Node card management in a modular and large scalable server system

Information

  • Patent Grant
  • 9965442
  • Patent Number
    9,965,442
  • Date Filed
    Monday, July 27, 2015
    8 years ago
  • Date Issued
    Tuesday, May 8, 2018
    6 years ago
Abstract
A system for a system and method for provisioning of modular compute resources within a system design are provided.
Description
FIELD

The disclosure relates generally to provisioning of modular compute resources within a system design.


BACKGROUND

Server systems generally provide a fixed number of options. For example, there are usually a fixed number of CPU sockets, memory DIMM slots, PCI Express IO slots and a fixed number of hard drive bays, which often are delivered empty as they provide future upgradability. The customer is expected to gauge future needs and select a server chassis category that will serve present and future needs. Historically, and particularly with x86-class servers, predicting the future needs has been achievable because product improvements from one generation to another have been incremental.


With the advent of power optimized, scalable servers, the ability to predict future needs has become less obvious. For example, in this class of high-density, low-power servers within a 2 U chassis, it is possible to install 120 compute nodes in an incremental fashion. Using this server as a data storage device, the user may require only 4 compute nodes, but may desire 80 storage drives. Using the same server as a pure compute function focused on analytics, the user may require 120 compute nodes and no storage drives. The nature of scalable servers lends itself to much more diverse applications which require diverse system configurations. As the diversity increases over time, the ability to predict the system features that must scale becomes increasingly difficult.


It is desirable to provide smaller sub-units of a computer system that are modular and can be connected to each other to form larger, highly configurable scalable servers. Thus, it is desirable to create a system and method to modularly scale compute resources in these power-optimized, high density, scalable servers.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates an example of a system board on which one or more node cards may be installed;



FIG. 1B illustrates more details of the system board;



FIG. 2 illustrates an example of a node card that can be coupled to the system board;



FIG. 3 illustrates the management data input/output (MDIO) of the system board;



FIGS. 4 and 5 illustrate details of the power system for the system board;



FIG. 6 illustrates an example of an EnergyDrive that can be coupled to the system board;



FIG. 7 illustrates details of the fabric interconnect of the system board;



FIG. 8 illustrates details of the chassis management unit of the system board; and



FIG. 9 illustrates an embodiment of the details of each node card.





DETAILED DESCRIPTION OF ONE OR MORE EMBODIMENTS

The disclosure is particularly applicable to examples of the system board and node cards illustrated and described below and it is in this context that the disclosure will be described. It will be appreciated, however, that the disclosure has broader applicability since the disclosed system and node cards can be implemented in different manners that are within the scope of the disclosure and may be used for any application since all of the various applications in which the system and node cards may be used are within the scope of the disclosure.



FIG. 1A illustrates an example of a system 40 that may include a system board 42 on which one or more node cards may be installed. The system board 42 may be fit into a typical server chassis 44 and the system board may have one or more node card units 46 (described below with reference to FIG. 2) plugged into the system board. There are a number of functions that are needed to complete a full classic server which includes Ethernet PHYs to interface the one or more node cards 46 or a cluster of node cards and server control functions (fan control, buttons etc. . . . ). The system board 42 is the component that ties the node cards 46 to these components. The system board 42 is desirable if a hierarchical hardware partition is desired where the “building block” is smaller than the desired system, or when the “building block” is not standalone. The system board roles can include: Ethernet network connectivity, internal fabric connections between node cards or groups node cards in a sub-system (the fabric design in FIG. 1) and chassis control and management. The system board is the component that connects the fabric links between node cards and allows them to communicate with the external world. Once the fabric design, hardware partitioning and storage decisions have been made, the system board 42 can glue the system components together and the input/output (I/O) of the system may include: management data input/output (MDIO) for communication with SFP network devices, comboPHYs for internal fabric links, storage and Ethernet access, UART and JTAG ports for debug and SMBus and GPIOs for chassis component control and communication.


The fabric connections on the node card can be designed to balance: usage of SoC PHYs, link redundancy, link bandwidth and flexibility in usage of the 8 links at the edge connectors. A node card can be used in conjunction with the “system board” where the system board provides power to the node cards and connections to interconnect off the system board such as an Ethernet transceiver. The system board could house one or more node cards. In the case of housing more than one node card, the system board creates a cluster of Servers that utilize a server to server interconnect or fabric that is integrated in the SoC or a separate function on the card. This system board can be made in many forms, including industry standard form factors such as ATX or in customer form factors. The system board could be a blade or could fit into a standard chassis such as a 2 U or any other size.



FIG. 1B illustrates more details of the system board 42. The system board 42 may allow one or more node cards 46 (such as 46.sub.0, 46.sub.1, 46.sub.2, . . . , 46n in the example in FIG. 1B) to be plugged into the system board. The system board 42 also may house a management data input/output system 60 (described below with reference to FIG. 3) that manages the system board and the node cards, a power system 70 (described below with reference to FIGS. 4-5) that distributes power to the system board 42 as well as the one or more node cards 46 and a switch fabric 100 (described below with reference to FIG. 7) that provide communication paths between the nodes on each node card, between the node cards and to an outside entity such as another system board, other computer system and the like.



FIG. 2 illustrates an example of a node card 46, such as a node card, that can be coupled to the system board. The node card may have a system on a chip (SOC) unit 48, one or more PHYs to various communication and storage paths 50 and one or more other interfaces 52 that were described briefly above. The node card 46 may also have a memory 54, one or more other well known modules 56 (such as a clock, a crystal, a temperature sensor, a regulator and a power source) that are also part of the node card. The node card may also have an SD card unit 58.



FIG. 3 illustrates the management data input/output (MDIO) 60 of the system board. The node card in FIG. 2 can support 1 G and 10 G Ethernet speeds. For 10 G link speeds, a XAUI to SFP+ conversion is required (by a transceiver 64). This example shows 2 SFP+ to XAUI links available so a system board can use 1 or 2 Outlinks. FIG. 3 illustrates the MDIO connectivity 62 for a 4 SFP Outlink 66 SystemBoard design that utilizes a switch 68 to share MDIO signals. FPGA_GNT[X] is the output of an arbiter that allows access by various slots to communicate with SFP devices through an Ethernet PHY transceiver 64.


The system board also provides chassis management mechanism that may include fan control, a chassis user interface (buttons, LEDs, etc.) and system voltage regulation for Ethernet transceivers, node card slots in the system board as shown in FIG. 1 (that provide power to each node card) and SATA devices. Now, an example of a power system of the system board is described in more detail.



FIGS. 4 and 5 illustrate details of the power system 70 for the system board that, for example, powers the network system 64 and 66. The system board power system should be able to generate and distribute DC voltage requirements of the node cards and system components, have an organized power sequencing, a predetermined power control for each slot and/or system component (always on or under dynamic control) and be able to provide dynamic power control. The system board design utilizes a chassis management unit 72, such as an FPGA, in communication with a node card to meet the proper power-on sequence and dynamic power control of the components. The chassis management unit 72 may be responsible for the power on/off sequence for the chassis and the power system has one or more power FETs 74 that are available to dynamically control the high power Ethernet PHYs and elements of the network system 64,66. The power system may also provide 12 V to each slot holding the node cards, such as node card(s), to provide power to each node card. Furthermore, each node card (or multi-node) slot on the system board has a CARD_EN signal (shown for example in FIG. 5) to enable the 3.3 V, 1.8 V and 0.9 V rails to power on/off a node card or node(s) of a node card. In the power system, with the PS_ON# grounded (shown in FIG. 4), the 12 V supply may power up the system board when AC power is supplied. A power switch 76 on the control panel 78 turns power on/off to each slot of the system board, but does not remove power from the chassis management unit 72 and a power switch 76 button press causes the chassis management unit 72 to shut down all slot power.


The power system may have intermediate modes that are controlled by the chassis management unit 72 and those modes are to enable the 10 G transceivers 64 or to enable other slots. The lower operational power state of the power system is that the system board is powered, most 10 G transceiver power FETs are off, slot 0 is powered and enabled and nodes 1 and 2 on slot 0 are disabled. Minimal network system devices need to remain on such that a single network connection is maintained for slot 0, to provide a communication channel with higher level control systems. For unexpected power loss, the chassis management unit 72 stores the current system power configuration in a local non-volatile storage device 80 and restores that configuration when AC power is restored.



FIG. 5 illustrates more details of the power system 70 with the chassis management unit 72 on the system board 42. The chassis management unit 72 may be connected to one or more regulators 79 that convert and regulate the voltage of the system such as 3.3 volt supply and a 1.8 volt I/O supply.


The chassis can have a number of miscellaneous components related to temperature control (fans and temperature sensors) and user interface (button, LEDs, LCDs). The node card I/O has been defined for communication and control of these components. In the system board design, the chassis management unit 72 serves the role of controlling the fans, user interface features and communication to node card(s) through an SMBus connection. The following functions outlines the node card I/O for system communication and control:


SMBus Clock signal for communication with system board devices.


SMBus Data signal for communication with system board devices.


Interrupt to report a system event to the node.


Report a thermal trip event that occurred external to the node.


For general purpose use with a system board.


CPLD_REQ and CPLD_GNT are used for master arbitration between the nodes.


CPLD_REQ and CPLD_GNT are used for master arbitration between the nodes.


An SB12 (an example of which is shown in FIG. 6) is a 12 slot system board 80 that accepts a node card per slot (described in co-pending patent application Ser. No. 13/527,498 filed on Jun. 19, 2012, which is incorporated herein by reference.) It is intended for use in a 2 U chassis that supports EATX motherboards. While the SB12 is primarily passive for fabric routing, there are still some other functions that it performs that include fabric interconnect between node cards, conversion from XAUI to SFP+ cages for external network connectivity, local DC voltage regulation, multiplexing of UART signals from slots 1-4 to the external RS-232 port, fan control and/or power sequencing and enable/disable of slots. In the example in FIG. 6, the SB 12 has one or more node card quad-node boards 92 and one or more EnergyDrives 94 that are described in more detail in co-pending patent application Ser. No. 13/284,855 filed on Oct. 28, 2011 and entitled “System And Method For Flexible Storage And Networking Provisioning In Large Scalable Processor Installations”, the entirety of which is incorporated by reference herein.



FIG. 7 illustrates details of a fabric interconnect 100 of the system board. The fabric interconnect is designed to balance the need for scalable bandwidth, redundant links, and the physical routing congestion within the system board. There are many other tree topologies that can be implemented at this level. For the conversion from XAUI to SFP+ cages, an Ethernet transceiver is used. In short, a set of arrows 102 in the fabric diagram in FIG. 8 connect to the Vitesse transceiver which then connects to the SFP+ cage. Within the SFP+ cage, the user is free to install a compatible SFP module (1 Gb or 10 Gb), (copper or fiber) to meet their needs. SFP cables with integrated SFP connectors can also be used. The fabric also connects one or more node cards 46 together as well as one or more nodes of each node card (N0-N3) to each other so that they can communicate with each other.



FIG. 8 illustrates details of the chassis management unit 72 of the system board. This device will be used on system boards for chassis management functions and node card to system board configuration/coordination. It will work on multiple system boards (1 to 24 slot) without modification, but can be modified if needed, for example, one could use a smaller device on a 3-slot system board (fewer I/Os required). It also can scale upward to support slots quantities that are limited only by the allowable size of the system fabric. In one implementation, the chassis management unit 72 may be a FPGA.


The chassis management unit 72 may have external network slots which are the node card slots that have connections to the system board SFPs for connection to the external network and the internal fabric are the XAUI connections that exist between node card, both on system board cards and between slots in which node cards are installed. The system may have a master node (within one of the node cards) that has been assigned to control the other nodes and/or the other node cards. The master node card is a single node card on a node card installed in an external network slot that is designated to carry out chassis management functions (by way of the Node Controller). If arbitration is supported, node card in another external network slot can be switched to function in this role. The master node card is a system board card that is installed in an External Network Slot and a system Register Space 122 is a common system registers accessible via the node card SMBus 120 (includes bits for things such as chassis reset, power on/off, slot reset, FAULT status, etc.).


The power management of the chassis management unit 72 includes the code and I/O signals to support power-on and reset requirements of system board and node card components. Power on of installed system board cards is controlled by the chassis management unit 72 and the Master node card. The slot power and timing may be hardwired to the chassis management unit 72, but may also be controlled via a Master node card.


The chassis management unit 72 also performs arbitration of system board Resources and the system board resources are accessible by the Master node card at a time by way of chassis management unit 72 controlled arbitration between the 4 master node cards. The GPIOs CPLD_REQ and CPLD_GNT are connected to the node cards through External Network Slots (Slots 0-3).


The MDIO Bus (MII bus) is a shared resource of the master node cards. It is used by the Master node card to access the Media Independent Interface of the Ethernet transceiver for their configuration. Note that one Master node card has the ability to access the MDIO of a transceiver to which it does not connect. The External Slot node cards will need to coordinate to avoid conflicts.


A set of UARTs 124, a system board DB9/RS232 transceiver, is a shared resource of the master node cards. Only the Master node card will have access to the transceiver and be able to use its UART interface to communicate externally from the chassis.


System Board Configuration Inputs


The system board has the following inputs for system configuration that are read by the chassis management unit 72 and made available to Master node card via the System Register Space:


Board Rev ID—Used as needed to provide distinction between board versions/assemblies.


System board ID—Used as needed to provide distinction between different system boards, e.g., between OEM variants of the system board.


Slot Presence When a card is first installed, the chassis management unit 72 will detect its presence by the card's internal pullup to this signal. The chassis management unit 72 will record this presence status in the System Register Space. Furthermore, when the chassis management unit 72 enables power to the slot via this signal, it will drive the line low. The presence state is recalled via the original presence detected and stored into the System Register Space.


The chassis control panel 126 includes any Buttons, LEDs or other device that would be on the chassis for user input. The control panel is driven by the chassis management unit 72 and accessible by the master node card through the System Register Space. Fans are driven by a fan control unit 128 that is part of the chassis management unit 72 and controlled by the Master node card through the System Register Space.


JTAG is used update the firmware image on the chassis management unit 72. This is performed by a JTAG connection between the node card edge connector in Slot 0 and the chassis management unit 72. The other node card slots will not be connected to keep the JTAG bus clean.


The system board may contain multiple physical connectors, contain routing between the physical connectors for power and signaling, and one or more Ethernet physical connections, where the physical connectors connect to a PCB on which is one or more servers. The connectors, in one embodiment, may be PCIe. The routing between the connectors may be using XAUI and/or SGMII. The power may be 12 v where 12 v is generated on the system board from an AC or higher voltage applied to the system board. The system board may be in a chassis that fits in a rack and/or it may be a blade. The system board may include additional systems that can be placed inside the chassis where the power and signal routing goes through a board that is connected with one or more connectors on board forming a bridge without any additional wires. The system board may have an ATX form factor. If SGMII is used, it may be routed from one physical connectors to a 1 Gbit PHY that is used to connect to a standard Ethernet cable. When one or more SGMII signals from additional connector(s) are used, they are routed to additional Ethernet PHYs enabling multiple Ethernet cable to be hooked to the system board. The system board may also have regulation for the Ethernet. The system board also has a device that goes from XAUI to the output that goes to a PHY and/or has SFP cages on it.


In another aspect, a chassis controller 72 may have a system controller that provides enable signaling to each connector. The system controller may be implemented in many ways, such as programmable logic (an FPGA) or cold logic (a standard microcontroller or a fixed-function ASIC). The system controller may be any type of processor with memory and GPIO interface. The system controller may include SMBus arbitration where the chassis manager has the lock that controls the arbitration. In one embodiment, there may be no processor on the system board other than the chassis management unit and the Ethernet transceiver. The chassis controller may have a regulator for Ethernet and Chassis Management unit.


The power button may be routed from chassis to chassis controller so that when power button is pressed one or more node cards is notified and that node card sends a message to all node cards to gracefully shut down. There may be serial port connector so chassis manager can communicate over the serial port to external devices. The system control can enable and control the Ethernet PHYs and node cards. A given node card can have a digital link to the system controller enabling a server within that node card to communicate to or control the system controller. There may also be more than one server within node cards that can communicate with the system controller through one of multiple independent links and a shared digital link. The shared digital link is a SMBus channel with digital controls that enable arbitration of said channel. The system control may have lights and chassis control of slot enable. The connector interface may have XAUI, power and a digital enable signal. There may be a node card that can control the enable of other servers by giving commands to the chassis manager to enable or disable a server or set of servers in another slot by communicating with the chassis manager who enables or disables a slot through a digital GPIO. In the system, any server can request to be turned off by sending a message to the server connected to the chassis manager that controls the enable.


The system controller or system board may have one or more temperature sensors. The temperature sensors may be connected to the system controller enabling the temperature sensors to be read and controlled by the system controller. The node card can get temperature information by communicating with the system controller, where the system controller gets temperature information from one or more temperature sensors on the system board. In addition, more than one server can get temperature information.


The system board may have outputs that connect to fans. The fan speed can be set by setting DIP switches or other values on the system board independent to the system controller or node cards. There may also be fan(s) on system board. The chassis controller unit may make decisions on fan speed using the temperature sensor input independent of the node cards. In addition, one node card can get temperature information from the chassis manager and make decisions on fan speed and tell the chassis manager how to set up the fans. In other embodiments, the main server can get information from each server on temperature and make a fan decision, then talk to the chassis manager to change fan speed.


The system board may also include drives and SATA and it may houseEnergyDrive, including power and enable. Inclusion of SATA channels within the system board allows connectivity between EnergyDrives and servers within a node card without the use of a multitude of cabling. There may also be disks mounted on the system board that make use of the embedded SATA channels.


Now, several different examples of node cards that may be plugged into the system board are described in more detail. A highly integrated SoC designed for Server application enables density and system design options that have not been available to date. Cards can be defined that have the functionality of one or more servers and these Cards can be linked together to form clusters of servers in very dense implementations. A high level description of the Card would include a highly integrated SoC implementing the server functionality, DRAM memory, support circuitry such as voltage regulation, clocks etc. . . . The input/output of the card would be power and server to server interconnect and/or server to Ethernet PHY connectivity. SATA connections can also be added to interface to drives. An example of a node card is shown in FIG. 9 with one or more system-on-a-chip (SOC).


The fabric connections on the Card can be designed to balance: usage of SoC PHYs, link redundancy, link bandwidth and flexibility in usage of multiple links at the edge connectors. The system board could house one or more node cards. In the case of housing more than one Card, the system board creates a cluster of Servers that utilize a server to server interconnect or fabric that is integrated in the SoC or a separate function on the card. This system board can be made in many forms, including industry standard form factors such as ATX or in customer form factors. The system board could be a blade or could fit into a standard chassis such as a 2 U or any other size.


While the foregoing has been with reference to a particular embodiment of the invention, it will be appreciated by those skilled in the art that changes in this embodiment may be made without departing from the principles and spirit of the disclosure, the scope of which is defined by the appended claims.

Claims
  • 1. A node card comprising: a power module communicatively coupled to one or more nodes; andan interface communicatively coupled to the power module and configured to communicate an internal pullup signal from the power module to a chassis management unit, the chassis management unit being communicatively coupled to the interface and configured to detect the presence of the node card, to record the detected presence in a system register, and to receive a command from a master server to enable or disable a non-master server,wherein the interface is further configured to communicate via node to node links and connect one or more nodes to other nodes on other nodes cards and to provide communication paths between nodes, andwherein the non-master server requests to be turned off by sending a message to the master server, the master server being one of the nodes of the node card, the non-master server being another of the nodes of the node card.
  • 2. The node card of claim 1, further comprising a system controller that has a digital link to one of the master server or the non-master server.
  • 3. The node card of claim 2, wherein the server is configured to control and communicate with the system controller.
  • 4. The node card of claim 2, wherein the digital link to the system controller is a shared digital link.
  • 5. The node card of claim 1, wherein the chassis management unit receives a disable command from the master server to disable the non-master server.
  • 6. The node card of claim 1, wherein the master server is configured to obtain temperature information from a chassis controller.
  • 7. An apparatus comprising: a power module that receives power from a set of power signals;an interface that connects to at least one of one or more connectors and communicates using a set of communication signals, wherein the interface communicates via node to node links, wherein the node to node links connect one or more nodes to other nodes on other node cards and to provide communication paths between the nodes; anda chassis management unit that receives a command from a master server to enable or disable a non-master server, wherein the non-master server requests to be turned off by sending a message to the master server, the master server being one of the nodes of a node card, the non-master server being another of the nodes of a node card, wherein the interface communicates an internal pullup from the power module to the chassis management unit and the chassis management unit records the presence of the node card in a system register.
  • 8. The apparatus of claim 7, further comprising a system controller that has a digital link to one of the master server or the non-master server.
  • 9. The apparatus of claim 8, wherein the digital link to the system controller is a shared digital link.
  • 10. The apparatus of claim 7, wherein the chassis management unit receives a disable command from the master server to disable the non-master server.
  • 11. A node card comprising: one or more nodes;a power module that receives power from a set of power signals;an interface that connects to at least one of one or more connectors and communicates using a set of communication signals, wherein the interface is configured to communicate via node to node links and connect the one or more nodes to other nodes on other node cards and to provide communication paths between the nodes; anda chassis management unit that receives a command from a master server to enable or disable a non-master server, wherein the non-master server requests to be turned off by sending a message to the master server, the master server being one of the nodes of the node card, the non-master server being another of the nodes of the node card;wherein the interface communicates an internal signal from the power module to the chassis management unit and the chassis management unit records the presence of the node card in a system register, the interface is communicatively coupled to the power module and configured to communicate an internal pull up signal from the power module to the chassis management unit.
  • 12. The node card of claim 11, further comprising a system controller that has a digital link to at least one server.
  • 13. The node card of claim 11, wherein the system controller is linked to two or more servers, and wherein the digital links comprise one of multiple independent links and a shared digital link.
  • 14. The node card of claim 13, wherein the shared digital link is a system management bus (SMBus) interface.
  • 15. The node card of claim 11, wherein the chassis management unit is one of a field programmable gate array, cold logic, programmable logic, and a processor with a memory and general purpose input/output (GPIO) pins.
RELATED APPLICATION/PRIORITY CLAIMS

This application is a continuation of Ser. No. 13/527,505, filed Jun. 19, 2012, which claims the benefit under 35 USC 119(e) of U.S. Provisional Patent Application Ser. No. 61/553,555 filed on Oct. 31, 2011 and entitled “System And Method For Modular Compute Provisioning In Large Scalable Processor Installations”, the entireties of which are incorporated herein by reference. This application is also related to U.S. patent application Ser. No. 13/527,498, filed on the same date and entitled “Node Cards for a System and Method for Modular Compute Provisioning in Large Scalable Processor Installations”, the entirety of which is also incorporated herein by reference.

US Referenced Citations (371)
Number Name Date Kind
5451936 Yang et al. Sep 1995 A
5594908 Hyatt Jan 1997 A
5623641 Kadoyashiki Apr 1997 A
5781187 Gephardt et al. Jul 1998 A
5901048 Hu May 1999 A
5908468 Hartmann Jun 1999 A
5968176 Nessett et al. Oct 1999 A
5971804 Gallagher et al. Oct 1999 A
6055618 Thorson Apr 2000 A
6141214 Ahn Oct 2000 A
6181699 Crinion et al. Jan 2001 B1
6192414 Horn Feb 2001 B1
6198741 Yoshizawa et al. Mar 2001 B1
6252878 Locklear Jun 2001 B1
6314487 Hahn et al. Nov 2001 B1
6314501 Gulick et al. Nov 2001 B1
6373841 Goh et al. Apr 2002 B1
6442137 Yu et al. Aug 2002 B1
6446192 Narasimhan et al. Sep 2002 B1
6452809 Jackson et al. Sep 2002 B1
6507586 Satran et al. Jan 2003 B1
6556952 Magro Apr 2003 B1
6574238 Thrysoe Jun 2003 B1
6661671 Franke Dec 2003 B1
6711691 Howard et al. Mar 2004 B1
6766389 Hayter et al. Jul 2004 B2
6813676 Henry et al. Nov 2004 B1
6816750 Klaas Nov 2004 B1
6842430 Melnik Jan 2005 B1
6857026 Cain Feb 2005 B1
6963926 Robinson Nov 2005 B1
6963948 Gulick Nov 2005 B1
6977939 Joy et al. Dec 2005 B2
6988170 Barroso et al. Jan 2006 B2
6990063 Lenoski et al. Jan 2006 B1
7020695 Kundu et al. Mar 2006 B1
7032119 Fung Apr 2006 B2
7080078 Slaughter et al. Jul 2006 B1
7080283 Songer et al. Jul 2006 B1
7095738 Desanti Aug 2006 B1
7119591 Lin Oct 2006 B1
7143153 Black et al. Nov 2006 B1
7165120 Giles et al. Jan 2007 B1
7170315 Bakker et al. Jan 2007 B2
7180866 Chartre et al. Feb 2007 B1
7203063 Bash et al. Apr 2007 B2
7257655 Burney et al. Aug 2007 B1
7263288 Islam Aug 2007 B1
7274705 Chang et al. Sep 2007 B2
7278582 Siegel et al. Oct 2007 B1
7310319 Awsienko et al. Dec 2007 B2
7325050 O'Connor et al. Jan 2008 B2
7337333 O'Conner et al. Feb 2008 B2
7340777 Szor Mar 2008 B1
7353362 Georgiou et al. Apr 2008 B2
7382154 Ramos et al. Jun 2008 B2
7386888 Liang et al. Jun 2008 B2
7418534 Hayter et al. Aug 2008 B2
7437540 Paolucci et al. Oct 2008 B2
7447147 Nguyen et al. Nov 2008 B2
7447197 Terrell et al. Nov 2008 B2
7466712 Makishima et al. Dec 2008 B2
7467306 Cartes et al. Dec 2008 B2
7467358 Kang et al. Dec 2008 B2
7502884 Shah et al. Mar 2009 B1
7519843 Buterbaugh et al. Apr 2009 B1
7555666 Brundridge et al. Jun 2009 B2
7583661 Chaudhuri Sep 2009 B2
7586841 Vasseur Sep 2009 B2
7596144 Pong Sep 2009 B2
7599360 Edsall et al. Oct 2009 B2
7606225 Xie et al. Oct 2009 B2
7606245 Ma et al. Oct 2009 B2
7616646 Ma et al. Nov 2009 B1
7620057 Aloni et al. Nov 2009 B1
7644215 Wallace et al. Jan 2010 B2
7657677 Huang et al. Feb 2010 B2
7657756 Hall Feb 2010 B2
7660922 Harriman Feb 2010 B2
7664110 Lovett et al. Feb 2010 B1
7673164 Agarwal Mar 2010 B1
7710936 Morales Barroso May 2010 B2
7719834 Miyamoto et al. May 2010 B2
7721125 Fung May 2010 B2
7751433 Dollo et al. Jul 2010 B2
7760720 Pullela et al. Jul 2010 B2
7761687 Blumrich et al. Jul 2010 B2
7783910 Felter et al. Aug 2010 B2
7791894 Bechtolsheim Sep 2010 B2
7792113 Foschiano et al. Sep 2010 B1
7796399 Clayton et al. Sep 2010 B2
7801132 Ofek et al. Sep 2010 B2
7802017 Uemura et al. Sep 2010 B2
7805575 Agarwal et al. Sep 2010 B1
7831839 Hatakeyama Nov 2010 B2
7840703 Arimilli et al. Nov 2010 B2
7865614 Lu et al. Jan 2011 B2
7925795 Tamir et al. Apr 2011 B2
7934005 Fascenda Apr 2011 B2
7970929 Mahalingaiah Jun 2011 B1
7975110 Spaur et al. Jul 2011 B1
7991817 Dehon et al. Aug 2011 B2
7991922 Hayter et al. Aug 2011 B2
7992151 Warrier et al. Aug 2011 B2
8019832 De Sousa et al. Sep 2011 B2
8060760 Shetty et al. Nov 2011 B2
8060775 Sharma et al. Nov 2011 B1
8082400 Chang et al. Dec 2011 B1
8108508 Goh et al. Jan 2012 B1
8122269 Houlihan et al. Feb 2012 B2
8132034 Lambert et al. Mar 2012 B2
8155113 Agarwal Apr 2012 B1
8156362 Branover et al. Apr 2012 B2
8165120 Maruccia et al. Apr 2012 B2
8170040 Konda May 2012 B2
8180996 Fullerton et al. May 2012 B2
8189612 Lemaire et al. May 2012 B2
8194659 Ban Jun 2012 B2
8199636 Rouyer et al. Jun 2012 B1
8205103 Kazama et al. Jun 2012 B2
8379425 Fukuoka et al. Feb 2013 B2
8397092 Karnowski Mar 2013 B2
8407428 Cheriton et al. Mar 2013 B2
8504791 Cheriton et al. Aug 2013 B2
RE44610 Krakirian et al. Nov 2013 E
8599863 Davis Dec 2013 B2
8684802 Gross et al. Apr 2014 B1
8738860 Griffin et al. May 2014 B1
8745275 Ikeya et al. Jun 2014 B2
8745302 Davis et al. Jun 2014 B2
8782321 Harriman et al. Jul 2014 B2
8812400 Faraboschi et al. Aug 2014 B2
8824485 Biswas et al. Sep 2014 B2
8854831 Arnouse Oct 2014 B2
8903964 Breslin Dec 2014 B2
9008079 Davis et al. Apr 2015 B2
9075655 Davis et al. Jul 2015 B2
9311269 Davis et al. Apr 2016 B2
9465771 Davis et al. Oct 2016 B2
20010046227 Matsuhira et al. Nov 2001 A1
20020004912 Fung Jan 2002 A1
20020040391 Chaiken et al. Apr 2002 A1
20020083352 Fujimoto et al. Jun 2002 A1
20020097732 Worster et al. Jul 2002 A1
20020107903 Richter et al. Aug 2002 A1
20020124128 Qiu Sep 2002 A1
20020159452 Foster et al. Oct 2002 A1
20020161917 Shapiro et al. Oct 2002 A1
20020172205 Tagore-Brage et al. Nov 2002 A1
20020186656 Vu Dec 2002 A1
20020194412 Bottom Dec 2002 A1
20020196611 Ho Dec 2002 A1
20030007493 Oi et al. Jan 2003 A1
20030033547 Larson et al. Feb 2003 A1
20030041266 Ke et al. Feb 2003 A1
20030076832 Ni Apr 2003 A1
20030093255 Freyensee et al. May 2003 A1
20030093624 Arimilli et al. May 2003 A1
20030110262 Hasan et al. Jun 2003 A1
20030140190 Mahony et al. Jul 2003 A1
20030158940 Leigh Aug 2003 A1
20030159083 Fukuhara et al. Aug 2003 A1
20030172191 Williams Sep 2003 A1
20030188083 Kumar et al. Oct 2003 A1
20030193402 Post et al. Oct 2003 A1
20030202520 Witkowski et al. Oct 2003 A1
20030231624 Alappat et al. Dec 2003 A1
20040013113 Singh et al. Jan 2004 A1
20040017806 Yazdy et al. Jan 2004 A1
20040017808 Forbes et al. Jan 2004 A1
20040030938 Barr et al. Feb 2004 A1
20040068676 Larson et al. Apr 2004 A1
20040111612 Choi et al. Jun 2004 A1
20040141521 George Jul 2004 A1
20040165588 Pandya Aug 2004 A1
20040210693 Zeitler et al. Oct 2004 A1
20040215864 Arimilli et al. Oct 2004 A1
20040215991 McAfee et al. Oct 2004 A1
20040267486 Percer et al. Dec 2004 A1
20050015378 Gammel et al. Jan 2005 A1
20050018604 Dropps et al. Jan 2005 A1
20050018606 Dropps et al. Jan 2005 A1
20050018663 Dropps et al. Jan 2005 A1
20050021606 Davies et al. Jan 2005 A1
20050021728 Sugimoto Jan 2005 A1
20050030954 Dropps et al. Feb 2005 A1
20050033742 Kamvar et al. Feb 2005 A1
20050033890 Lee Feb 2005 A1
20050044195 Westfall Feb 2005 A1
20050077921 Percer et al. Apr 2005 A1
20050105538 Perera et al. May 2005 A1
20050141424 Lim et al. Jun 2005 A1
20050228852 Santos et al. Oct 2005 A1
20050240688 Moerman et al. Oct 2005 A1
20050259397 Bash et al. Nov 2005 A1
20060002311 Iwanaga et al. Jan 2006 A1
20060013218 Shore et al. Jan 2006 A1
20060023245 Sato Feb 2006 A1
20060029053 Roberts et al. Feb 2006 A1
20060090025 Tufford et al. Apr 2006 A1
20060136570 Pandya Jun 2006 A1
20060140211 Huang et al. Jun 2006 A1
20060174342 Zaheer et al. Aug 2006 A1
20060179241 Clark et al. Aug 2006 A1
20060236371 Fish Oct 2006 A1
20060248359 Fung Nov 2006 A1
20060259734 Sheu et al. Nov 2006 A1
20060265609 Fung Nov 2006 A1
20070006001 Isobe et al. Jan 2007 A1
20070047195 Merkin Mar 2007 A1
20070076653 Park et al. Apr 2007 A1
20070081315 Mondor et al. Apr 2007 A1
20070094486 Moore et al. Apr 2007 A1
20070109968 Hussain et al. May 2007 A1
20070130397 Tsu Jun 2007 A1
20070174390 Silvain et al. Jul 2007 A1
20070180310 Johnson et al. Aug 2007 A1
20070209072 Chen Sep 2007 A1
20070226795 Conti et al. Sep 2007 A1
20070280230 Park Dec 2007 A1
20070286009 Norman Dec 2007 A1
20070288585 Sekiguchi et al. Dec 2007 A1
20080013453 Chiang et al. Jan 2008 A1
20080040463 Brown et al. Feb 2008 A1
20080052437 Loffink et al. Feb 2008 A1
20080059782 Kruse et al. Mar 2008 A1
20080075089 Evans et al. Mar 2008 A1
20080089358 Basso et al. Apr 2008 A1
20080104264 Duerk et al. May 2008 A1
20080140771 Vass et al. Jun 2008 A1
20080140930 Hotchkiss Jun 2008 A1
20080159745 Segal Jul 2008 A1
20080162691 Zhang et al. Jul 2008 A1
20080183882 Flynn et al. Jul 2008 A1
20080186965 Zheng et al. Aug 2008 A1
20080199133 Takizawa et al. Aug 2008 A1
20080212273 Bechtolsheim Sep 2008 A1
20080212276 Bottom et al. Sep 2008 A1
20080217021 Lembcke et al. Sep 2008 A1
20080222434 Shimizu et al. Sep 2008 A1
20080235443 Chow et al. Sep 2008 A1
20080239649 Bradicich et al. Oct 2008 A1
20080243634 Dworkin et al. Oct 2008 A1
20080250181 Li et al. Oct 2008 A1
20080259555 Bechtolsheim et al. Oct 2008 A1
20080259788 Wang et al. Oct 2008 A1
20080266793 Lee Oct 2008 A1
20080270599 Tamir et al. Oct 2008 A1
20080288660 Balasubramanian et al. Nov 2008 A1
20080288664 Pettey et al. Nov 2008 A1
20080288683 Ramey Nov 2008 A1
20080301794 Lee Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080313369 Verdoorn et al. Dec 2008 A1
20080320161 Maruccia et al. Dec 2008 A1
20090021907 Mann et al. Jan 2009 A1
20090044036 Merkin Feb 2009 A1
20090063443 Arimilli et al. Mar 2009 A1
20090064287 Bagepalli et al. Mar 2009 A1
20090080428 Witkowski et al. Mar 2009 A1
20090097200 Sharma et al. Apr 2009 A1
20090113130 He et al. Apr 2009 A1
20090133129 Jeong et al. May 2009 A1
20090135751 Hodges et al. May 2009 A1
20090135835 Gallatin et al. May 2009 A1
20090158070 Gruendler Jun 2009 A1
20090172423 Song et al. Jul 2009 A1
20090198958 Arimilli et al. Aug 2009 A1
20090204834 Hendin et al. Aug 2009 A1
20090204837 Raval et al. Aug 2009 A1
20090216920 Lauterbach Aug 2009 A1
20090219827 Chen et al. Sep 2009 A1
20090222884 Shaji et al. Sep 2009 A1
20090225751 Koenck et al. Sep 2009 A1
20090235104 Fung Sep 2009 A1
20090248943 Jiang et al. Oct 2009 A1
20090251867 Sharma et al. Oct 2009 A1
20090259863 Williams et al. Oct 2009 A1
20090259864 Li et al. Oct 2009 A1
20090265045 Coxe, III Oct 2009 A1
20090271656 Yokota et al. Oct 2009 A1
20090276666 Haley et al. Nov 2009 A1
20090279518 Falk et al. Nov 2009 A1
20090282274 Langgood et al. Nov 2009 A1
20090282419 Mejdrich et al. Nov 2009 A1
20090313390 Ahuja et al. Dec 2009 A1
20100005331 Somasundaram et al. Jan 2010 A1
20100008038 Coglitore Jan 2010 A1
20100008365 Porat Jan 2010 A1
20100026408 Shau Feb 2010 A1
20100040053 Gottumukkula et al. Feb 2010 A1
20100049822 Davies et al. Feb 2010 A1
20100051391 Jahkonen Mar 2010 A1
20100106987 Lambert et al. Apr 2010 A1
20100118880 Kunz et al. May 2010 A1
20100125742 Ohtani May 2010 A1
20100125915 Hall et al. May 2010 A1
20100138481 Behrens Jun 2010 A1
20100158005 Mukhopadhyay et al. Jun 2010 A1
20100161909 Nation et al. Jun 2010 A1
29010138481 Behrens Jun 2010
20100165983 Aybay et al. Jul 2010 A1
20100169479 Jeong et al. Jul 2010 A1
20100198972 Umbehocker Aug 2010 A1
20100198985 Kanevsky et al. Aug 2010 A1
20100218194 Dallman et al. Aug 2010 A1
20100220732 Hussain et al. Sep 2010 A1
20100250914 Abdul et al. Sep 2010 A1
20100265650 Chen et al. Oct 2010 A1
20100281246 Bristow et al. Nov 2010 A1
20100299548 Chadirchi et al. Nov 2010 A1
20100308897 Evoy et al. Dec 2010 A1
20100312910 Lin et al. Dec 2010 A1
20100312969 Yamazaki et al. Dec 2010 A1
20100318812 Auradkar et al. Dec 2010 A1
20110023104 Franklin Jan 2011 A1
20110026397 Saltsidis et al. Feb 2011 A1
20110029652 Chhuor et al. Feb 2011 A1
20110058573 Balakavi et al. Mar 2011 A1
20110075369 Sun et al. Mar 2011 A1
20110090633 Rabinovitz Apr 2011 A1
20110103391 Davis et al. May 2011 A1
20110113115 Chang et al. May 2011 A1
20110119344 Eustis May 2011 A1
20110123014 Smith May 2011 A1
20110138046 Bonnier et al. Jun 2011 A1
20110173612 El Zur et al. Jul 2011 A1
20110185370 Tamir et al. Jul 2011 A1
20110191514 Wu et al. Aug 2011 A1
20110191610 Agarwal et al. Aug 2011 A1
20110197012 Liao et al. Aug 2011 A1
20110210975 Wong et al. Sep 2011 A1
20110239014 Karnowski Sep 2011 A1
20110271159 Ahn et al. Nov 2011 A1
20110273840 Chen Nov 2011 A1
20110295991 Aida Dec 2011 A1
20110296141 Daffron Dec 2011 A1
20110307887 Huang et al. Dec 2011 A1
20110320690 Petersen et al. Dec 2011 A1
20120011500 Faraboschi et al. Jan 2012 A1
20120020207 Corti et al. Jan 2012 A1
20120050981 Xu et al. Mar 2012 A1
20120054469 Ikeya et al. Mar 2012 A1
20120054511 Brinks et al. Mar 2012 A1
20120081850 Regimbal et al. Apr 2012 A1
20120096211 Davis et al. Apr 2012 A1
20120099265 Reber Apr 2012 A1
20120131201 Matthews et al. May 2012 A1
20120155168 Kim et al. Jun 2012 A1
20120198252 Kirschtein et al. Aug 2012 A1
20120207165 Davis Aug 2012 A1
20120297042 Davis et al. Nov 2012 A1
20130010639 Armstrong et al. Jan 2013 A1
20130024645 Cheriton et al. Jan 2013 A1
20130031331 Cheriton et al. Jan 2013 A1
20130058250 Casado et al. Mar 2013 A1
20130094499 Davis et al. Apr 2013 A1
20130097448 Davis et al. Apr 2013 A1
20130111107 Chang et al. May 2013 A1
20130148667 Hama et al. Jun 2013 A1
20130163605 Chandra et al. Jun 2013 A1
20130275703 Schenfeld et al. Oct 2013 A1
20130290643 Lim et al. Oct 2013 A1
20130290650 Chang et al. Oct 2013 A1
20130318269 Dalal et al. Nov 2013 A1
20140122833 Davis et al. May 2014 A1
20140359044 Davis et al. Dec 2014 A1
20140365596 Kanevsky et al. Dec 2014 A1
20150039840 Chandra et al. Feb 2015 A1
20150103826 Davis Apr 2015 A1
20160161909 Wada Jun 2016 A1
Foreign Referenced Citations (9)
Number Date Country
2005-223753 Aug 2005 JP
2005-536960 Dec 2005 JP
M377621 Apr 2010 TW
201017430 May 2010 TW
WO-2004021641 Mar 2004 WO
WO-2005013143 Feb 2005 WO
WO-2008000193 Jan 2008 WO
WO-2011044271 Apr 2011 WO
WO-2012037494 Mar 2012 WO
Non-Patent Literature Citations (129)
Entry
Advanced Switching Technology Tech Brief, published 2005, 2 pages.
Chapter 1 Overview of the Origin Family Architecture from Origin and Onyx2 Theory of Operations Manual, published 1997, 18 pages.
Cisco MDS 9000 Family Multiprotocol Services Module, published 2006, 13 pages.
Comparing the I2C BUS to the SMBUS, Maxim Integrated, Dec. 1, 2000, p. 1.
Deering, “IP Multicast Extensions for 4.3BSD UNIX and related Systems,” Jun. 1999, 5 pages.
Elghany et al., “High Throughput High Performance NoC Switch,” NORCHIP 2008, Nov. 2008, pp. 237-240.
Extended European Search Report for EP 10827330.1, dated Jun. 5, 2013.
Final Office Action on U.S. Appl. No. 12/889,721, dated Apr. 17, 2014.
Final Office Action on U.S. Appl. No. 13/692,741, dated Mar. 11, 2015.
Final Office Action on U.S. Appl. No. 12/794,996, dated Jun. 19, 2013.
Final Office Action on U.S. Appl. No. 12/889,721, dated May 22, 2015.
Final Office Action on U.S. Appl. No. 13/234,054, dated Apr. 16, 2015.
Final Office Action on U.S. Appl. No. 13/475,713, dated Oct. 17, 2014.
Final Office Action on U.S. Appl. No. 13/475,722, dated Oct. 20, 2014.
Final Office Action on U.S. Appl. No. 13/527,498, dated Nov. 17, 2014.
Final Office Action on U.S. Appl. No. 13/527,505, dated Dec. 5, 2014.
Final Office Action on U.S. Appl. No. 13/624,725, dated Nov. 13, 2013.
Final Office Action on U.S. Appl. No. 13/624,731, dated Jul. 25, 2014.
Final Office Action on U.S. Appl. No. 13/705,340, dated Aug. 2, 2013.
Final Office Action on U.S. Appl. No. 13/705,414, dated Aug. 9, 2013.
Final Office Action on U.S. Appl. No. 14/106,698, dated Aug. 19, 2015.
Final Office Action on U.S. Appl. No. 14/334,931, dated Jul. 9, 2015.
Final Office Action on U.S. Appl. No. 13/624,731, dated Nov. 12, 2013.
fpga4fun.com,“What is JTAG?”, 2 pages, Jan. 31, 2010.
From AT to BTX: Motherboard Form Factor, Webopedia, Apr. 29, 2005, p. 1.
Grecu et al., “A Scalable Communication-Centric SoC Interconnect Architecture” Proceedings 5th International Symposium on Quality Electronic Design, 2005, pp. 343, 348 (full article included).
Hossain et al., “Extended Butterfly Fat Tree Interconnection (EFTI) Architecture for Network on CHIP,” 2005 IEEE Pacific Rim Conference on Communicatinos, Computers and Signal Processing, Aug. 2005, pp. 613-616.
HP Virtual Connect Traffic Flow—Technology brief, Jan. 2012, 22 pages.
International Preliminary Report on Patentability for PCT/US2009/044200, dated Nov. 17, 2010.
International Preliminary Report on Patentability for PCT/US2012/038986 dated Nov. 26, 2013.
International Preliminary Report on Patentability for PCT/US2012/061747, dated Apr. 29, 2014.
International Preliminary Report on Patentability issued on PCT/US12/62608, dated May 6, 2014.
International Search Report and Written Opinion for PCT/US12/38987, dated Aug. 16, 2012.
International Search Report and Written Opinion for PCT/US12/61747, dated Mar. 1, 2013.
International Search Report and Written Opinion for PCT/US12/62608, dated Jan. 18, 2013.
International Search Report and Written Opinion for PCT/US2010/053227, dated May 10, 2012.
International Search Report and Written Opinion for PCT/US2011/051996, dated Jan. 19, 2012.
International Search Report and Written Opinion on PCT/US09/44200, dated Jul. 1, 2009.
International Search Report and Written Opinion on PCT/US2012/038986, dated Mar. 14, 2013.
Jansen et al., “SATA-IO to Develop Specification for Mini Interface Connector” Press Release Sep. 21, 2009, Serial ATA3 pages.
Nawathe et al., “Implementation of an 8-Core, 64-Thread, Power Efficient SPARC Server on a Chip”, IEEE Journal of Solid-State Circuits, vol. 43, No. 1, Jan. 2008, pp. 6-20.
Non-Final Action on U.S. Appl. No. 13/728,362, dated Feb. 21, 2014.
Non-Final Office Action on U.S. Appl. No. 12/889,721, dated Jul. 2, 2013.
Non-Final Office Action on U.S. Appl. No. 13/475,722, dated Jan. 17, 2014.
Non-Final Office Action on U.S. Appl. No. 12/794,996, dated Sep. 17, 2012.
Non-Final Office Action on U.S. Appl. No. 12/889,721, dated Oct. 11, 2012.
Non-Final Office Action on U.S. Appl. No. 12/889,721, dated Sep. 29, 2014.
Non-Final Office Action on U.S. Appl. No. 13/234,054, dated Oct. 23, 2014.
Non-Final Office Action on U.S. Appl. No. 13/234,054, dated Aug. 6, 2015.
Non-Final Office Action on U.S. Appl. No. 13/284,855, dated Dec. 19, 2013.
Non-Final Office Action on U.S. Appl. No. 13/453,086, dated Mar. 12, 2013.
Non-Final Office Action on U.S. Appl. No. 13/475,713, dated Apr. 1, 2014.
Non-Final Office Action on U.S. Appl. No. 13/527,505, dated May 8, 2014.
Non-Final Office Action on U.S. Appl. No. 13/527,498, dated May 8, 2014.
Non-Final Office Action on U.S. Appl. No. 13/624,725, dated Jan. 10, 2013.
Non-Final Office Action on U.S. Appl. No. 13/624,725, dated Apr. 23, 2015.
Non-final office action on U.S. Appl. No. 13/624,731 dated Jan. 29, 2013.
Non-Final Office Action on U.S. Appl. No. 13/662,759, dated Nov. 6, 2014.
Non-Final Office Action on U.S. Appl. No. 13/692,741, dated Sep. 4, 2014.
Non-Final Office Action on U.S. Appl. No. 13/692,741, dated Jul. 1, 2015.
Non-Final Office Action on U.S. Appl. No. 13/705,286, dated May 13, 2013.
Non-Final Office Action on U.S. Appl. No. 13/705,340, dated Mar. 12, 2014.
Non-Final Office Action on U.S. Appl. No. 13/705,340, dated Mar. 29, 2013.
Non-Final Office Action on U.S. Appl. No. 13/705,414, dated Apr. 9, 2013.
Non-Final Office Action on U.S. Appl. No. 13/728,308, dated May 14, 2015.
Non-Final Office Action on U.S. Appl. No. 13/728,428, dated Jun. 12, 2015.
Non-Final Office Action on U.S. Appl. No. 14/052,723, dated May 1, 2015.
Non-Final Office Action on U.S. Appl. No. 14/106,697, dated Aug. 17, 2015.
Non-Final Office Action on U.S. Appl. No. 14/106,698, dated Feb. 12, 2015.
Non-Final Office Action on U.S. Appl. No. 14/334,931, dated Jan. 5, 2015.
Non-Final Office Action on U.S. Appl. No. 13/705,428, dated Jul. 10, 2013.
Notice of Allowance on U.S. Appl. No. 13/453,086, dated Jul. 18, 2013.
Notice of Allowance on U.S. Appl. No. 13/475,713, dated Feb. 5, 2015.
Notice of Allowance on U.S. Appl. No. 13/475,722, dated Feb. 27, 2015.
Notice of Allowance on U.S. Appl. No. 13/527,498, dated Feb. 23, 2015.
Notice of Allowance on U.S. Appl. No. 13/527,505, dated Mar. 6, 2015.
Notice of Allowance on U.S. Appl. No. 13/624,731, dated Mar. 5, 2015.
Notice of Allowance on U.S. Appl. No. 13/705,340, dated Dec. 3, 2014.
Notice of Allowance on U.S. Appl. No. 13/705,386, dated Jan. 24, 2014.
Notice of Allowance on U.S. Appl. No. 13/705,414, dated Nov. 4, 2013.
Notice of Allowance on U.S. Appl. No. 13/284,855, dated Jul. 14, 2014.
Notice of Allowance U.S. Appl. No. 13/728,308, dated Oct. 7, 2015.
Office Action on Taiwan Application 101139729, dated May 25, 2015 (English translation not available).
Pande et al., “Design of a Switch for Network on Chip Applications,” May 25-28, 2003 Proceedings of the 2003 International Symposium on Circuits and Systems, vol. 5, pp. V217-V220.
Reexamination Report on Japanese Application 2012-536877, dated Jan. 22, 2015 (English Translation not available).
Search Report on EP Application 10827330.1, dated Feb. 12, 2015.
Venaas, “IPv4 Multicast Address Space Registry,” 2013, http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml.
Final Office Action on U.S. Appl. No. 14/334,178, dated Nov. 4, 2015.
Office Action on Taiwan Application 100133390, dated Aug. 25, 2015 (English translation not available).
Final Office Action on U.S. Appl. No. 14/052,723, dated Dec. 3, 2015.
Non-Final Office Action on U.S. Appl. No. 14/334,178 dated Dec. 18, 2015.
Non-Final Office Action on U.S. Appl. No. 14/334,931 dated Dec. 11, 2015.
Notice of Allowance on U.S. Appl. No. 13/692,741 dated Dec. 4, 2015.
Final Office Action on U.S. Appl. No. 13/234,054, dated Jan. 26, 2016.
Final Office Action on U.S. Appl. No. 14/106,697 dated Feb. 2, 2016.
Non-Final Office Action on U.S. Appl. No. 14/725,543 dated Apr. 7, 2016.
Notice of Allowance on U.S. Appl. No. 13/624,725, dated Mar. 30, 2016.
Final Office Action on U.S. Appl. No. 13/728,428 dated May 6, 2016.
Notice of Allowance on U.S. Appl. No. 14/334,931 dated May 20, 2016.
Notice of Allowance on U.S. Appl. No. 13/662,759 dated May 10, 2016.
Notice of Allowance on U.S. Appl. No. 14/334,178 dated Jun. 8, 2016.
Final Office Action on U.S. Appl. No. 12/889,721 dated Aug. 2, 2016.
Non-Final Office Action on U.S. Appl. No. 13/234,054 dated Oct. 20, 2016.
Notice of Allowance on U.S. Appl. No. 14/106,697 dated Oct. 24, 2016.
Non-Final Office Action on U.S. Appl. No. 14/753,948 dated Nov. 4, 2016.
Final Office Action on U.S. Appl. No. 13/234,054 dated May 31, 2017.
Final Office Action on U.S. Appl. No. 15/281,462 dated Jun. 13, 2017.
Non-Final Office Action on U.S Appl. No. 15/254,111 dated Jun. 20, 2017.
Notice of Allowance on U.S. Appl. No. 14/753,948 dated Jun. 14, 2017.
Non-Final Office Action on U.S. Appl. No. 15/270,418 dated Apr. 21, 2017.
Notice of Allowance on U.S. Appl. No. 15/360,668, dated May 5, 2017.
HP ProLiant SL6500 Scalable System, Family data sheet, HP Technical sheet, Sep. 2010 4 pages.
Non-Final Office Action on U.S. Appl. No. 15/281,462 dated Feb. 10, 2017.
Notice of Allowance issued on U.S. Appl. No. 14/052,723, dated Feb. 8, 2017.
Non-Final Office Action on U.S. Appl. No. 15/078,115 dated Sep. 5, 2017.
Notice of Allowance on U.S. Appl. No. 13/234,054, dated Sep. 19, 2017.
Notice of Allowance on U.S. Appl. No. 15/254,111 dated Sep. 1, 2017.
Notice of Allowance on U.S. Appl. No. 15/270,418 dated Nov. 2, 2017.
Das et al., “Unifying Packet and Circuit Switched Networks,” IEEE Globecom Workshops 2009, Nov. 30, 2009, pp. 1-6.
Final Office Action on U.S. Appl. No. 13/624,725 dated Mar. 10, 2016.
Final Office Action on U.S. Appl. No. 13/662,759, dated Feb. 22, 2016.
Non-Final Office Action on U.S. Appl. No. 12/889,721, dated Feb. 24, 2016.
Notice of Allowance on U.S. Appl. No. 13/728,428 dated Jul. 18, 2016.
Notice of Allowance on U.S. Appl. No. 14/725,543 dated Jul. 21, 2016.
Non-Final Office Action on U.S. Appl. No. 15/281,462 dated Dec. 15, 2017.
Non-Final Office Action on U.S. Appl. No. 15/357,332 dated Nov. 9, 2017.
Non-Final Office Action on U.S. Appl. No. 15/042,489 dated Jan. 9, 2018.
Notice of Allowance on U.S. Appl. No. 15/078,115 dated Jan. 8, 2018.
Notice of Allowance on U.S. Appl. No. 15/430,959 dated Mar. 15, 2018.
Related Publications (1)
Number Date Country
20160026606 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
61553555 Oct 2011 US
Continuations (1)
Number Date Country
Parent 13527505 Jun 2012 US
Child 14809723 US