1. Field of the Invention
The present invention relates generally to the power supply circuitry of battery powered devices in which low power consumption is critical.
2. Related Art
In many battery powered devices there exists a power saving mode that a device may enter in order to save power and extend battery life. This is especially important in devices such as cellular phones. In order to maximize battery life, the devices must have very low power consumption. At the same time, the devices must quickly respond to input from a user.
DC-DC converters are a part of a larger power supply circuitry. The latest DC-DC Converters drain about 15 uA from the battery while operating in the power save or “No Load Current” mode. This power save mode is also referred to as Pulse Frequency Modulation (“PFM”) mode or pulse skipping mode, whereas the device would otherwise be in operating mode, which employs Pulse Width Modulation (“PWM”). In the power save mode of many current devices, low or quiescent current usage is achievable by turning off all of the building blocks except the reference voltage and two comparators when the converter is skipping pulses.
In the operating mode, the DC-DC converter must regulate the output voltage at high load current. While in the operating mode the device operates at a fixed switching frequency and the regulation is achieved using error loop feedback. The recovery time to a high load current of the operating mode from the low current power save mode depends on the error loop setting time from the power save state and on the slew rate of the error amplifier.
The PFM circuitry 138 resets the latch 106 during power save mode. In PWM mode the latch is being reset by the error loop feedback from PWM circuitry 125 comprising error amp 126, comparator 132 and current sensing and slope compensation circuitry block 134. The error amp 126 produces a voltage VE and the current sensing and slope compensation circuitry block 134 produces a voltage Vs, both of which are inputs to comparator 132. Latch 106 drives transistors 110 and 112 via drivers 108. Inductor 114 is directly or indirectly coupled to the output of transistors 110 and 112 and to a Voltage output 116.
The PFM circuitry 138 resets the latch during the power save (or Pulse Skipping) mode. In PWM mode the latch is being reset by the error loop feedback of PWM circuitry 125. The converter switches automatically between the two modes of operation. The switching is accomplished by the ‘OR’ gate 136 in
In PWM circuitry 125, the output voltage level VE of error amp 126 changes with the load current and input voltage. The ‘Current sensing and Slope Compensation’ block 134 provides a voltage ramp proportional to the inductor current. The comparator 132 compares the voltage ramp (Vs) to the error signal (VE) and resets the flip-flop.
In the PWM mode operation, the converter 100 operates at a fixed frequency while controlling the duty cycle of transistor 110. At the beginning of each clock cycle, transistor 110, which is preferably but not necessarily a P-channel type transistor, is turned on. The current in inductor 114 ramps up and is sensed via the Current Sensing and Slope Compensation circuitry block 134. Transistor 110 is turned off when the sensed current causes the PWM comparator 132 to trip (as seen in the little graph in
While in power saving or pulse skipping mode, the PWM circuitry 125 including error amplifier 126 is turned off to save power and its output voltage is zero. When a high current load transition takes place the error amplifier is turned on and its output voltage rises to the regulation level. The converter 100 runs with a low duty cycle until the output voltage 116 regulation level is reached and the recovery time is a function of the error amplifier 126 slew rate. Because the recovery time depends on the slew rate in these prior devices, the recovery takes a relatively long time. In the prior art example shown in
The voltage converter of the present invention quickly recovers from a transition from a (no or low) load associated with a power save mode to a (high) load associated with normal operational mode. This results a device with very long battery life, yet negligible delays in operation when the device transitions into operational mode.
One aspect of the invention is a method that involves varying the duty cycle of an output transistor to convert an input voltage to the output voltage, and sensing a transition from a low load to a high load, and in response providing a high current level until a current limit is detected, such that after the current limit is detected the duty cycle is again varied with the output transistor.
Another aspect of the invention is a voltage converter comprising a normal operating mode and a power saving mode. The converter switches between the power saving mode and the normal operating mode in such a way that it is not dependent upon the slew rate of an amplifier. The present invention recovers much faster than those prior devices with recovery times dependent upon the slew rate of an amplifier.
Like numbers are used to describe like components throughout the Background and Detailed Description.
The recovery time of a converter embodying the present invention is not slew rate dependent like prior art devices such as that shown in
A “power good” comparator 222 senses when the converter 200's output voltage 116 drops below a threshold (due to a high current load transition) and switches the reset input of the main latch 106 to the output of the current limit circuitry 224 with gate 220. The current limit circuitry produces a current level that is sufficient to quickly produce a “predetermined” current limit as measured at inductor 114 and therefore trip the latch 106. This is much faster than waiting for the error amplifier 126 output voltage VE 128 to recover to the level necessary to produce a given desired output voltage 116. This current level is dependent upon the selection of the inductor 114. In other words, different implementations of the circuitry will have different current limits depending upon, among other things, the desired output voltage range and the selection of the circuit components, including the inductor.
While the error amplifier 126 output voltage VE 128 rises to the necessary level for regulation, the inductor 114 current is allowed to build up to the current limit threshold. As a result, the DC-DC converter 200's output voltage 216 recovers quickly to the nominal value and the power good comparator 222 switches back the reset input of the main latch 106 to the error loop feedback comparator 232.
When the power good comparator 222 output is high a comparator (not shown) in the current limit circuitry 224 allows the inductor 114 current to build up quickly to the maximum value, resetting the main latch 106. The converter's output voltage 116 reaches the regulation level (power good comparator 222 output goes low) and the main latch 106 is reset by the error loop feedback. The DC-DC converter 200 then runs (switches transistor 110) with the normal duty cycle given by the ratio between the output and the input voltage.
In
The operation described above with regards to
This improved DC-DC converter and method of switching a device from power save mode to operating mode, drastically reduces the time required for a device to recover from power save mode. Whereas the prior design shown in
The present application claims the benefit of priority to U.S. Provisional Patent Application Serial No. 60/452,808, filed on Mar. 6, 2003, entitled “No Load To High Load Recovery Time In Ultraportable DC-DC Converters,” the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5568044 | Bittner | Oct 1996 | A |
5617016 | Borghi et al. | Apr 1997 | A |
5889392 | Moore et al. | Mar 1999 | A |
5939871 | Tanaka | Aug 1999 | A |
6215288 | Ramsey et al. | Apr 2001 | B1 |
6246555 | Tham | Jun 2001 | B1 |
6329801 | Zuniga et al. | Dec 2001 | B1 |
6344980 | Hwang et al. | Feb 2002 | B1 |
6396252 | Culpepper et al. | May 2002 | B1 |
6433525 | Muratov et al. | Aug 2002 | B2 |
6696882 | Markowski et al. | Feb 2004 | B1 |
6801024 | Bernardon | Oct 2004 | B2 |
7034513 | Gan et al. | Apr 2006 | B2 |
7071665 | Tzeng et al. | Jul 2006 | B2 |
7173404 | Wu | Feb 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
20040257055 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60452808 | Mar 2003 | US |