None.
None.
None.
1. Field of the Disclosure
The present application relates generally to an imaging device and more particularly to a noise dampened re-drive assembly including a diverter gate for directing media between simplex and duplex portions of a media path.
2. Description of the Related Art
Most imaging or printing systems offer an automatic duplex function which reverses a media sheet to allow print or scanning of the reverse side of the media sheet. To accomplish this function most of these mechanisms have some type of a re-drive assembly which takes a media sheet that has been printed or scanned on one side and diverts it through a duplex media path back into the simplex media path such that the back side of the media sheet can then be printed or scanned. At the heart of the re-drive assembly is a diverter gate. This diverter gate directs media sheet along designated simplex or duplex portions of the media path depending on what additional operations need to be performed. An embodiment of a prior art re-drive assembly is described in U.S. Pat. No. 7,431,293, entitled “Dual Path Roll For An Image Forming Device,” issued Oct. 7, 2008 and assigned to the assignee of the present disclosure. On some imaging systems, the diverter gate may be passive—actuated by the media—as illustrated in U.S. Pat. No. 8,887,564, entitled “Media Actuated Media Diverter For An Imaging Device,” filed Dec. 31, 2012 and assigned to the assignee of the present disclosure. But on more complex imaging systems, the diverter gates are either driven by a solenoid or a small electric drive motor coupled to a sector gear. Typically, the diverter gate needs to be fast acting to keep up with ever increasing throughput demands where media feed rates are 40-70 media sheets per minute. The rapid actuation of the diverter gate between the simplex media path and the duplex media path and then back requires that the drive motor be driven at a high speed until the diverter gate hits a mechanical stop creating an acoustical impulse each time the diverter gate position changes. This creates high noise levels that can be distracting. While foam pads have been placed on these points of contact, the noise levels are still considered problematic. Slowing the diverter gate transition speed reduces media throughput.
It would therefore be advantageous to be able to dampen the acoustic impulses created when the diverter gate strikes the mechanical stop without reducing media throughput.
Disclosed is a re-drive assembly for a media sheet in a media path of an imaging device where the media path has a simplex path and a duplex path. The re-drive assembly is positioned between an exit of the simplex path and an entrance of the duplex path and an exit of the imaging device. The re-drive assembly comprises a frame having a left and a right side positioned on opposite sides of the media path, a two-position diverter gate pivotally mounted to the left and right sides of the frame, a reversible drive motor mounted to the frame and a drive train. The drive train includes a helical drive gear mounted on an output shaft of the drive motor and a sector gear.
The sector gear has a first end fixedly mounted to an end of the diverter gate and a second end coupled to the drive gear. The sector gear, when driven by the drive motor, rotates the diverter gate between its two positions. The sector gear has a slot therein positioned between the first and second ends of the sector gear. The slot has a first and a second opposed inner side wall and opposed ends. A first and a second T-shaped dampener depend from the first and second inner side walls, respectively, forming a channel therebetween. A free end of each dampener is positioned adjacent to a respective opposed end of the slot and each free end has a flexible dampening finger extending into the channel. The second dampener is mounted in a mirror image fashion with respect to the first dampener. A stop pin mounted to the frame and in the channel. The stop pin has an unthreaded portion within the channel. As the diverter gate is rotated between its two positions and as one end of the slot nears the stop pin, the stop pin engages with the dampening fingers on the respective free ends of the first and the second dampeners prior to an end of the slot striking the stop pin which dampens the acoustical impulse of the slot end striking the stop pin.
The above-mentioned and other features and advantages of the various embodiments, and the manner of attaining them, will become more apparent and will be better understood by reference to the accompanying drawings.
The following description and drawings illustrate embodiments sufficiently to enable those skilled in the art to practice it. It is to be understood that the disclosure is not limited to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. For example, other embodiments may incorporate structural, chronological, electrical, process, and other changes. Examples merely typify possible variations. Individual components and functions are optional unless explicitly required, and the sequence of operations may vary. Portions and features of some embodiments may be included in or substituted for those of others. The scope of the application encompasses the appended claims and all available equivalents. The following description is, therefore, not to be taken in a limited sense, and the scope of the present invention is defined by the appended claims.
Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted,” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
The media path 112 includes a simplex path 116 and a duplex path 118 formed between one or more guide members 120, 122, 124, 125 within imaging device 100. Guide member 125 is positioned between the simplex path 116 and duplex path 118. An entrance 116A to the simplex path 116 is adjacent to media input tray 102. The exit 116B of simplex path 116 and the entrance 118A to duplex path 118 are on opposite sides of guide member 125. Guide members 120, 122, 124125 may have a plurality of parallel ribs (not shown) projecting into the media path 112 to guide the media sheet M as it moves along the media path 112. Guide member 120 may be formed in a cover of imaging device 100. Guide members 120, 122, 124, 125 may be rotatable or moveable to allow for access into the media path 112 to clear media sheets that have jammed.
Imaging area 105 creates and transfers a toner image onto a transfer belt 106 as is known in the art. The toned image is transferred to one side of a media sheet being transported along the simplex path 116. The media sheet is conveyed to a fuser 107 where the toned image is bonded to the media sheet and then on to a re-drive assembly 200 at which it either exits into output area 114 or is redirected into the duplex path 118 in a peek-a-boo duplexing operation for having another image transferred to the back side of the media sheet. The media sheet is moved along the media path 112 by one or more pairs of transport rolls 110 one of which is a driven roll and one of which is an idler roll, as is known in the art.
The re-drive assembly 200 is mounted in housing 101 adjacent to the entrance 118A of duplex path 118 and the exit 116B of simplex path 116. The re-drive assembly 200 includes an exit roll assembly 300 and diverter gate assembly 400. Exit roll assembly 300, as shown, has three stacked rolls—a top or first roll 302, a middle or second roll 304, and a bottom or third roll 306. Top and middle rolls 302, 304 form a first or upper exit nip 303 and middle and bottom rolls 304, 306 form a second or lower exit nip 305. Second roll 304 may be driven by a reversible motor 308 via a gear train 307 so that the rotation direction of first exit nip 303 may be reversed when duplexing is needed. A common drive gear train may also be used for driving the rotation of the first, second and third rolls 302, 304, 306 of the re-drive assembly 200. When used, the common drive gear train has a one-way clutch coupled to the third roll 306 for limiting the drive of the third roll 306 to one direction.
With the stacked arrangement of three rolls, first and second exit nips 303, 305 will rotate in opposite directions. In the example embodiment illustrated, the first exit nip 303 is used when duplexing is needed for a media sheet and the second exit nip 305 is used when the media sheet has finished being processed and is being sent to output area 114. Alternative embodiments include those wherein this configuration is reversed such that the first exit nip 303 is the bottom nip and the second exit nip 305 is the top nip. As is convention, transport rolls 110, and first, second, and third rolls 302, 304, 306 are shown as overlapping to indicate an interference fit as is known in the art.
Rolls 302, 304, 306 may have a plurality of spaced wheels or rollers as is known in the art. The spacing between adjacent wheels is relatively narrow such that the outer surface of the first roll 302 overlaps with the outer surface of the second roll 304 which overlaps with the outer surface of the third roll 306. The overlaps between adjacent rolls form corrugated nips. When a media sheet passes through a corrugated nip, a corrugation in the form of an alternating bend is introduced across a width and length of the media sheet. The corrugation is temporary and occurs only when the media sheet is in the nip. The corrugation aids in preventing the media sheet from collapsing under its own weight as it is cantilevered outward from the first or second exit nip 303, 305. Where one media sheet is extended from the first exit nip 303 during a peek-a-boo duplex operation and another media sheet is exiting from the second exit nip 305 simultaneously, corrugation of the first exit nip 303 helps prevent the duplexing media sheet from folding down into contact with and disrupting the media sheet exiting the second exit nip 305. Corrugation of the second exit nip 305 helps prevent the media sheet exiting the second exit nip 305 from interfering with media sheets in the output area 114 as the media sheet is advanced outward by the second exit nip 305.
Diverter gate assembly 400 includes a reversible drive motor 420 coupled via gear train 440 to diverter gate 490. Diverter gate 490 pivots about pivot axis 491 that is positioned approximately in the middle of the diverter gate 490 (see
A controller 108 is in operative communication, as is known in the art, to feed mechanism 104, imaging area 105, transfer belt 106, fuser 107, a user control panel 109, the motor (not shown) for driving feed roll pairs 110, drive motors 308, 420 and controls their respective operations. Controller 108 may include a microcontroller with associated memory. In one embodiment, controller 108 includes a processor, random access memory, read only memory, and an input/output interface.
After passing through an image transfer section, such as imaging area 105 and fuser 107, in which the media may be scanned or printed as is known in the art, the media sheet M is advanced to the re-drive assembly 200 by a feed roll pair 110. Second roll 304 may be driven by reversible motor 308 via gear train 307 so that the rotational direction of first nip 303 may be reversed as indicated by the two arrows shown in
Diverter gate 490 is pivotally mounted in diverter gate assembly 400 that is mounted in imaging device 100 between exit 116B of the simplex path 116, the entrance 118A of the duplex path 118, and the first and second exit nips 303, 305 of exit roll assembly 300. As shown in
Where imaging or scanning of a reverse side of the media sheet M is desired, the diverter gate 490 is driven by drive motor 420 and gear train 440 counter-clockwise as illustrated in
A plurality of parallel ribs 484 are provided on the bottom and top surfaces 490-1, 490-2 of diverter gate 490 over its length. Media guide 125 is mounted between left and right sides 204L, 204R below diverter gate 490. Media guide 125 and frame 202 may be molded as a unitary piece. Again, a plurality of parallel ribs 127 are provided on the top surface 125-2 of media guide 125. The pluralities of ribs 484, 127 provide support for the media sheet as it travels through re-drive assembly 200.
Drive motor 420 is mounted to an inner surface 204R-1 of right side 204R with screws 424. Drive motor 420 is in operative communication with controller 108 as indicated by communication link CL1. Gear train 440 is connected between output shaft 421 of drive motor 420 and the right end 492R of diverter gate 490. Gear train 440 consists of a drive gear 450 coupled to a sector gear 460. As shown, drive gear 450 is a helical gear. Drive gear 450 is mounted on the output shaft 421 of motor 420 and extends through a corresponding opening 224 in right side 204R and extends beyond the outer surface 204R-2. Sector gear 460 is mounted to the right end 492R of diverter gate 490. A cruciform opening 462 is formed in a cylindrical boss 463 on inner surface 460-3 of sector gear 460 (see
Provided on sector gear 460 is a slot 465 aligned with mounting boss 222. Slot 465 is generally horizontal, has first and second opposed ends 465-1, 465-2 and first and second opposed inner side walls 465-3, 465-4 that have a slight curve to match the slight rotational arc through which diverter gate 490 travels. The rotational arc of diverter gate 490 and sector gear 460 is indicated by the angle A1 (see
Referring now to
Dampener 510 is shown as a unitary structure having a center mount on inner side wall 465-3 and two free ends. Dampener 510 may also be viewed as having two cantilevered members 510-1, 510-2 having a common center mount 510-3 to inner side wall 465-3 and opposed free outer ends 510-4, 510-5 adjacent to slot ends 465-1, 465-2, respectively. Mounted on free outer ends 510-4, 510-5 are flexible dampening fingers 510-6, 510-7, respectively, that inwardly depend into channel 530. Dampener 520 is substantially similar to dampener 510 having two cantilevered members 520-1, 520-2 having a common center mount 520-3 to inner side wall 465-4 and opposed outer free ends 520-4, 520-5 adjacent slots ends 465-1, 465-2, respectively. Mounted on free outer ends 520-4, 520-5 are flexible dampening fingers 520-6, 520-7, respectively, that inwardly depend into channel 530.
As viewed in
The tips of fingers 510-6, 520-6 and fingers 510-7, 520-7 are a predetermined distance D2 apart where distance D2 is less than width W1 of channel 530 and less than the diameter of the unthreaded portion 504 of stop pin 500. For example where W1 is about 6 mm and the diameter of stop pin 500 is 4 mm, distance D2 is about 3 mm to less than 4 mm. As shown in
Opposed stops 540-1, 540-2 may be provided depending inwardly from respective slot ends 465-1, 465-2. Stops 540-1, 540-2 may be provided in lieu of slot ends 465-1, 465-2 hitting stop pin 500 as the diverter gate 490 switches between positions.
Referring to
In
In comparison testing done with a sector gear having only opposed stops 540-1, 540-2 in slot 465 and no dampeners, sector gear 460 having dampeners 510, 520 with the opposed pairs of flexible dampening fingers was on average about 20 dB quieter. The flexing of the opposed dampening fingers 510-6, 520-6 and 510-7, 520-7 acts to dissipate the impact energy of the sector gear 460 against the stop pin 500, greatly reducing the transient acoustic impulse that occurs when the diverter gate 490 switches positions and the sector gear strikes stop pin 500.
Alternate embodiments of the dampeners 510, 520 are shown in
Various combinations of dampeners, dampening fingers, and stops or no stops may be used. However at least one cantilevered dampening finger should be positioned at each end of slot 465 to encounter stop pin 450 before either the end of slot 465 or the stop provided thereat contacts the stop pin 450 as the diverter gate reaches it new position. Further, it will be recognized that while each dampener is shown having a single central mount and two free ends, two arms (L-shaped) each separately attached to the inner side wall of the slot may be used. The sector gear may be fabricated from polyoxymethylene also known as POM or other thermoplastics having similar properties as is known in the art.
It will be appreciated that the timing and movement of the media sheets is under the direction of the controller 108 and that depending on the overall length of the media path 112, more than one media sheet may be in the duplex path 118 or that simplex and duplex imaging operations can be interleaved with one another.
The foregoing description of embodiments has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the application to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is understood that the invention may be practiced in ways other than as specifically set forth herein without departing from the scope of the invention. It is intended that the scope of the application be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
7887054 | Daigo | Feb 2011 | B2 |
7950653 | Berendes | May 2011 | B2 |
8011659 | Tabata | Sep 2011 | B2 |
8628081 | Michels | Jan 2014 | B2 |
20120193412 | Chen | Aug 2012 | A1 |
20150344255 | Moon | Dec 2015 | A1 |