Embodiments of the present disclosure relate to envelope tracking power supplies and radio frequency (RF) power amplifiers, either of which may be used in RF communication systems.
As wireless communications technologies evolve, wireless communications systems become increasingly sophisticated. As such, wireless communications protocols continue to expand and change to take advantage of the technological evolution. As a result, to maximize flexibility, many wireless communications devices must be capable of supporting any number of wireless communications protocols, each of which may have certain performance requirements, such as specific out-of-band emissions requirements, linearity requirements, noise limitations, or the like. Further, portable wireless communications devices are typically battery powered and need to be relatively small, and have low cost. As such, to minimize size, cost, and power consumption, RF circuitry in such a device needs to be as simple, small, and efficient as is practical. Thus, there is a need for RF circuitry in a communications device that is low cost, small, simple, and efficient.
A radio frequency (RF) power amplifier (PA) and an envelope tracking power supply are disclosed according to one embodiment of the present disclosure. The RF PA receives and amplifies an RF input signal to provide an RF transmit signal using an envelope power supply voltage. The envelope tracking power supply provides the envelope power supply voltage based on a setpoint, which has been constrained so as to limit a noise conversion gain (NCG) of the RF PA to not exceed a target NCG.
Those skilled in the art will appreciate the scope of the disclosure and realize additional aspects thereof after reading the following detailed description in association with the accompanying drawings.
The accompanying drawings incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure and illustrate the best mode of practicing the disclosure. Upon reading the following description in light of the accompanying drawings, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
An RF PA and an envelope tracking power supply are disclosed according to one embodiment of the present disclosure. The RF PA receives and amplifies an RF input signal to provide an RF transmit signal using an envelope power supply voltage. The envelope tracking power supply provides the envelope power supply voltage based on a setpoint, which has been constrained so as to limit a noise conversion gain (NCG) of the RF PA to not exceed a target NCG.
In one embodiment of the RF communications system 10, the RF front-end circuitry 16 receives via the RF antenna 18, processes, and forwards an RF receive signal RFR to the RF system control circuitry 14. In general, the RF system control circuitry 14 provides an envelope power supply control signal VRMP and a transmitter configuration signal PACS to the transmitter control circuitry 22. Further, the RF system control circuitry 14 provides an RF input signal RFI to the RF PA 24. Specifically, the envelope control circuitry 29 provides the envelope power supply control signal VRMP and the RF modulator 30 provides the RF input signal RFI. The DC power source 20 provides a DC source signal VDC to the envelope tracking power supply 26. The DC source signal VDC has a DC source voltage DCV. In one embodiment of the DC power source 20, the DC power source 20 is a battery.
The transmitter control circuitry 22 is coupled to the envelope tracking power supply 26 and to the PA bias circuitry 28. The envelope tracking power supply 26 provides an envelope power supply signal EPS to the RF PA 24 based on the envelope power supply control signal VRMP. The envelope power supply signal EPS has an envelope power supply voltage EPV. The DC source signal VDC provides power to the envelope tracking power supply 26. As such, the envelope power supply signal EPS is based on the DC source signal VDC. The envelope power supply control signal VRMP is representative of a setpoint of the envelope power supply voltage EPV. The setpoint of the envelope power supply voltage EPV is a desired magnitude of the envelope power supply voltage EPV that the envelope tracking power supply 26 endeavors to reach.
In this regard, the envelope tracking power supply 26 provides the envelope power supply voltage EPV based on the setpoint of the envelope power supply voltage EPV. The RF PA 24 receives and amplifies the RF input signal RFI to provide an RF transmit signal RFT using the envelope power supply voltage EPV. The envelope power supply voltage EPV provides power for amplification. The RF front-end circuitry 16 receives, processes, and transmits the RF transmit signal RFT via the RF antenna 18. In one embodiment of the RF transmitter circuitry 12, the transmitter control circuitry 22 configures the RF transmitter circuitry 12 based on the transmitter configuration signal PACS.
The PA bias circuitry 28 provides a PA bias signal PAB to the RF PA 24. In this regard, the PA bias circuitry 28 biases the RF PA 24 via the PA bias signal PAB. In one embodiment of the PA bias circuitry 28, the PA bias circuitry 28 biases the RF PA 24 based on the transmitter configuration signal PACS. In one embodiment of the RF front-end circuitry 16, the RF front-end circuitry 16 includes at least one RF switch, at least one RF amplifier, at least one RF filter, at least one RF duplexer, at least one RF diplexer, the like, or any combination thereof. In one embodiment of the RF system control circuitry 14, the RF system control circuitry 14 is RF transceiver circuitry, which may include the envelope control circuitry 29, the RF modulator 30, an RF transceiver IC, baseband controller circuitry, the like, or any combination thereof.
In this regard, in one embodiment of the envelope power supply control signal VRMP (
In one embodiment, of the RF communications system 10 illustrated in
In one embodiment of the RF communications system 10, a parameterized relationship between the input power PIN and the envelope power supply voltage EPV is used to provide the constrained setpoint to limit the NCG of the RF PA 24 to not exceed the target NCG. Limiting the NCG of the RF PA 24 may provide consistent part-to-part RF performance of the RF PA 24. Therefore, in addition to limiting the NCG of the RF PA 24 to not exceed the target NCG, the parameterized relationship may be used to optimize other RF parameters of the RF PA 24. As such, in a first embodiment of the parameterized relationship, the constrained setpoint is pre-distorted to increase linearity of the RF PA 24. In a second embodiment of the parameterized relationship, the constrained setpoint is pre-distorted to decrease intermodulation distortion of the RF PA 24. In a third embodiment of the parameterized relationship, the constrained setpoint is pre-distorted to maintain approximately constant voltage gain of the RF PA 24. In addition, the parameterized relationship may also be used to provide a secondary criterion. For example, in the third embodiment of the parameterized relationship, the constrained setpoint is pre-distorted to maintain approximately constant voltage gain of the RF PA 24 and the constrained setpoint is further pre-distorted to a specific target voltage gain of the RF PA 24.
In one embodiment of the parameterized relationship, the parameterized relationship is represented by at least one mathematical equation. In an alternate embodiment of the parameterized relationship, the parameterized relationship is represented by at least one look-up table (LUT). In another embodiment of the parameterized relationship, the parameterized relationship is represented by at least one mathematical equation and at least one LUT.
In a first embodiment of the RF communications system 10, the RF system control circuitry 14 constrains the setpoint of the envelope power supply voltage EPV, such that the envelope power supply control signal VRMP is representative of the constrained setpoint of the envelope power supply voltage EPV. In one embodiment of the RF system control circuitry 14, the RF system control circuitry 14 provides the parameterized relationship between the input power PIN and the envelope power supply voltage EPV. As such, the RF system control circuitry 14 pre-distorts the constrained setpoint to optimize the other RF parameters of the RF PA 24, as mentioned above.
In one embodiment of the RF system control circuitry 14, the RF system control circuitry 14 is RF transceiver circuitry. In this regard, the RF transceiver circuitry provides the constrained setpoint of the envelope power supply voltage EPV to the envelope tracking power supply 26 via the envelope power supply control signal VRMP. Further, the RF transceiver circuitry may pre-distort the constrained setpoint to optimize the other RF parameters of the RF PA 24, as mentioned above.
In a second embodiment of the RF communications system 10, the transmitter control circuitry 22 constrains the setpoint of the envelope power supply voltage EPV after receiving the envelope power supply control signal VRMP from the RF system control circuitry 14. In one embodiment of the transmitter control circuitry 22, the transmitter control circuitry 22 provides the parameterized relationship between the input power PIN and the envelope power supply voltage EPV. As such, the transmitter control circuitry 22 pre-distorts the constrained setpoint to optimize the other RF parameters of the RF PA 24, as mentioned above.
In this regard, the envelope power supply control signal VRMP is representative of the setpoint of the envelope power supply voltage EPV before any NCG noise constraints or pre-distortions have been applied. In this regard, the transmitter control circuitry 22 provides the constrained setpoint of the envelope power supply voltage EPV to the envelope tracking power supply 26. As such, the RF system control circuitry 14 provides an unconstrained setpoint of the envelope power supply voltage EPV to the transmitter control circuitry 22 via the envelope power supply control signal VRMP, and the transmitter control circuitry 22 constrains the setpoint of the envelope power supply voltage EPV using the envelope power supply control signal VRMP.
In a third embodiment of the RF communications system 10, the RF system control circuitry 14 partially constrains the setpoint of the envelope power supply voltage EPV, such that the envelope power supply control signal VRMP is representative of a partially constrained setpoint of the envelope power supply voltage EPV, and the transmitter control circuitry 22 partially constrains the setpoint of the envelope power supply voltage EPV after receiving the envelope power supply control signal VRMP.
In one embodiment of the RF communications system 10, the RF system control circuitry 14 is the RF transceiver circuitry, which provides the constrained setpoint of the envelope power supply voltage EPV to the envelope tracking power supply 26 via the envelope power supply control signal VRMP. Further, the RF transceiver circuitry provides the envelope power supply control signal VRMP (
The power supply control circuitry 34 controls the parallel amplifier 36 and the switching supply 38 based on the constrained setpoint of the envelope power supply voltage EPV (
As previously mentioned, in one embodiment of the RF communications system 10 illustrated in
In one embodiment of the RF system control circuitry 14, the RF system control circuitry 14 is the RF transceiver circuitry. As such, the RF transceiver circuitry includes the LUT-based constrained setpoint data 40, which may be used by the RF transceiver circuitry to provide the constrained setpoint. As such, the constrained setpoint is based on the LUT-based constrained setpoint data 40. Further, the RF transceiver circuitry provides the constrained setpoint to the envelope tracking power supply 26 via the envelope power supply control signal VRMP.
During the calibration of the calibration RF PA 44, the RF calibration circuitry 42 varies a magnitude of the calibration RF input signal CRFI and varies a magnitude of the calibration envelope power supply signal CEPS and measures a resulting magnitude of the calibration RF output signal CRFO. The magnitude of the calibration RF input signal CRFI is associated with an input power level and the magnitude of the calibration RF output signal CRFO is associated with an output power level. In this regard, the RF calibration circuitry 42 functionally characterizes the calibration RF PA 44 based on the magnitudes of the calibration RF input signal CRFI, the calibration envelope power supply signal CEPS, and the calibration RF output signal CRFO. Specifically, the RF calibration circuitry 42 characterizes the NCG of the calibration RF PA 44 and provides the LUT-based constrained setpoint data 40 based on the NCG characterization of the calibration RF PA 44.
In general, the LUT-based constrained setpoint data 40 is based on a functional characterization of the calibration RF PA 44. In one embodiment of the RF PA calibration environment, the RF PA calibration environment is external to the RF communications system 10 (
VGAIN=VOUT/VIN, or VOUT=VGAIN*VIN. EQ. 1:
When the RF PA 24 operates in a non-saturated manner, the envelope power supply voltage EPV is high enough to provide operating headroom. As such, within a preferred operating range of the RF PA 24, the voltage gain VGAIN does not significantly change due to changes in the envelope power supply voltage EPV. However, providing the operating headroom may decrease efficiency of the RF PA 24. As a result, envelope tracking is often used to decrease the operating headroom and increase efficiency. Further, in one embodiment of the RF PA 24, the RF PA 24 operates with at least partial saturation to increase efficiency. When operating with partial saturation, the envelope power supply voltage EPV is not high enough to allow completely linear operation of the RF PA 24. As a result, the voltage gain VGAIN is reduced.
In this regard,
Once an Constant Gain Contour is selected, the voltage gain VGAIN may be linearized around the DC operating point VDCO, as shown in EQ. 2 below.
VGAIN=VGAIN(at VDCO)+[(dVGAIN/dEPV)*(EPV-VDCO)]. EQ. 2:
In general, when operating the RF PA 24 in partial saturation, the voltage gain VGAIN is dependent on both the input power PIN and the envelope power supply voltage EPV. As such, noise in the envelope power supply voltage EPV, such as switching noise from the switching supply 38, modulates the voltage gain VGAIN, thereby introducing noise in the RF transmit signal RFT. As saturation levels increase, efficiency of the RF PA 24 may increase, but the resulting noise in the RF transmit signal RFT also increases. Therefore, there is a tradeoff between efficiency of the RF PA 24 and noise in the RF transmit signal RFT. Noise in the RF transmit signal RFT may be problematic in meeting RF transmit spectrum requirements, in meeting Adjacent Channel Leakage Ratio (ACLR) requirements, in meeting communications protocol requirements, by interfering with RF receive operations, the like, or any combination thereof.
As previously mentioned, the NCG of the RF PA 24 is a metric of how the RF PA 24 converts noise in the envelope power supply voltage EPV to noise in the RF transmit signal RFT. As such, the NCG is a function of both the input power PIN and the envelope power supply voltage EPV.
In one embodiment of the RF PA 24, the conversion of the noise in the envelope power supply voltage EPV to the noise in the RF transmit signal RFT is at least partially as a result of the partial saturation of the RF PA 24. Further, in one embodiment of the RF PA 24, the conversion of the noise in the envelope power supply voltage EPV to the noise in the RF transmit signal RFT is at least partially as a result of the physics of the semiconductor device that provides the RF PA 24.
When the RF PA 24 operates in partial saturation, the RF PA 24 partially functions as an RF mixer, which mixes the envelope power supply voltage EPV and the RF input signal RFI, which has the input voltage VIN. Therefore, for purposes of illustration, the noise in the envelope power supply voltage EPV is represented as a continuous wave (CW) having a noise amplitude NA and a noise frequency NF, and the RF input signal RFI is represented as a CW having an input amplitude RFA and an input frequency RFF, as shown in EQ. 3 and EQ. 4, respectively below.
EPV=VDCO+(NA)sin [2π(NF)t]. EQ. 3:
VIN=(RFA)sin [2π(RFF)t]. EQ. 4:
Substituting EQ. 4 into EQ. 1 provides EQ. 5, as shown below.
VOUT=VGAIN*VIN=VGAIN*[(RFA)sin [2π(RFF)t]. EQ. 5:
EQ. 2 may be re-arranged into EQ. 6, EQ. 7, and EQ. 8, as shown below.
VGAIN=(Part 1)+(Part 2). EQ. 6:
Part 1=VGAIN(at VDCO). EQ. 7:
Part 2=[(dVGAIN/dEPV)*(EPV-VDCO)]. EQ. 8:
Substituting EQ. 3 into EQ. 8 provides EQ. 9, as shown below.
Substituting EQ. 6 into EQ. 5 provides EQ. 10, as shown below.
EQ. 10 is separated into EQ. 11 and EQ. 12, as shown below.
Part A of VOUT, as shown in EQ. 11, includes only an RF frequency RFF term and does not contain any Noise Frequency NF terms. As such, EQ. 11 is indicative of no contribution to the NCG of the RF PA 24 illustrated in
A product trigonometric identity is provided in EQ. 13, as shown below.
(sin A)(sin B)=[cos(A−B)−cos(A+B)]/2. EQ. 13:
Combining EQ. 12 into EQ. 13 provides EQ. 14, as shown below.
Part B of VOUT=[(dVGAIN/dEPV)]*(RFA)*(NA)*[cos 2π(RFF−NF)t−cos 2π(RFF−NF)t]/2. EQ. 14:
From EQ. 14, the RF transmit signal RFT includes noise from the envelope power supply voltage EPV at both a sum of and a difference between the input frequency RFF and the noise frequency NF. In an exemplary embodiment of the NCG, the NCG is related to a ratio of power of the noise from the envelope power supply voltage EPV in the RF transmit signal RFT divided by the power of the noise in the envelope power supply voltage EPV. For example, in a first exemplary embodiment of the NCG, the NCG is related to the noise from the envelope power supply voltage EPV in the RF transmit signal RFT at the difference between the input frequency RFF and the noise frequency NF. In a second exemplary embodiment of the NCG, the NCG is related to the noise from the envelope power supply voltage EPV in the RF transmit signal RFT at the sum of the input frequency RFF and the noise frequency NF.
In one embodiment of the RF communications system 10, the RF transmit signal RFT has the transmit carrier frequency TCF (
In the embodiment of the RF communications system 10 just presented, the noise in the envelope power supply voltage EPV was represented as a continuous wave (CW). However, the noise in the envelope power supply voltage EPV introduced from the switching supply 38 may have multiple harmonics of a fundamental switching frequency. As a result, the NCG, the target NCG, or both may be based on noise at any or all of the harmonics of the fundamental switching frequency.
In one embodiment of the RF communications system 10, one of the Constant NCG Contours is a Target Constant NCG Contour 52, which is associated with the target NCG. In one embodiment of the RF communications system 10, the NCG of the RF PA 24 is equal to the target NCG when an output power from the RF PA 24 is about equal to a target output power from the RF PA 24. In one embodiment of the target output power, the target output power is a rated average output power of the RF PA 24 during envelope tracking. In an alternate embodiment of the target output power, the target output power is a maximum of a rated range of average output power of the RF PA 24 during envelope tracking.
Those skilled in the art will recognize improvements and modifications to the embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application claims the benefit of U.S. provisional patent application No. 61/783,897, filed Mar. 14, 2013, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61783897 | Mar 2013 | US |