The present invention proposes an event based feedback loop for the circuit 20 illustrated in
As illustrated in
The comparator circuit 18 fires when it determines that a user preset threshold VTH is exceeded by a signal A sensed at the resistor Rsense. When, this happens, a signal B is sent to a counter circuit 24, a clear latch 26, and the pulse generator circuit 28. Turning OFF of the switch Q2 provides better protection by effectively holding the inductor current I constant prior to an actual shut down of the circuit 20 due to the over-current condition. The switch Q2 is then turned back ON for another over-current measurement.
To avoid shutting down of the circuit 20 due to false noise signals and prevent unwanted circuit shutdowns due to misfiring of the comparator circuit 18, the comparator circuit 18 firing events are counted by an event counter circuit 24. The firing events are counted until the number of firing events exceeds a pre-determined number N. Only then, when the number of firing events exceeds the pre-determined number N, does the circuit 20 register occurrence of the over-current condition and enters a shut down mode.
As illustrated in
During a real over-current event, the switch Q2 is repeatedly turned OFF and ON until the event counter of the counter circuit 24 reaches a pre-determined number N. For example,
In the circuit 20, single or multiple noise spikes, small or large, will be rejected since they are unlikely to cause the counter to reach the pre-determined number N before the counter circuit 24 is reset during a quiet period.
The filtering time period for circuit 22 may be much reduced since individual noise spikes can now be tolerated. Moreover, counting of the spikes can be spread over consecutive PWM ON periods, allowing application of the over-current condition detection of the present invention in high frequency or short duty situations where PWM ON time is minimal.
The over-current condition detection scheme of the present invention counts over-current events over consecutive PWM cycles only up to the pre-determined number N cycles. Therefore, the system does not stay in constant current mode for a longer time.
The over-current condition detection scheme of the present invention is flexible and can be tailored to fit a variety of systems by adjusting
The filtering time period of a blanking filter circuit 16 to be greater than or equal to 0;
The number of over-current events to be counted, i.e., the pre-determined number N,
A watch dog time period (default=one PWM ON period), and
A switch turn OFF time (Toff).
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention not be limited by the specific disclosure herein.
This application is based on and claims priority to U.S. Provisional Patent Application Ser. No. 60/794,252, filed on Apr. 21, 2006 and entitled NOISE IMMUNE OVER CURRENT PROTECTION WITH INHERENT CURRENT LIMITING FOR SWITCHING POWER CONVERTER, the entire contents of which are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60794252 | Apr 2006 | US |