The present invention contains subject matter related to Japanese Patent Application JP 2006-301247 filed in the Japan Patent Office on Nov. 7, 2006, the entire contents of which being incorporated herein by reference.
1. Field of the Invention
This invention relates to a noise canceling system and a noise canceling method which are applied, for example, to a headphone for allowing a user to enjoy reproduced music or the like and a headset for reducing noise.
2. Description of the Related Art
An active noise reduction system or noise reduction system incorporated in a headphone is available in the past. Noise canceling systems which are placed in practical use at present are all implemented in the form of an analog circuit and are classified into two types including the feedback type and the feedforward type.
A noise reduction apparatus is disclosed, for example, in Japanese Patent Laid-Open No. Hei 3-214892 (hereinafter referred to as Patent Document 1). In the noise reduction apparatus of Patent Document 1, a microphone unit is provided in an acoustic tube to be attached to an ear of a user. Internal noise of the acoustic tube collected by the microphone unit is inverted in phase and emitted from an earphone set provided in the proximity of the microphone unit thereby to reduce external noise.
A noise reduction headphone is disclosed in Japanese Patent Laid-Open No. Hei 3-96199 (hereinafter referred to as Patent Document 2). In the noise reduction headphone of Patent Document 2, when it is attached to the head of a user, a second microphone is positioned between the headphone and the auditory meatus. An output of the second microphone is used to make the transmission characteristic from a first microphone, which is provided in the proximity of the ear when the headphone is attached to the head of the user and collects external sound, to the headphone same as the transmission characteristic of a path along which the external noise reaches the meatus. The noise reduction headphone thereby reduces external noise irrespective of in what manner the headphone is attached to the head of the user.
Incidentally, a noise canceling system of the feedback type generally has a characteristic that, although the frequency bandwidth within which it can cancel noise or it can reduce noise is comparatively small, noise can be reduced by a comparatively great amount. On the other hand, a noise canceling system of the feedforward type has a wide frequency band within which it can cancel noise and is high in stability. However, it is considered that, when it does not conform to an estimated transfer function depending upon the positional relationship to the noise source, there is the possibility that noise may increase at the frequency.
Therefore, in such a case that a scanning canceling system of the feedforward type which has a wide frequency band within which noise can be canceled and has high stability is used, it is considered that, even if the frequency band within which noise is reduced, if noise within a particular narrow frequency band stands out, then the hearing person may not feel the noise reduction effect.
Therefore, it is demanded to provide a noise canceling system and a noise canceling method by which the frequency band within which noise can be canceled is wide and besides an excellent noise reduction effect can be achieved stably.
According to an embodiment of the present invention, there is provided a noise canceling system including a first sound collection section provided on a housing to be attached to an ear portion of a user and configured to collect noise and output a first noise signal, a first signal processing section configured to produce a first noise reduction signal for reducing the noise at a predetermined cancel point based on the first noise signal, a sound emission section provided on a sound emission direction side with respect to the first sound collection section and configured to emit noise reduction sound based on the first noise reduction signal, a second sound collection section provided on the sound emission direction side of the housing to be attached to the ear portion of the user with respect to the sound emission section and configured to collect noise and output a second noise signal, and a second signal processing section configured to produce a second noise reduction signal for reducing noise at the cancel point based on the second noise signal, the sound emission section emitting the noise reduction sound based on the first and second noise reduction signals.
In the noise canceling system, a noise canceling system section of the feedback type formed from the first sound collection section, first signal processing section and sound emission section and a noise canceling system section of the feedforward type formed from the second sound collection section, second signal processing section and sound emission section can function simultaneously. Thus, noise at the same cancel point is reduced by both of the noise canceling system sections.
Consequently, since a noise component can be attenuated by the noise canceling system section of the feedforward type while also a characteristic of the noise canceling system section of the feedback type is applied additionally, noise can be canceled at a high level over a wide frequency band and a higher noise reduction effect can be achieved.
With the noise canceling system, since the noise canceling system section of the feedforward type and the noise canceling system section of the feedback type are rendered operative, generated noise is attenuated in the inside of the housing by the noise canceling system section of the feedforward type. Further, since also a characteristic of the noise canceling system section itself of the feedback type is added, a higher noise reduction effect can be achieved.
Noise Canceling System
A system which actively reduces external noise, that is, a noise canceling system, begins to be popularized in headphones and earphones. Almost all noise canceling systems placed on the market are formed from analog circuits and roughly classified into the feedback type and the feedforward type in terms of the noise canceling technique.
Before a preferred embodiment of the present invention is described, examples of a configuration and operation principle of a noise canceling system of the feedback type and examples of a configuration and operation principle of a noise canceling system of the feedforward type are described with reference to
Noise Canceling System of the Feedback Type
First, a noise canceling system of the feedback type is described.
Where the feedback system is applied, generally a microphone 111 is positioned inside a headphone housing (housing section) HP as seen in
The noise canceling system of the feedback type is described more particularly with reference to
The characters A, D, M and −β described in blocks shown in
Referring to
At this time, the sound pressure P coming to the ear of the user in
Generally, since the absolute value of the product of the transfer functions in a noise canceling system of the feedback type is higher than 1 (1<<ADHMβ), the stability of the system according to the expression (2) of
An “open loop” produced when a loop relating to the noise N is cut at one place (−ADHMβ) in
Where this open loop is selected as an object, from the stability decision of Nyquist, two conditions of (1) that, when the phase passes a point of 0 degree, the gain must be lower than 0 dB (0 decibel) and (2) that, when the gain is higher than 0 dB, the phase must not include a point of 0 degree.
If any of the conditions (1) and (2) above is not satisfied, then positive feedback is applied to the loop, resulting in oscillation (howling) of the loop. In
In particular, the axis of abscissa in
Now, reproduction of necessary sound from the headphone in which the noise securing system of the feedback type shown in
If attention is paid to the input sound S in the expression (1) in
If it is assumed that the position of the microphone 111 is very proximate to the position of the ear, then since the character H represents the transfer function from the driver 15 to the microphone (ear) 111 and the characters A and D represent the transfer functions of the power amplifier 14 and the driver 15, respectively, it can be recognized that a characteristic similar to that of an ordinary headphone which does not have the noise reduction function is obtained. It is to be noted that the transfer function E of the equalizer 16 in this instance is substantially equivalent to an open loop characteristic as viewed on the frequency axis.
Noise Canceling System of the Feedforward Type
Now, a noise canceling system of the feedforward type is described.
In the noise canceling system of the feedforward type, a microphone 211 is basically disposed outside a headphone HP as seen in
The noise canceling system of the feedforward type is described more particularly with reference to
Also in the noise canceling system of the feedforward type shown in
Further, in
Then, if the transfer function of the FF filter circuit 22 which makes the core of the noise canceling system of the feedforward type is represented by −α, then the sound pressure or output sound P coming to the ear of the user in
Here, if ideal conditions are considered, then the transfer function F between the noise source and the cancel point can be presented by an expression (2) in
Actually, however, it is difficult to obtain a configuration of a complete filter having such transfer functions that the expression (2) illustrated in
It is to be noted that, different from that in the noise canceling system of the feedback type, the cancel point CP in the noise canceling system of the feedforward type shown in
From those, the noise canceling systems of the feedback type and the feedforward type generally have different characteristics in that, while the noise canceling system of the feedforward type is low in possibility of oscillation and hence is high in stability, it is difficult to obtain a sufficient attenuation amount whereas the noise canceling system of the feedforward type may require attention to stability of the system while a great attenuation amount can be expected.
A noise reduction headphone which uses an adaptive signal processing technique is proposed separately. In the case of a noise reduction headphone which uses the adaptive signal processing technique, a microphone is provided on both inside and outside a headphone housing. The inside microphone is used to analyze an error signal for cancellation with a filter processing component and produce and update a new adaptive filter. However, since noise outside of the headphone housing is basically processed by a digital filter and reproduced, the noise reduction headphone generally has a form of a feedforward system.
Noise Canceling System According to an Embodiment of the Invention
The noise canceling system according to an embodiment of the present invention has the advantages of both of the feedback system and the feedforward system described above.
In the embodiment of the present invention described below, both of a FF filter circuit 22 in the noise canceling system of the feedforward type and a FB filter circuit 12 in the noise canceling system of the feedback type have a configuration of a digital filter. The FF filter circuit 22 has a transmission function −α and therefore is hereinafter referred to sometimes as α circuit. Meanwhile, the FB filter circuit 12 has another transfer function −β and therefore is hereinafter referred to sometimes as β circuit.
Where any of the FF filter circuit 22 and the FB filter circuit 12 is configured as a digital filter, it can be formed from an ADC (Analog to Digital Converter) for converting an analog noise signal collected by the microphone into a digital noise signal, a DSP/CPU (Digital Signal Processor/Central Processing Unit) for performing arithmetic operation to form a noise reduction signal for reducing noise from the digital noise signal, and a DAC (Digital to Analog Converter) for converting the digital noise reduction signal from the DSP/CPU into an analog noise reduction signal. It is to be noted that the representation DSP/CPU in
Where the FF filter circuit 22 or the FB filter circuit 12 is configured as a digital filter in this manner, (1) the system allows automatic selection or manual selection by a user among a plurality of modes, and this raises the performance in use as viewed from the user, and (2) since digital filtering which allows fine control is performed, control quality of a high degree of accuracy which exhibits minimized dispersion can be achieved, which results in increase of the noise reduction amount and the noise reduction frequency band.
Further, (3) since the filter shape can be changed by modification to software for an arithmetic operation processing device (digital signal processor (DSP)/central processing unit (CPU)) without changing the number of parts, alteration involved in change of the system design or device characteristics is facilitated. (4) Since the same ADC/DAC and DSP/CPU are used also for an external input such as music reproduction or telephone conversation, high sound quality reproduction can be anticipated by applying digital equalization of a high degree of accuracy also for such external input signals.
If the FF filter circuit 22 or the FB filter circuit 12 is formed in digitalized formation in this manner, then flexible control becomes possible for various cases, and a system can be configured which can cancel noise in high quality irrespective of a user who uses the system.
Problems of a Noise Canceling System of the Feedforward Type
The feedforward system has a significant advantage of high stability as described hereinabove. However, it has an inherent problem.
Referring to
At this time, sound collected by the microphone 211 provided on the outer side of the headphone housing is used to adjust the filter of the FF filter circuit (α circuit) 22. Then, the transfer function F1 to the cancel point CP is simulated with (F1′ADHMα) as represented by the expression (3) in
Here, if it is assumed that the filter of the FF filter circuit 22 is fixed and the transfer characteristic α is optimized in such a noise positional relationship as seen in
In particular, in the case of the example illustrated in
As can be recognized from comparison between
Accordingly, in the state illustrated in
Naturally, this causes the situation to appear more likely as the frequency increases to a high frequency region in which the phase rotation is high. Accordingly, this makes a cause in narrowing the effective effect frequency band of noise cancellation, that is, the frequency band within which a gain of the α characteristic exists, in the FF filter circuit 22 of the noise canceling system of the feedforward type.
Noise Canceling System to which an Embodiment of the Invention is Applied
Therefore, the noise canceling system to which an embodiment of the present invention is applied has a basic configuration wherein a noise canceling system of the feedback type and a noise canceling system of the feedforward type are superposed on each other to form a single noise canceling system.
In particular, in the noise canceling system of the present embodiment described below, when it is in such a state as seen in
First Working Example of the Noise Canceling System
A first working example of the noise canceling system to which the present invention is applied is shown in
More particularly, the noise canceling system of the feedforward type in the noise canceling system shown in
An ADC 27 accepts input sound in the form of an analog signal, for example, from an external music reproduction apparatus, a microphone of a hearing aid or the like, converts the input sound into a digital signal and supplies the digital signal to the DSP/CPU section 222. Consequently, the DSP/CPU section 222 can add a noise reduction signal for reducing noise to the input sound supplied thereto from the outside.
It is to be noted that, in the noise canceling system section of the feedforward type shown in
Meanwhile, the noise canceling system section of the feedback type of the noise canceling system shown in
It is to be noted that, in the noise canceling system section of the feedback type shown in
In the noise canceling system of the configuration shown in
However, in the case of the noise canceling system having the configuration shown in
In this manner, in the noise canceling system shown in
It is to be noted that each of the noise canceling system section of the feedforward type and the noise canceling system of the feedback type in the noise canceling system shown in
However, the noise canceling system shown in
Referring to
As can be recognized from
In this manner, the noise canceling system of the twin type having the configuration shown in
Second Working Example of the Noise Canceling System
The second example of the noise canceling system shown in
In particular, while the noise canceling system according to the first working example shown in
Further, in the second example of the noise canceling system shown in
Also in the noise canceling system according to the second working example shown in
Further, also in the second working example shown in
Accordingly, in the noise canceling system according to the second working example shown in
In this manner, in the case of the noise canceling system according to the second working example shown in
Further, according to the noise canceling system of the twin type, an attenuation characteristic of a wide frequency band and a high level can be implemented by causing the noise canceling system section of the feedforward type formed from the microphone and microphone amplification section 21, FF filter circuit 22, power amplifier 33 and driver 34 and the noise canceling system section of the feedback type formed from the microphone and microphone amplification section 11, FB filter circuit 12, power amplifier 33 and driver 34 to function simultaneously as described hereinabove.
Third Working Example of the Noise Canceling System
Incidentally, in the noise canceling system of the twin type shown in
Therefore, while the noise canceling system according to the third working example is a noise canceling system of the twin type which has both of a noise canceling system section of the feedback type and another noise canceling system of the feedforward type, it allows selective functioning of the noise canceling system sections. In particular, when an external source is to be heard, only one of the noise canceling system section of the feedback type and the noise canceling system section of the feedforward type is caused to function. However, when there is no necessity to hear an external source but a no-sound state of a high degree of quality (minimized-sound state) is to be formed, both of the noise canceling system section of the feedback type and the noise canceling system section of the feedforward type are caused to function.
The noise canceling system according to the third working example shown in
Accordingly, in the noise canceling system according to the third working example shown in
On the other hand, if the switch circuit 36 is switched to another input terminal b side, then sound from the FF filter circuit 22 is not supplied and the ADC 324, DSP/CPU section 322 and DAC 323 function as an input circuit “equalizer” for the input sound S. Then, in this instance, the FF filter circuit 22 functions, and consequently, only the noise canceling system section of the feedforward type functions. Consequently, while noise is canceled, the hearing person can hear the input sound S.
Accordingly, in this instance, the ADC 321, DSP/CPU section 322 and DAC 323 implement the function of the FF filter circuit 22, and the ADC 324, DSP/CPU section 322 and DAC 323 implement the function of an equalizer for the input sound S. In other words, the DSP/CPU section 322 and the DAC 323 have both of the function of an FF filter circuit and the function of an equalizer for processing the input sound S.
Meanwhile, the noise canceling system according to the third working example shown in
Accordingly, in the noise canceling system of the third example shown in
On the other hand, if the switch circuit 37 is switched to another input terminal b side, then sound from the microphone and microphone amplification section 21 is not supplied and the ADC 321, DSP/CPU section 322 and DAC 323 function as an input circuit “equalizer” for the input sound S. Then, in this instance, the FB filter circuit 12 functions, and consequently, only the noise canceling system section of the feedback type functions. Consequently, while noise is canceled, the hearing person can hear the input sound S.
Accordingly, in this instance, the ADC 324, DSP/CPU section 322 and DAC 323 implement the function of the FB filter circuit 12, and the ADC 321, DSP/CPU section 322 and DAC 323 implement the function of an equalizer for the input sound S. In other words, the DSP/CPU section 322 and the DAC 323 have both of the function of an FB filter circuit and the function of an equalizer for processing the input sound S.
In this manner, in the noise canceling systems according to the third working example described above with reference to
Further, under such a situation that the hearing person wants to hear a no-sound state, both of the noise canceling system section of the feedforward type and the noise canceling system section of the feedback type are used to cancel both of noise from the external world and noise self-generated by phase nonconformity to form a no-sound state of a high degree of quality. Consequently, the hearing person can bodily feel a sensation of a high noise reduction effect.
It is to be noted that the noise canceling system according to the third working example shown in
In particular, it is possible to combine the noise canceling systems according to the third working example shown in
Then, if the newly provided switch circuit 38 is switched so that the input sound S is supplied to the switch circuit 36, then the switch circuit 36 is switched to the input terminal b side while the switch circuit 37 is switched to the input terminal a side so as to cause only the noise canceling system section of the feedforward type to function so that the hearing person can hear the input sound S.
On the contrary, if the newly provided switch circuit 38 is switched so that the input sound S is supplied to the switch circuit 37, then the switch circuit 37 is switched to the input terminal b side while the switch circuit 36 is switched to the input terminal a side so as to cause only the noise canceling system section of the feedback type to function so that the hearing person can hear the input sound S.
Naturally, also in this instance, when the hearing person wants to form a no-sound state of a high degree of quality, both of the switch circuit 36 and the switch circuit 37 are switched to the input terminal a side. Consequently, both of the noise canceling system section of the feedback type and the noise canceling system section of the feedforward type function to form a no-sound state of a high degree of quality.
It is to be noted that any of the switch circuits 36, 37 and 38 described above may be formed as a mechanical switch or as an electric switch.
Further, while it is described above that the noise canceling systems shown in
Particular Examples of Digitalized Formation of the FB Filter Circuit 12 and the FF Filter Circuit 22
Where the FB filter circuit 12 and the FF filter circuit 22 are formed in digitalized formation, each of them is formed from an ADC, a DSP/CPU section and a DAC as described hereinabove with reference to
However, an ADC and a DAC of the sequential conversion type which can perform high speed conversion are so expensive that a high cost is demanded for the FB filter circuit 12 and the FF filter circuit 22. Therefore, a technique for making it possible to produce a noise reduction signal at a suitable timing without generating a great amount of delay even where an ADC or a DAC of the sigma-delta (Σ-Δ) type which are used in the past is used is described. It is to be noted that, in order to simplify the description, the following description is given taking a case wherein the technique is applied to the FB filter circuit 12 as an example. However, the technique can be applied similarly also to the FF filter circuit 22.
Generally, both of the ADC 121 and the DAC 123 use an oversampling method and sigma-delta modulation in which a 1-bit signal is used. For example, where an analog input is subjected to a digital signal process by the DSP/CPU section 122, it is converted into 1 Fs/multi-bits (in most cases, 6 bits to 24 bits). However, according to the Z-A method, the sampling frequency Fs [Hz] is in most cases raised to MFs [Hz] of M times to perform oversampling.
As seen in
As seen in
Incidentally, delay which occurs in the ADC 121 and the DAC 123 is generated almost by the high-order digital filters in the decimation filter 1213 and the interpolation filter 1231. In particular, since a filter having a high order number (in the case of a finite impulse response (FIR) filter, a filter having a great tap number) is used in a region having a sampling frequency of MFs Hz in order to obtain a steep characteristic around Fs/2, group delay occurs after all.
In this digital filter section, in order to avoid a bad influence of deterioration of the time waveform by phase distortion, an FIR filter having a linear phase characteristic is used. Especially, there is a tendency to favorably use an FIR filter based on a moving average filter which can implement an interpolation characteristic by a SINC function (sin(x)/x). It is to be noted that, in the case of a filter of the linear phase type, the time of one half the filter length almost makes a delay amount.
An FIR filter can represent a characteristic whose steepness and attenuation effect naturally increase as the order number (tap number) increases. Since a filter having a small order number is not generally used very much because it does not provide a sufficient attenuation amount (provides much leakage) and is influenced much by aliasing. However, where a filter of a small order number is used in the noise canceling system of the feedback type, the delay time can be reduced because use of an FIR filter which satisfies such conditions as hereinafter described becomes possible.
If the delay time decreases, then the phase rotation decreases. As a result, when the FB filter circuit 12 is designed so as to produce such composite open loop characteristics as described hereinabove with reference to
Thus, in
In this instance, (2) a sampling frequency Fs equal to or higher than twice (approximately 40 kHz) the audible range should be used, and (3) the sigma-delta (Σ-Δ) method is used as a conversion method. Further, (4) an aliasing leakage component relating to the other frequency bands other than the frequency band specified in the condition (1) should be permitted such that a digital filter whose group delay which is generated in a processing mechanism in the inside of the conversion processing apparatus is suppressed to equal to or less than 1 ms should be used.
If an FIR filter which satisfies the conditions (1) and (4) described above is used for the decimation filter 1213 and the interpolation filter 1231 and the sampling frequency Fs satisfies the condition (2) while the conversion method satisfies the condition (3), then an ADC or a DAC of the Z-A type which is used in the past is used to construct the FB filter circuit 12 of digitalized formation.
It is to be noted that a detailed foundation that a digital filter which does not generate great delay can be formed where the conditions (1) to (4) described above are satisfied is described in detail in a copending Japanese Patent Application No. 2006-301211 by the inventor of the present application.
(1) Since one or more microphone mechanisms are provided on each of the inner side and the outer side of the headphone housing as in the noise canceling system described hereinabove with reference to
(2) Since, as in the noise canceling system described hereinabove with reference to
(3) As described hereinabove with reference to
(4) As in the case of the noise canceling systems described hereinabove with reference to
In this instance, if the first mode is used, then a no-sound state of a high degree of quality can be formed, but if the second mode is used, then only one of the noise canceling system section of the feedback type and the noise canceling system section of the feedforward type can be caused to function so that, while noise is reproduced, the input sound of an external source is reproduced so as to be enjoyed by the hearing person. Further, by providing the first mode and the second mode, the number of ADCs can be suppressed.
Method According to the Invention
A first method of the present invention can be implemented by causing a first section which implements a noise canceling system of the feedback type and a second section which implements a noise canceling system of the feedforward type to function at the same time as described hereinabove with reference to
On the other hand, by allowing the DSP/CPU section 322 and the DAC 323 to be used commonly by the FB filter circuit 12 and the FF filter circuit 22 as described hereinabove such that noise reproduction signals are formed by the DSP/CPU section 322 and are synthesized as described hereinabove with reference to
Further, by forming the FB filter circuit 12 and the FF filter circuit 22 from an ADC, a DSP/CPU and a DAC so as to allow such processes as analog/digital conversion→noise reduction signal production process→digital/analog conversion, a third method according to an embodiment of the present invention can be implemented.
Further, by allowing the FB filter circuit 12 and the FF filter circuit 22 to be used commonly by the DSP/CPU section 322 and the DAC 323 as seen from
Further, by performing changeover regarding which one of sound collected by a microphone and input sound S should be processed as seen in
Others
It is to be noted that, in the embodiment described hereinabove, the noise canceling system section of the feedback type is formed principally by causing the microphone 111 to implement a function as a first sound collection section, by causing the FB filter circuit 12 to implement a function as a first signal processing section, by causing the power amplifier 14 to implement a function as a first amplification section and by causing the driver 15 including the speaker 152 to implement a function as a first sound emission section.
Meanwhile, the noise canceling system section of the feedforward type is formed principally by causing the microphone 211 to implement a function as a second sound collection section, by causing the FF filter circuit 22 to implement a function as a second signal processing section, by causing the power amplifier 24 to implement a function as a second amplification section and by causing the driver 25 including the speaker 252 to implement function as a second sound emission section.
Further, the FB filter circuit 12 and the FF filter circuit 22 implement a function as a synthesis section. Imitatively, the DSP/CPU which is a common element to the FB filter circuit 12 and the FF filter circuit 22 as seen in
Then, the power amplifier 33 in
Further, while, in the embodiment described hereinabove, both of the FB filter circuit 12 and the FF filter circuit 22 have a configuration of a digital filter, according to the embodiment of the present invention, the configuration of the FB filter circuit 12 and the FF filter circuit 22 is not limited to this. Similar effects to those described above can be achieved also where the FB filter circuit 12 and the FF filter circuit 22 have a configuration of an analog filter.
Further, while, in the embodiment described hereinabove, input sound S is accepted as an external source, the function of accepting an external source need not necessarily be provided. In particular, the noise canceling system may be formed as a noise reduction system which can only reduce noise without the necessity for acceptance of an external source such as music.
Further, while, in the embodiment described hereinabove, the present invention is applied to a headphone system for the simplified description, all systems need not necessarily be incorporated in the headphone body. For example, also it is possible to separately provide such processing mechanisms as an FB filter circuit, an FF filter circuit and a power amplifier as a box on the outside or to combine them with a different apparatus. Here, the different apparatus may be various types of hardware which can reproduce a sound or music signal such as, for example, a portable audio player, a telephone apparatus and a network sound communication apparatus.
Particularly, where the present invention is applied to a portable telephone set and a headset to be connected to the portable telephone set, for example, even in a noisy environment outside, telephone conversation in a good condition can be anticipated. In this instance, if the FF filter circuit, FB filter circuit, drive circuit and so forth are provided on the portable telephone terminal side, then the configuration of the headset side can be simplified. Naturally, also it is possible to provide all components on the headset side such that it receives supply of sound from the portable telephone terminal.
While a preferred embodiment of the present invention has been described using specific terms, such description is for illustrative purpose only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-301247 | Nov 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5276740 | Inanaga et al. | Jan 1994 | A |
5600729 | Darlington et al. | Feb 1997 | A |
5815582 | Claybaugh et al. | Sep 1998 | A |
6996241 | Ray et al. | Feb 2006 | B2 |
7031460 | Zheng et al. | Apr 2006 | B1 |
8189803 | Bergeron et al. | May 2012 | B2 |
20040264706 | Ray et al. | Dec 2004 | A1 |
20060251266 | Saunders et al. | Nov 2006 | A1 |
20070253569 | Bose | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
3-96199 | Apr 1991 | JP |
3-214892 | Sep 1991 | JP |
10-214118 | Aug 1998 | JP |
10214118 | Aug 1998 | JP |
2000-59876 | Feb 2000 | JP |
2002-330485 | Nov 2002 | JP |
WO 2005112849 | Dec 2005 | WO |
Entry |
---|
U.S. Appl. No. 11/936,894, filed Nov. 8, 2007, Asada, et al. |
U.S. Appl. No. 11/895,419, filed Oct. 1, 2007, Asada, et al. |
U.S. Appl. No. 11/865,354, filed Oct. 1, 2007, Asada. |
U.S. Appl. No. 11/875,374, filed Oct. 19, 2007, Asada. |
U.S. Appl. No. 11/936,882, filed Nov. 8, 2007, Asada, et al. |
U.S. Appl. No. 11/936,876, filed Nov. 8, 2007, Asada, et al. |
U.S. Appl. No. 11/952,468, filed Dec. 7, 2007, Asada, et al. |
U.S. Appl. No. 12/015,824, filed Jan. 17, 2008, Asada, et al. |
Office Action mailed Nov. 1, 2011, in Japanese Patent Application No. 2006-301247, filed Nov. 7, 2006 (with English-language translation). |
Japanese Office Action issued Aug. 7, 2012 in Patent Application No. 2006-301247. |
Number | Date | Country | |
---|---|---|---|
20080310645 A1 | Dec 2008 | US |