Node with co-printed interconnect and methods for producing same

Information

  • Patent Grant
  • 10919230
  • Patent Number
    10,919,230
  • Date Filed
    Friday, June 9, 2017
    7 years ago
  • Date Issued
    Tuesday, February 16, 2021
    3 years ago
Abstract
Some embodiments of the present disclosure relate to an apparatus including an additively manufactured node. The apparatus includes an additively manufactured interconnect co-printed with the node. The interconnect is configured to connect the node to a component.
Description
BACKGROUND
Field

The present disclosure relates generally to additively manufactured techniques for connecting components to nodes, and more specifically to additively manufacturing techniques for co-printing nodes and interconnects used for connecting nodes to components.


Background

Additive Manufacturing (AM) processes involve the layer-by-layer buildup of one or more materials to make a 3-dimentional object. AM techniques are capable of fabricating complex components from a wide variety of materials. Typically, a freestanding object is fabricated from a computer aided design (CAD) model. Using the CAD model, the AM process can create a solid three-dimensional object by using a laser beam to sinter or melt a powder material, which then bonds the powder particles together. In the AM process, different materials or combinations of material, such as, engineering plastics, thermoplastic elastomers, metals, and ceramics may be used to create a uniquely shaped 3-dimensional object.


Several different printing techniques exist. One such technique is called selective laser melting. Selective laser melting entails fusing (agglomerating) particles of a powder at a temperature below the melting point of the powder material. More specifically, a laser scans a powder bed and melts the powder together where structure is desired, and avoids scanning areas where the sliced data indicates that nothing is to be printed. This process may be repeated thousands of times until the desired structure is formed, after which the printed part is removed from a fabricator.


As AM processes continue to improve, more complex mechanical manufacturers are beginning to investigate the benefits of using additively manufactured parts in their designs. This is because, achieving efficient and effective manufacturing processes at low costs are perpetual goals of manufacturing sectors of many industries. For instance, the automotive industry, aircraft manufacturing, and other industries involved in the assembly of transport structures are constantly engaging in cost saving optimizations and looking for opportunities to improve manufacturing processes.


Joining parts is one such area that proven to be difficult to optimize. For instance, conventional manufacturing processes rely on joining separate parts together using techniques like welding, which can require costly material and may be time intensive. Improvements and potential alternatives to such techniques are therefore continually being sought by practitioners in these industries.


The recent advances in 3-dimensional printing or AM processes have presented new opportunities to build wide varieties and ranges of simple to very complex parts at relatively competitive costs. With AM, different composite materials may be used that were not previously available in traditional manufacturing processes. These materials may be lighter or more cost efficient than available predecessor materials. For a variety of reasons, however, conventional techniques such as welding may not be a viable alternative for use with some of these new materials. Therefore, it can be difficult to join additively manufactured parts to conventional commercial components.


SUMMARY

Several aspects of techniques for joining an additively manufactured node to a component will be described more fully hereinafter with reference to three-dimensional printing techniques.


One aspect of an apparatus including an additively manufactured node. The apparatus includes an additively manufactured interconnect co-printed with the node. The interconnect is configured to connect the node to a component.


Another aspect of an apparatus including additively manufactured first and second nodes. The apparatus includes an additively manufactured interconnect co-printed with the first and second nodes. The interconnect is configured to connect the first and second nodes to a tube.


Another aspect of a method of joining an additively manufactured node to a component. The method prints a node. The method co-prints, with the node, an interconnect. The node and interconnect are co-printed by an additive manufacturing process. The method receives a component. The method uses the interconnect to connect the node to the component.


Another aspect of a method of joining an additively manufactured node to a tube, the method prints first and second nodes. The method co-prints, with the first and second nodes, an interconnect. The first and second nodes and interconnect are co-printed by an additive manufacturing process. The method receives a tube. Using the interconnect, the method connects the first and second nodes to the tube.


It will be understood that other aspects of co-printing interconnects with additively manufactured nodes will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be realized by those skilled in the art, the co-printing of interconnects with additively manufactured nodes are capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of tooling shells and methods for co-printing interconnects with additively manufactured nodes will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1 illustrates an exemplary embodiment of an apparatus comprising a joined node and component.



FIG. 2 illustrates an exemplary embodiment of an apparatus comprising a joined node and component.



FIG. 3 illustrates an exemplary embodiment of an apparatus having a node and component.



FIG. 4 illustrates a component with a detachable adhesive mixer.



FIG. 5 illustrates an exemplary embodiment of an apparatus with a dovetail joint.



FIG. 6 illustrates an exemplary embodiment of an apparatus having a socket with an outward bulge.



FIG. 7 illustrates an exemplary embodiment of an apparatus having a pair of nodes.



FIG. 8 conceptually illustrates a process for joining an additively manufactured node to a component.



FIG. 9 conceptually illustrates a process for joining an additively manufactured node to a tube.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments of additively manufacturing techniques for co-printing nodes and interconnects and is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


The use of additive manufacturing in the context of joining two or more parts provides significant flexibility and cost saving benefits that enable manufacturers of mechanical structures and mechanized assemblies to manufacture parts with complex geometries at a lower cost to the consumer. The joining techniques described in the foregoing relate to a process for connecting additively manufactured parts and/or commercial of the shelf (COTS) components. Additively manufactured parts are printed 3-dimensional parts that are printed by adding layer upon layer of a material based on a preprogramed design. The parts described in the foregoing may be parts used to assemble a motor vehicle such as an automobile. However, those skilled in the art will appreciate that the manufactured parts may be used to assemble other complex mechanical products such as vehicles, trucks, trains, motorcycles, boats, aircraft, and the like without departing from the scope of the invention.


By utilizing additive manufacturing techniques to co-print parts it becomes simpler to join different parts and/or components in the manufacturing process by applying an adhesive. Additive manufacturing provides the ability to create complex structures within a part. For example, a part such as a node may be printed with a port that enables the ability to secure two parts by injecting an adhesive rather than welding two parts together, as is traditionally done in manufacturing complex products.


As will be discussed herein, a node is an example of an additively manufactured part. A node may be any 3-D printed part that includes a socket for accepting a component such as a tube. The node may have a socket with an internal support structure configured to hold an interconnect in place. Such features may be co-printed with the node. Alternatively or conjunctively, the node socket may be shaped to accept a particular type of component. For instance, the internal shape of socket may be round or dovetailed to enable radial mobility or crimping of the interconnect, respectively. However, as a person having ordinary skill in the art will appreciate, a multitude of node/socket configurations may be utilized to accept a variety of different types of interconnects without departing from the scope of the disclosure.



FIG. 1 illustrates an exemplary embodiment of an apparatus comprising a joined node and component. The apparatus 100 includes a node 105, an interconnect 110, a socket 115, an injection port 125, support structure 130, and a tube 135. The interconnect 110 comprises head 140 at the proximal end and a shaft 145 at the distal end.


The node 105 and the interconnect 110 are co-printed, or additively manufactured together during the same printing process. For instance, the interconnect 110 and the node 105 may be designed in a Computer Aided Design (CAD) file that is transferred to a 3-D printing device. The 3-D printer may then process the file and initiate a print process based on the file. The node/interconnect structure may then be printed during the same print process.


During the printing process, support structure 130 may also be co-printed to hold the interconnect 110 and node 105 together in the socket 115. Support structure 130 may comprise thin spokes and/or protrusions that are configured to break apart so that the interconnect 110 is then free to move around in a rotational and/or linear manner depending on the configuration of the socket 115. The support structure 130 may also be used to confine the movement of the interconnect 110. For instance, protrusions may be used to confine the angular rotation of the interconnect 110 to be within a specific range.


As shown, the head 140 may be spherical in shape. Additionally, the head 140 is arranged with the socket 115 to form a joint. The joint may be a rotating or linear joint. The interconnect 110 is configured to connect the node 105 to a component. In some embodiments of the apparatus, the component may be a tube such as the tube 135. The shaft 145 may be configured to slide into an end portion of the tube 135. In some embodiments of the apparatus 100, the distal end of the interconnect 110 may have an end cap that is configured to slide over an end portion of the tube. An end cap may be a component that has a cylindrical shape like a tube with a slightly larger diameter that is designed to fit over a tube. Although the tube is cylindrical in this example, one having ordinary skill in the art will appreciate that a number of different shapes may be utilized for the tube and/or end cap arrangement such as a multisided polygon, without departing from the scope of the disclosure.


Additively manufacturing parts provides the ability to utilize techniques that are not available in traditional manufacturing processes that typically weld parts and/or components together. For instance, complex structures like the adhesive port 125 may be printed in the node 105. The adhesive portion 125 may include a channel that extends from an exterior surface of the node to the socket 130. The adhesive port 125 is configured to inject an adhesive material into the joint formed by the socket 115 and head 140. The adhesive material may be injected when the head 140 is positioned in such a manner that enables the shaft 145 to slide into the tube 135. In some embodiments of the apparatus 100, the shaft 145 may be inside of the tube 135 prior to adhesion injections. In some embodiments of the apparatus, the adhesive material may be a polymer such as an epoxy, resin, or any material that forms a strong bond between the interconnect 110 and the node 105. In some embodiments of the apparatus, and as will be discussed with respect to FIG. 7, a second port may also be formed in the additively manufactured node 105. The second port may be a vacuum port. The vacuum port, in some embodiments of the apparatus, may include a channel extending from an exterior surface of the node 105 to the socket 115 for enabling at least a partial vacuum environment during the adhesion process. For instance, the vacuum port may help to pull the adhesive material injected through the adhesive port 125 through and around the socket 115 by reducing the air pressure in the socket. This enables the adhesive to be applied to the socket 115 in a uniform manner free of bubbles or defects. Thus, the structural integrity of the part is maintained after adhesion.


One skilled in the art will appreciate that the node/interconnect structure described with respect to FIG. 1 is simply an example of a structure that connects a node 105 to a component such as a tube 135 and that simple variations to the parts described may be used without departing from the scope of the invention. For instance, FIG. 2 illustrates an exemplary embodiment of an apparatus 200 comprising a joined node and component. The apparatus 200 has many similar features to those discussed with respect to FIG. 1. However, the head 210 of the interconnect has an ellipsoidal shape rather than the circular shape described with respect to FIG. 1. The ellipsoidal shape may provide a different range of motion for the joint. Thus, the node/interconnect structure can be designed or configured in a variety of different ways to adapt to the manufacturing constraints or needs that may exist when manufacturing a complex mechanical structure. Additionally, one of ordinary skill in the art will appreciate that the illustrated socket and/or head of the node and interconnect, respectively, need not be confined to the spherical or ellipsoidal shapes discussed above. In fact, any suitable shape that provides the requisite mobility for manufacturing the complex mechanical structure may be utilized without departing from the scope of the invention.



FIG. 3 illustrates an exemplary embodiment of an apparatus 300 having a node and component. As shown, the apparatus 300 includes a node 305, an interconnect head 310, and a socket 330, each similar to the node 105, interconnect head 140, and socket 130, respectively. The interconnect head 310 and socket 330, together, forms a joint. The joint is similar to that of FIG. 1. However, it varies in that the interconnect head 310 is confined such that significant linear movement is available, but rotational movement is minimized.


In some embodiments of the apparatus, a mixture that forms an adhesive material may be applied. For instance, FIG. 4 illustrates an apparatus 400 with a detachable adhesive mixer 425. As shown, the apparatus 400 includes the detachable adhesive mixer 425, a node 405, an interconnect 410, a first material 415, a second material 420, a socket 430, and injection port 435. The detachable adhesive mixer may be connected to the adhesive port 435. A mixture of the first and second materials 415 and 420 may be injected into the injection port 435. The mixture may then fill the socket 430 such that the interconnect 410 is adhered to the node 405 by way of the socket 430. The detachable adhesive mixer allows for the use of two-part adhesives in the adhesion process.


As discussed above, additively manufacturing parts provides the capability of printing nodes and/or interconnects in a variety of different shapes. This provides greater customizability to meet a variety of needs when manufacturing a complex mechanical product. Such customizability reduces cost and manufacturing time.



FIG. 5 illustrates an exemplary embodiment of an apparatus 500 with a dovetail joint. As shown, the apparatus 500 includes a node 505, an interconnect 510, a tube 515, a socket 520, and a crimper 530. The node 505 includes a distal end 545 and a proximal end 540.


As shown, the distal end 535 of the interconnect 510 has an end cap configured to slide over an end portion of the tube 515. The proximal end 540 of the interconnect 510 has a dovetail shape. The proximal end 540 fits into the dovetail shaped socket, such as the socket 520. The socket 520 and the proximal end 540, together, form a dovetail joint.


As discussed with respect to FIG. 1, the apparatus 500 may also be printed with support structures that may be broken after printing so that the proximal end 540 of the interconnect 510 can move around within the socket 520, similar to that of the head 140 and socket 130 of FIG. 1. Also similar, the socket 520 may be configured to allow the interconnect 510 to have rotational and/or linear motion. Once the interconnect 510 is in place, it is secured via swaging. That is, the node 505 is deformed by the crimpers 530 such that the interconnect 510 is held in place.


Optionally, the apparatus 500 may also include an injection port and/or vacuum port, as described above to apply an adhesive to fix the interconnect 510 in place. The adhesion process may be used in addition to or in lieu of swaging the node 505.


By additively manufacturing parts, a variety of different shapes and configurations can be realized that were not possible with traditional manufacturing techniques for complex mechanical structures. The dovetail joint is one example of a configuration that can be generated by additively manufacturing a node and interconnect. FIG. 6, as will be discussed below, illustrates another example of a node and interconnect that can be generated by additively manufacturing the node and interconnect.



FIG. 6 illustrates an exemplary embodiment of an apparatus 600 having a socket with an outward bulge. As shown, the apparatus 600 includes a node 605, an interconnect 610, material 615, and a tube 620. The node 605 includes a socket 630 with a section 625 having an outward bulge.


In some embodiments of the apparatus, the socket 630 is substantially cylindrical. The interconnect 610 includes a shaft 670 that is connected to an interior surface 665 of the socket 630 opposite an opening 660 of the socket 630. In some embodiments of the apparatus, the interconnect is a mandrel. Additionally, the interconnect includes head 655 at the proximal end as well as a distal end 650. As shown, the head 655 is extendable beyond the opening of the socket 630. As described above, the socket 630 includes a section 625 with an outward bulge around a portion of the interconnect shaft 670.


As shown, an end portion of the tube 620 is positioned over the interconnect 610. The end portion of the tube 620 also includes a section 625 that has an outward bulge around the shaft 670 of the interconnect 610.


The injected material 615 may be a polymer such as silicone or a hydraulic fluid. As shown, the material 615 is applied in between the end portion of the tube 620 and the interior surface 665 of the socket 630 and the head 655 of the interconnect 610.


In some embodiments of the apparatus, a hydroforming process is utilized to cause the tube 620 to deform. For the hydroforming process, the material 615 is a hydroforming material such as silicone that is injected in the tube 620 after the tube 620 is inserted in the socket 630. The injected material in combination with the interconnect 610 generates pressure within the tube 620. The pressure causes the tube 620 to deform by bulging along the portion 625 of the socket 630 that has the outward bulge. This deformity forms a mechanical seal between the tube 620 and the node 605. At the culmination of the hydroforming process, the material is expelled from the socket 630 and the tube 620 is connected to the node 605.


In some embodiments of the apparatus, more than one node may be utilized to connect a component such as a tube. FIG. 7 illustrates an exemplary embodiment of an apparatus 700 having a pair of nodes. As shown, the apparatus 700 includes first and second nodes 705 and interconnect 710. The nodes 705 and interconnect 710 are co-printed by additive manufacturing. The apparatus 700 also includes a tube 715, and injection port 720, a vacuum port 725, at least one slide 730, adhesive material 735, and screw threads 740.


As shown, the interconnect 710 is configured to connect the first and second nodes 705 to the tube 715. In some embodiments of the apparatus, the interconnect 710 comprises an end cap having one or more slides 730 configured to slide into an end portion of the tube 715. For instance, the slides 730 may comprise several semicircular slides configured to slide into an end portion of the tube 715.


The first and second nodes 705 may be arranged with the end cap to form a slot through which the tube 715 slides through to attach the end portion of the tube 715 to the end cap.


The left-most node 705 includes the injection port 720, which includes a channel extending from an exterior surface of the node to the slot for adhesive injection. The node 705 also includes the vacuum port 725, which includes a second channel extending from the exterior surface of one of the nodes 705 to the slot. The injection port 720 and the vacuum port 725 cooperatively work to inject and pull the adhesive material 735 through the slot to hold the slot and tube in place. In some embodiments of the apparatus the vacuum port may enable at least a partial vacuum environment through the slot. Screw threads 740, in conjunction with threaded screws, may alternatively be used to hold the slides 730 in place instead of the adhesive material 735.



FIG. 8 conceptually illustrates a process 800 for joining an additively manufactured node to a component. The process 800 may begin after instructions for co-printing a node and an interconnect are received by an additive manufacturing printer.


As shown, the process 800 prints (at 805) a node. The node may be a node such as the node 105 described with respect to FIG. 1. The process 800 co-prints (at 810) an interconnect with the node. The interconnect may be an interconnect such as interconnect 110 described with respect to FIG. 1. In some embodiments of the process, the node and interconnect are co-printed as part of an additive manufacturing process. The process receives (at 815) a component. The component may be a tube such as the component (e.g., tube) 135 described with respect to FIG. 1. The process 800 connects (at 820) the node to the component by way of the interconnect.



FIG. 9 conceptually illustrates a process 900 for joining an additively manufactured node to a tube. The process 900 may begin after instructions for co-printing a node and an interconnect are received by an additive manufacturing printer.


As shown, the process 900 prints (at 905) first and second nodes. The first and second nodes may be similar to the first and second nodes 705 described with respect to FIG. 7. The process 900 co-prints (at 910) an interconnect with the first and second nodes. The interconnect may be similar to the interconnect 710 described with respect to FIG. 7. In some embodiments of the process, the first and second nodes and the interconnect are co-printed as part of an additive manufacturing process. The process 900 receives (at 915) a tube. The tube may be similar to the tube 715 described with respect to FIG. 7. The process 900 connects (at 920) the first and second nodes to the tube by way of the interconnect.


The capability to additively manufacture parts provides the advantageous benefit of generating shapes, configurations, and structures that are not available in conventional manufacturing processes. For instance, in conventional manufacturing processes, parts are typically joined by welding. However, with an additively manufactured node, it is possible to print injection and vacuum ports for applying adhesives to attach parts. Moreover, joints may be provided by co-printing joints and interconnects that enable nodes to be connected to various components such as tubes.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for printing nodes and interconnects. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. An apparatus, comprising: an additively manufactured node; andan additively manufactured interconnect co-printed with the node, wherein the interconnect is configured to connect the node to a component;wherein the node comprises a channel extending from an exterior surface of the node to a socket for adhesion injection, and a second channel extending from the exterior surface of the node to the socket for enabling at least a partial vacuum environment during adhesion injection.
  • 2. The apparatus of claim 1, wherein the interconnect is further configured to connect the node to the component comprising a tube.
  • 3. The apparatus of claim 2, wherein the node comprises a socket and the interconnect comprises a proximal end that together with the socket forms a joint therebetween that provides a range of linear motion between the interconnect and the node.
  • 4. The apparatus of claim 2, wherein the node comprises a socket and the interconnect comprises a proximal end that together with the socket forms a rotating joint therebetween.
  • 5. The apparatus of claim 4, wherein the proximal end of the interconnect has a spherical shape.
  • 6. The apparatus of claim 4, wherein the proximal end of the interconnect has an ellipsoidal shape.
  • 7. The apparatus of claim 2, wherein the proximal end of the interconnect has a dovetail shape.
  • 8. The apparatus of claim 2, wherein the interconnect comprises a distal end configured to slide into an end portion of the tube.
  • 9. The apparatus of claim 2, wherein the interconnect comprises a distal end having an end cap configured to slide over an end portion of the tube.
  • 10. The apparatus of claim 2, wherein the node comprises a substantially cylindrical socket and the interconnect comprises a shaft connected to an interior surface of the socket opposite a socket opening and a head at a distal end of the shaft, the head being extendable beyond the opening in the socket.
  • 11. The apparatus of claim 10, wherein the socket comprises a section having an outwardly bulge around a portion of the shaft.
  • 12. The apparatus of claim 11, further comprising the tube having an end portion positioned over the interconnect.
  • 13. The apparatus of claim 12, wherein the end portion of the tube comprises a section having an outwardly bulge around said section of the shaft.
  • 14. The apparatus of claim 13, further comprising hydroforming material in the end portion of the tube between said interior surface of the socket and the head of the interconnect.
  • 15. A method of joining an additively manufactured node to a component, the method comprising: printing a node; andco-printing, with the node, an interconnect, wherein the node and interconnect are co-printed by an additive manufacturing process;receiving a component; andusing the interconnect to connect the node to the component.
  • 16. The method of claim 15, wherein the component comprises a tube, and wherein using the interconnect to connect the node comprises using the interconnect to connect the node to the tube.
  • 17. The method of claim 16, wherein the interconnect comprises a proximal end, the method further comprising: forming a socket within the node; andforming a joint between the proximal end of the interconnect and the socket that provides a range of linear motion between the interconnect and the node.
  • 18. The method of claim 16, wherein the interconnect comprises a proximal end, the method further comprising: forming a socket within the node; andforming a rotating joint between the proximal end of the interconnect and the socket.
  • 19. The method of claim 18, further comprising forming a spherical end at the proximal end of the interconnect.
  • 20. The method of claim 18, further comprising forming an ellipsoidal end at the proximal end of the interconnect.
  • 21. The method of claim 17, further comprising forming a dovetail end at the proximal end of the interconnect.
  • 22. The method of claim 16, where in the interconnect comprises a distal end and the tube comprises an end portion, the method further comprising sliding the distal end of the interconnect into the end portion of the tube.
  • 23. The method of claim 16, wherein the interconnect comprises a distal end and the tube comprises an end portion, the method further comprising: forming an end cap at the distal end of the interconnect; andsliding the end cap over the end portion of the tube.
  • 24. The method of claim 15, further comprising forming a first channel extending from an interior surface of the node to a socket for adhesion injection.
  • 25. The method of claim 24, further comprising: forming a second channel extending from an exterior surface of the node to the socket;enabling, from the second channel, at least a partial vacuum environment during adhesion injection.
  • 26. The method of claim 24, further comprising: forming an adhesive port connected to the channel at an exterior surface of the node; andattaching a detachable adhesive mixer to the adhesive port.
  • 27. The method of claim 16, wherein printing the node comprises forming a substantially cylindrical socket, and wherein co-printing the interconnect comprises forming a shaft, wherein the shaft is connected to an interior surface of the socket opposite a socket opening and a head at a distal end of the shaft, the head being extendable beyond the opening in the socket.
  • 28. The method of claim 27, wherein forming the socket comprises forming a portion of the socket to have an outwardly bulge around a portion of the shaft.
  • 29. The method of claim 28, further comprising positioning an end portion of the tube over the interconnect.
  • 30. The method of claim 29, further comprising deforming a section of the end portion of the tube to have an outwardly bulge around said section of the shaft.
  • 31. The method of claim 30, further comprising applying hydroforming material to the end portion of the tube between said interior surface of the socket and the head of the interconnect.
  • 32. An apparatus, comprising: an additively manufactured node;an additively manufactured interconnect co-printed with the node, wherein the interconnect is configured to connect the node to a component;wherein the node comprises a channel extending from an exterior surface of the node to a socket for adhesion injection, andfurther comprising an adhesive port connected to the channel at the exterior surface of the node and a detachable adhesive mixer connected to the adhesive port.
US Referenced Citations (357)
Number Name Date Kind
5203226 Hongou et al. Apr 1993 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
20060108783 Ni et al. May 2006 A1
20060229573 Lamborne Oct 2006 A1
20130303002 Oosterhuis et al. Nov 2013 A1
20140069160 Baradari Mar 2014 A1
20140277669 Nardi et al. Sep 2014 A1
20150187134 Baecher Jul 2015 A1
20150201499 Shinar et al. Jul 2015 A1
20150321427 Gunnarsson Nov 2015 A1
20160047497 D'Entremont et al. Feb 2016 A1
20160348711 Benthien et al. Dec 2016 A1
20170113344 Schönberg Apr 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
Foreign Referenced Citations (38)
Number Date Country
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (5)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
International Search Report and Written Opinion dated Oct. 30, 2018, regarding PCT/US2018/036317.
Notification of the First Rectification dated Dec. 24, 2018, regarding China Application No. 201820879713.3.
Related Publications (1)
Number Date Country
20180354205 A1 Dec 2018 US