This invention relates to a no-missing-code analog to digital converter system and method for e.g. SAR, pipeline, flash, and folding analog to digital converters.
In analog to digital converters (ADC's) the transfer function is of code against input voltage where code is the dependent variable and voltage input is the independent value. Ideally each step is one LSB wide. The deviation in the position of the center of the step from the ideal is called integral non-linearity (INL). INL is generally expressed in fractions of LSB. DNL is the difference between the INLs of consecutive steps. The ideal is an INL and a DNL of zero. For example, with adjacent INLs of −0.2 LSB and +0.2 LSB the DNL is:
DNL=INL (N1)−INL (N2)
DNL=−0.2−(+0.2)
DNL=−0.4 LSB
This means that the step is −0.4 LSB smaller than it ought to be. At a DNL of −1.0 the code will be missing from the transfer function which is disruptive in, for example, a digital closed loop control system. Having no missing code (NMC) is highly desirable.
In conventional successive approximating register (SAR) ADC's these missing code conditions occur because of manufacturing variations in the component values. This requires very careful processing and/or calibration during fabrication. The calibrations can be done in the fabrication process but once in the field the normal drift over time and temperature could again cause missing codes. Because of this many SAR, flash, folding, pipeline ADC's are presently limited to 12-16 bit accuracy. For accuracy beyond that ΣΔ ADC's may be used. One bit ΣΔ ADC's convert an analog input to a digital output then convert that digital output to an analog signal and feed it back to be summed with the analog input. Any difference in the analog input and the analog feedback causes the ADC to create more or fewer digital pulses. The pulse density or rate at any time is a digital representation of the analog input. The same principle of operation applies to multi-bit and higher order ΣΔ ADC's. ΣΔ conversion introduces a large amount of quantization noise which is predominately outside the frequency band of interest. And so it is a common practice to use a low pass filter to remove the majority of that quantization noise. Generally ΣΔ ADC's require a larger area and are less efficient than SARs or other ADC's. In all types of ADCs there is an advantage from over sampling i.e. sampling at more than twice the signal bandwidth. However, in many applications the high output rates chip to chip which result from over sampling are undesirable.
It is therefore an object of this invention to provide an improved no-missing-code analog to digital converter system and method for SAR, pipeline, flash, and folding analog to digital converters.
It is a further object of this invention to provide such an improved no-missing-code analog to digital converter system and method which provides a dramatic improvement in DNL.
It is a further object of this invention to provide such an improved no-missing-code analog to digital converter system and method with improved no-missing-code performance.
It is a further object of this invention to provide such an improved no-missing-code analog to digital converter system and method which uses an integral on-chip digital filter which can reduce chip to chip data rates while maintaining high internal on-chip sample rates and accuracy.
It is a further object of this invention to provide such an improved no-missing-code analog to digital converter system and method which can employ over sampling rates to spread the noise spectrum and then use band limited filtering to remove the out-of-band noise with a resulting reduction in band errors.
The invention results from the realization that a virtually no-missing-code analog to digital converter with increased, decreased or the same resolution can be achieved by utilizing the dither of random noise such as thermal noise, or intentionally introduced noise e.g., from a pseudorandom noise generator, to drive a digital filter as an integral part of the analog to digital converter system to recover the missing codes as a function of the number of taps in the filter and the further realization that the number of codes can also be increased and presented as the system output to subsequent and off-chip components.
The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
This invention features an SAR/pipeline/flash/folding no-missing-code analog to digital converter system including an analog to digital converter having a significant random noise component relative to its LSB and having a predetermined missing code capability. There is a digital filter responsive to the dither introduced by the random noise components of the m bit inputs from the analog to digital converter to provide n bit outputs and greater than the predetermined missing-code capability of the analog to digital converter.
In a preferred embodiment the digital filter and the analog to digital converter may be on a single chip. m may be greater than n and the filter may reduce resolution and recover missing codes. m may be equal to n and the filter may recover missing codes. m may be less than n and the filter may increase resolution and recover missing codes. The digital filter may include one of a group of low pass, bandpass, highpass, stopband, sinc, IIR, and FIR filters. There may be a truncating circuit for reducing the output bit resolution from the digital filter to a pre-selected lower resolution. There may be an output circuit for delivering the no-missing-code output of the digital filter off-chip as an output of the system. The digital filter may include a plurality of taps for band limiting the m bit inputs. It may include a plurality of taps for averaging the m bit inputs. The digital filter may increase word width as a function of the number of taps. It may increase missing code recovery in each successive stage as a function of the number of taps. The random noise may include significant thermal noise. The analog to digital converter may include a random noise source for contributing to the random noise. There may be a first mux circuit for selectively providing a number of different inputs to the analog to digital converter, a plurality of digital filters and a second mux circuit for selectively connecting the analog to digital converter to one of the digital filters.
This invention also features a method of providing a no-missing-code output from an analog to digital converter system including providing an analog output to an analog to digital converter having a predetermined m bit resolution output and predetermined missing code capability, and delivering the m bit output to a digital filter. The digital filter generates from the m bit output and the dither of the random noise components of the m bit output n bit output and greater than the predetermined missing code capability of the analog to digital converter.
In a preferred embodiment the digital filter and the analog to digital converter may be on a single chip. m may be greater than n and the filter may reduce resolution and recover missing codes. m may equal to n and the filter may recover missing codes. m may be less than n and the filter may increase resolution and recover missing codes. The output bit resolution from the digital filter may be reduced to a pre-selected lower resolution. The digital filter may include a plurality of taps for band limiting or averaging the m bit inputs. The digital filter may increase word width as a function of the number of taps and it may increase missing code recovery in each successive stage as a function of the number of taps. The random noise may include significant thermal noise and the analog to digital converter may include a random noise source for contributing to the random noise.
Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
There is shown in
In this particular embodiment ADC 12 may be implemented with a SAR ADC12a,
The transfer function of an ADC is shown in
This invention results from the appreciation that a no-missing-code analog to digital converter with increased, decreased, or the same resolution can be achieved by using the dither of random noise, such as thermal noise, that is associated with the analog to digital converter. If the random noise, thermal or other, isn't sufficient, noise can be intentionally introduced, for example, using a pseudorandom noise generator. The output of the analog to digital converter and the dither of the noise can be used by a digital filter as an integral part of the analog to digital converter system to recover the missing codes as a function of the number of taps in the filter. The dither associated with this noise can also be used to increase the number of codes available and thus the accuracy of the system. And further, this increased accuracy and increased number of codes can be presented as the system output to subsequent and off-chip components.
This is done simply by employing a digital filter to band limit or to average the output of the analog to digital converter. For example, in one implementation digital filter 14a may include one or more sinc filters stages, 60, 62, 64, and 66,
The band limiting filter improves the no-missing-code resolution only if the analog to digital converter's output is time varying. If the converter output is constant, then each of its possible outputs will lead to a unique output from the filter, and the no-missing-code resolution of the converter plus filter will be identical to that of un-filtered converter. As mentioned earlier, thermal and other circuit noise sources ensure that the outputs of most modem high accuracy analog to digital converters are always time varying, even if the corresponding input is constant. Alternatively, the designer may chose to insert noise into the converter using techniques such as dither.
In addition, there may well be more accuracy than is required, for example, few applications presently require a thirty-seven bit accuracy. For this purpose a truncating circuit 78 may be used to reduce the output bits to some desired size. For example, twenty-four bits as shown on output line 80. Truncating circuit 78 could be a register with just twenty-four bit capability or it could be just a group of output conductors where there are just twenty-four conductors not thirty-seven and the remaining thirteen outputs are simply not propagated.
It has been found that the longer the filter is the better it fills in the missing codes. It is the number of taps overall that control the improvement in the missing code capability as well as increasing the accuracy. Thus by either increasing the number of stages 60, 62, 64, or 66 or the number averaging or band limiting operations per stage, the accuracy and the no-missing code capability is increased. Preferably ADC 12 and digital filter 14,
The probability of missing codes occurring using this invention is shown in the histogram 90,
The efficacy of this invention can be seen in
The invention also includes a method which involves providing an analog input to an analog to digital converter having m bit resolution output and predetermined missing code capability, step 130,
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
Other embodiments will occur to those skilled in the art and are within the following claims.