferred for use in separating basins measures 3×24 inches and may also be ⅛ inch in thickness.
The liner 16 may also be supplied in roll form as depicted in
The liner 16 may, optionally, contain perforations 13. Latitudinal perforations 13a and longitudinal perforations 13b may be provided. The latitudinal perforations 13a allow the liner 16 to sit flatly on a surface since it has a tendency to curl. Moreover, the latitudinal perforations 13a allow the liner to be torn off a continuous roll, as depicted in
The liner 16 may also, optionally, contain surface cuts 15 in the paper layer 11 for purposes of corner relief, as discussed in more detail below. The cuts 15 are placed into the paper layer by any suitable means.
The absorbent liner 16 of the present invention is particularly adapted for use in a steam sterilization system or ethylene oxide sterilization system. As is known, sterilization systems generally include a sterilization chamber that is adapted to receive instruments to be sterilized, and a source of sterilizing agent, e.g. steam or ethylene oxide, connected to the sterilization chamber.
Preferably, the absorbent liner 16 is fabricated from a non-woven, lint free material that is compatible with both steam and ethylene oxide sterilization. The absorbent liner 16 is preferably fabricated from a hydrophilic polymeric foam plastic, e.g. a hydrophilic polyurethane foam that is clickable.
Typical physical properties of the foam include the following:
With reference to
With reference to
A method for sterilizing instruments 20 according to the present invention includes positioning the tray liner 16 in the base of the tray 30 such that the paper layer 11 is adjacent to the tray base 32 and positioning instruments on the foam layer 12. The types of instruments 20 that may benefit from sterilization method disclosed herein include all conventional surgical instruments composed of stainless steel. Determinations as to the types of surgical instruments to be placed on the tray 30, the numbers/weights of such surgical instruments, sterilization cycles, and the like, are made according to conventional sterilization criteria.
Tray 30 is then advantageously wrapped in a conventional sterilization wrap 40. Sterilization wrap 40 may be fabricated from paper and, optionally, a second absorbent tray liner 16 or other cushioning member may be placed between tray 30 and sterilization wrap as a base pad, thereby reducing the risk that wrap 40 may be torn by the corners of tray 30. Once wrapped in the sterilization wrap 40, tray 30 is ready to be placed in a sterilization unit for sterilization of surgical instruments 20. At the conclusion of the sterilization cycle, tray 30 is typically removed from the sterilization unit (not pictured), and the sterilized instruments 20 are, in due course, removed from the tray and made ready for subsequent surgical procedures. At the conclusion of the sterilization cycle, the absorbent tray liner 16 of the present invention is typically disposed of in a conventional waste container.
A preferred method for sterilizing instruments 20 according to the present invention includes positioning the liner 16 underneath the outer base of the tray 30 such that the paper layer 11 is adjacent to the tray base 32 and the foam layer 12 is not in contact with the tray 30. As such, the foam layer 12 may contact a sterilization wrap 40, if utilized. The paper layer 11 will absorb moisture that leaks through perforations in the base 32 of the tray 30. The paper layer 11 may also collect moisture that accumulates on the tray 30 surfaces. Moisture from the tray 30 or base 32 will be absorbed by the paper layer 11 and dissipate throughout its surface keeping the foam layer 12 appreciably dry, and in turn keeping sterilization wrap 40 dry and uncompromised.
With reference to
Corner relief is provided through the perforations 13. The intersection of the longitudinal perforations 13a and the latitudinal perforations 13b may provide a corner box 17 within a sheet of liner 16. The corner box 17 may be easily removed through means of the perforations. Once the corner box 17 is removed, the sides of the liner 16 are more easily folded up and positioned adjacent to the tray face 33.
For additional corner relief, the liner of the invention may be provided with surface cuts 15. Various size cuts 15 are embodied. The surfaces cuts 15 are positioned to accommodate the edges of a sterilization tray 30, and most preferably the corners of the tray 30. The cuts 15 also allow for stabilization of a tray 30 while seated on the liner 16.
The absorbent tray liner of the present invention provides significant benefits to the reliability and efficacy of conventional sterilization operations. Ideally, as is known in the art, when the sterilization system is operating at peak performance a sterilization system that utilizes steam or ethylene oxide as the sterilizing agent will be totally dry at the conclusion of the sterilization cycle. However, as discussed above due to ambient humidity, plumbing, etc., sterilization systems are highly variable in operation and such systems do not always operate at peak levels. As a result, without use of an absorbent tray liner, it is not uncommon for residual moisture to be found on the surface of sterilized instruments or the sterilization tray at the conclusion of the sterilization cycle. The absorbent tray liner of the present invention exhibits sufficient hydrophilicity to absorb an amount of moisture sufficient to address typical operative variability.
The present invention, therefore, provides an absorbent liner 16 that functions to cushion trays and surgical instruments in connection with the sterilization process, and further functions to absorb potential excess moisture that might remain on the surgical instruments or on the tray at the conclusion of a steam or ethylene oxide sterilization process. The absorbent liner has been found to permit proper air removal, sterilant penetration/evacuation, and delivery of sterilized surgical instruments substantially devoid of residual moisture at the conclusion of a sterilization process. The absorbent tray liner has also been found to permit effective aeration of instruments sterilized with ethylene oxide.
Another embodiment of the liner in accordance with the present invention is illustrated in
As shown in
Referring now to
The principles, preferred embodiments and modes of operation of the presently disclosed absorbent liners, corner guards and methods of sterilizing surgical instruments have been described in the foregoing specification. The presently disclosed absorbent liners and methods of sterilization, however, are not to be construed as limited to the particular embodiments shown as these embodiments are regarded as illustrious rather than restrictive. Moreover, variations and changes may be made by those skilled in the art without departing from the spirit of the presently disclosed absorbent liners, guards and methods of sterilization.
Number | Name | Date | Kind |
---|---|---|---|
3205120 | Flanders | Sep 1965 | A |
3228820 | Samson | Jan 1966 | A |
3285800 | Bartell et al. | Nov 1966 | A |
3314425 | Coppick | Apr 1967 | A |
3366532 | Maskey et al. | Jan 1968 | A |
3396419 | Richter | Aug 1968 | A |
3431911 | Meisel, Jr. | Mar 1969 | A |
3503838 | Marshack | Mar 1970 | A |
3530030 | Adams et al. | Sep 1970 | A |
3533901 | Sutker | Oct 1970 | A |
3563243 | Lindquist | Feb 1971 | A |
3668050 | Donnelly | Jun 1972 | A |
3677858 | Sokolowski | Jul 1972 | A |
3687797 | Wideman | Aug 1972 | A |
3738359 | Lindquist | Jun 1973 | A |
4142632 | Sandel | Mar 1979 | A |
4276339 | Stoveken | Jun 1981 | A |
4720410 | Lundquist et al. | Jan 1988 | A |
4798292 | Hauze | Jan 1989 | A |
4822669 | Roga | Apr 1989 | A |
5082707 | Fazio | Jan 1992 | A |
5164421 | Kiamil et al. | Nov 1992 | A |
5174306 | Marshall | Dec 1992 | A |
5435971 | Dyckman | Jul 1995 | A |
5447962 | Ajioka | Sep 1995 | A |
5804512 | Lickfield | Sep 1998 | A |
5947122 | McDonald | Sep 1999 | A |
6245697 | Conrad | Jun 2001 | B1 |
6248293 | Davis et al. | Jun 2001 | B1 |
6391260 | Davis et al. | May 2002 | B1 |
6406764 | Bayer | Jun 2002 | B2 |
6440375 | Davis et al. | Aug 2002 | B1 |
6548727 | Swenson | Apr 2003 | B1 |
6902712 | Davis | Jun 2005 | B2 |
7565972 | Steppe | Jul 2009 | B2 |
7862686 | Ward et al. | Jan 2011 | B2 |
20020064478 | Davis | May 2002 | A1 |
20020197424 | Bayer | Dec 2002 | A1 |
20040071490 | Vosbikian | Apr 2004 | A1 |
20050079093 | Cannady | Apr 2005 | A1 |
20050136238 | Lindsay et al. | Jun 2005 | A1 |
20060008633 | Chan | Jan 2006 | A1 |
20060067855 | Mathis | Mar 2006 | A1 |
20060068674 | Dixit | Mar 2006 | A1 |
20060246272 | Zhang | Nov 2006 | A1 |
20070023309 | Davis | Feb 2007 | A1 |
20070026472 | Prokash | Feb 2007 | A1 |
20070095699 | Frieze et al. | May 2007 | A1 |
20070148432 | Baker | Jun 2007 | A1 |
20070191502 | Free | Aug 2007 | A1 |
20070225669 | Dyer | Sep 2007 | A1 |
20070253864 | Maguire, Jr. et al. | Nov 2007 | A1 |
20080210225 | Geiger | Sep 2008 | A1 |
20080213566 | Chan | Sep 2008 | A1 |
20090075026 | Vito et al. | Mar 2009 | A1 |
20090118387 | Sakakibara | May 2009 | A1 |
20100190004 | Gibbins | Jul 2010 | A1 |
20100215942 | Casati et al. | Aug 2010 | A1 |
20110052863 | Sweeney | Mar 2011 | A1 |
Entry |
---|
Jangro, Wiping, Nov. 2008. |
Number | Date | Country | |
---|---|---|---|
20150266649 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61161688 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12727684 | Mar 2010 | US |
Child | 14729819 | US |