The invention relates generally to the field of digital image processing, and in particular to noise reduction in sparsely populated color digital images.
Digital cameras capture image data generally through the use a single sensor that consists of a two-dimensional array of individual light detection units called pixels. To record the full-color information about the scene, the pixels are partitioned into three or four different groups with each group being covered by a particular color filter from a set of color primaries. Perhaps the most popular set of color primaries currently used in this regard is red-green-blue (RGB). The corresponding most popular arrangement of RGB color filters upon the sensor is the so-called Bayer pattern (
As a consequence of using such a color filter array (CFA), the raw data received from the sensor consist of three separate color channels, or planes, that are sampled at less than the full resolution of the sensor's pixel array. It is usually the task of the subsequent image processing chain of operations to produce an image consisting of three, full-resolution, fully-processed color channels. One of the component image processing operations is noise cleaning, or noise reduction.
Once a three-channel, full-color image has been produce from the original raw sensor image data, then any number of existing noise reduction methods can be applied to the image data. The full-color representation of the image is well known and well studied in the field of image processing. However, single-plane raw CFA sensor image data is a representation that is unique to digital cameras and does not have same a similarly established body of knowledge.
There are a number of described technologies that address noise cleaning CFA image data. These all fall into the category of directly cleaning the raw RGB image data as produced by the sensor. In U.S. Pat. No. 6,625,325, Gindele et al. teach noise-cleaning the CFA image data with the use of anisotropic noise reduction kernels that are responsive to the image details within a pixel neighborhood. In U.S. Pat. No. 6,229,578, Acharya, et al. describe noise-cleaning CFA image data with the use of directional low-pass (blur) kernels that are responsive to the edges in a pixel neighborhood. In U.S. Patent Application Publication 2003/0091232, Kalevo, et al., reveal noise-cleaning CFA image data using directional blur kernels that are also responsive to edges in a pixel neighborhood. While Acharya, et al. do not mix CFA pixel values of different colors to drive their directional processing, Kalevo, et al., use differences between adjacent pixels of different CFA colors to guide their directional processing.
It is well known that there are distinct advantages to noise-cleaning an image not in an RGB color space, but, instead, in a luminance-chrominance color space. This alternate image representation permits the separate processing of the spatially important luminance image information and the chromatically important chrominance image information. For example, in a luminance-chrominance representation, aggressive noise cleaning can be performed on the chrominance channels without affecting the important high-frequency edge and texture detailed contained in the luminance channel. Unfortunately, CFA image data does not contain full-resolution data for each color channel, so a direct transform from raw sensor RGB to luminance-chrominance is not possible. So, the benefits of a luminance-chrominance noise cleaning approach to CFA image data are not directly available.
The object of this invention is to provide a noise cleaning method for sparsely populated color images.
This object is achieved in a method of noise-cleaning an original sparsely populated color digital image, comprising:
(a) producing a luminance digital image from the original sparsely populated color digital image;
(b) producing from the original sparsely populated color digital image at least one sparsely populated chrominance digital image with a resolution lower than the luminance digital image;
(c) noise-cleaning the luminance digital image and each digital chrominance image; and
(d) producing a noise cleaned sparsely populated color digital image from the noise cleaned luminance and chrominance image(s).
It is a feature of the present invention to provide a computationally efficient way to reduce noise in the luminance and chrominance components of sparsely populated color digital images.
It has been found that by decomposing original sparsely populated color digital images into luminance and chrominance images and then noise-reducing each of them significant improvements can be made in noise reduction.
Another feature of the invention is that it provides a way to perform CFA image data noise cleaning that has the same advantages and results as noise-cleaning the data in luminance-chrominance space.
In the following description, a preferred embodiment of the present invention will be described in terms that would ordinarily be implemented as a software program. Those skilled in the art will readily recognize that the equivalent of such software can also be constructed in hardware. Because image manipulation algorithms and systems are well known, the present description will be directed in particular to algorithms and systems forming part of, or cooperating more directly with, the system and method in accordance with the present invention. Other aspects of such algorithms and systems, and hardware and/or software for producing and otherwise processing the image signals involved therewith, not specifically shown or described herein, can be selected from such systems, algorithms, components and elements known in the art. Given the system as described according to the invention in the following materials, software not specifically shown, suggested or described herein that is useful for implementation of the invention is conventional and within the ordinary skill in such arts.
Still further, as used herein, the computer program can be stored in a computer readable storage medium, which can include, for example; magnetic storage media such as a magnetic disk (such as a hard drive or a floppy disk) or magnetic tape; optical storage media such as an optical disc, optical tape, or machine readable bar code; solid state electronic storage devices such as random access memory (RAM), or read only memory (ROM); or any other physical device or medium employed to store a computer program.
Before describing the present invention, it facilitates understanding to note that the present invention is preferably utilized on any well-known computer system, such as a personal computer. Consequently, the computer system will not be discussed in detail herein. It is also instructive to note that the images are either directly input into the computer system (for example by a digital camera) or digitized before input into the computer system (for example by scanning an original, such as a silver halide film).
Referring to
A compact disk-read only memory (CD-ROM) 124, which typically includes software programs, is inserted into the microprocessor based unit 112 for providing a means of inputting the software programs and other information to the microprocessor based unit 112. In addition, a floppy disk 126 can also include a software program, and is inserted into the microprocessor-based unit 112 for inputting the software program. The CD-ROM 124 or the floppy disk 126 can alternatively be inserted into externally located disk drive unit 122 which is connected to the microprocessor-based unit 112. Still further, the microprocessor-based unit 112 can be programmed, as is well known in the art, for storing the software program internally. The microprocessor-based unit 112 can also have a network connection 127, such as a telephone line, to an external network, such as a local area network or the Internet. A printer 128 can also be connected to the microprocessor-based unit 112 for printing a hardcopy of the output from the computer system 110.
Images can also be displayed on the display 114 via a personal computer card (PC card) 130, such as, as it was formerly known, a PCMCIA card (based on the specifications of the Personal Computer Memory Card International Association) which contains digitized images electronically embodied in the card 130. The PC card 130 is ultimately inserted into the microprocessor based unit 112 for permitting visual display of the image on the display 114. Alternatively, the PC card 130 can be inserted into an externally located PC card reader 132 connected to the microprocessor-based unit 112. Images can also be input via the CD-ROM 124, the floppy disk 126, or the network connection 127. Any images stored in the PC card 130, the floppy disk 126 or the CD-ROM 124, or input through the network connection 127, can have been obtained from a variety of sources, such as a digital camera (not shown) or a scanner (not shown). Images can also be input directly from a digital camera 134 via a camera docking port 136 connected to the microprocessor-based unit 112 or directly from the digital camera 134 via a cable connection 138 to the microprocessor-based unit 112 or via a wireless connection 140 to the microprocessor-based unit 112.
In accordance with the invention, an algorithm can be stored in any of the storage devices heretofore mentioned and applied to images in order to noise reduce the images.
Referring to
Returning to
In the case of the neighborhood centered on pixel A in
Returning to
Returning to
Cr=(R−G)/2
where R is the red pixel value and G is the green pixel value for a given red pixel location. Each blue pixel value is converted to a Cb value by the following expression:
Cb=(B−G)/2
where B is the blue pixel value and G is the green pixel value for a given blue pixel location.
After block 18 is complete, the resulting Cr and Cb values are blurred 20.
Additionally, a classifier value is computed for each 7×1 pixel neighborhood using the following kernel:
The Cr and Cb values in the center of the
Returning to
Returning to
The sharpening operation is followed by a conversion of GCrCb values back to RGB 24. Each Cr value is converted with the following expression:
R=2Cr+G
and each Cb value is converted with the following expression:
B=2Cb+G
The final step is to convert the image back into CFA image format using Bayer decimation 26. This is accomplished by discarding the interpolated green pixel values so that each resulting pixel in the image consists of either a green pixel value, a red pixel value, or a blue pixel value. As discussed previously, the resulting image data will be represented as shown in
The noise reduction algorithm disclosed in the preferred embodiment of the present invention can be employed in a variety of user contexts and environments. Exemplary contexts and environments include, without limitation, wholesale digital photofinishing (which involves exemplary process steps or stages such as film in, digital processing, prints out), retail digital photofinishing (film in, digital processing, prints out), home printing (home scanned film or digital images, digital processing, prints out), desktop software (software that applies algorithms to digital prints to make them better—or even just to change them), digital fulfillment (digital images in—from media or over the web, digital processing, with images out—in digital form on media, digital form over the web, or printed on hard-copy prints), kiosks (digital or scanned input, digital processing, digital or scanned output), mobile devices (e.g., PDA or cell phone that can be used as a processing unit, a display unit, or a unit to give processing instructions), and as a service offered via the World Wide Web.
In each case, the algorithm can stand alone or can be a component of a larger system solution. Furthermore, the interfaces with the algorithm, e.g., the scanning or input, the digital processing, the display to a user (if needed), the input of user requests or processing instructions (if needed), the output, can each be on the same or different devices and physical locations, and communication between the devices and locations can be via public or private network connections, or media based communication. Where consistent with the foregoing disclosure of the present invention, the algorithm itself can be fully automatic, can have user input (be fully or partially manual), can have user or operator review to accept/reject the result, or can be assisted by metadata (metadata that can be user supplied, supplied by a measuring device (e.g. in a camera), or determined by an algorithm). Moreover, the algorithm can interface with a variety of workflow user interface schemes.
The algorithm disclosed herein in accordance with the invention can have interior components that utilize various data detection and reduction techniques (e.g., face detection, eye detection, skin detection, flash detection).
A computer program product can include one or more storage medium, for example; magnetic storage media such as magnetic disk (such as a floppy disk) or magnetic tape; optical storage media such as optical disk, optical tape, or machine readable bar code; solid-state electronic storage devices such as random access memory (RAM), or read-only memory (ROM); or any other physical device or media employed to store a computer program having instructions for controlling one or more computers to practice the method according to the present invention.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.