The present invention refers to a noise muffler for refrigeration compressors. More particularly, the invention refers to a noise muffler for compressors used in refrigeration circuits, whose arrangement permits a better ratio between noise dampening and efficiency.
The present invention further refers to a compressor for refrigeration circuit, having a noise muffler as defined in the present invention.
The main purpose of suction mufflers is to dampen the noise generated by an intermittent flow, which is inherent to the construction of compressors, and particularly for alternating-type compressors.
Generally, to enhance noise dampening in compressors, a muffler is used with an arrangement designed for the application of tube combinations and volumes (suction chambers), so that the number and geometry thereof vary in accordance with the frequency level for which increased dampening is desirable.
Normally, the bigger the loss of load in the muffler tubes, the greater the dampening obtained in the same equipment, but said loss of load implies in reduced efficiency of the compressor. Even greater dampening can be achieved by way of greater volumes, but greater volumes cause a higher heat exchange in the mufflers, which leads to a superheating of the vacuumed gas and consequent drop in efficiency.
In this light, it is known that the dimensioning of the tubes and volumes in a noise muffler is directly related to the desired commitment between noise dampening and efficiency of the compressor.
Document U.S. Pat. No. 4,449,610 reveals a muffler for cooling compressors having two identically structured shells, made from plastic material resistant to the chemical action of the cooling gas, but the same document does not provide a detailed description of the dampening caused by the muffler, nor the potential loss of efficiency developed thereby, since the whole system acts like a two-volume muffler comprising a communication channel, as shown in
Document U.S. Pat. No. 4,755,108 discloses a suction system for refrigeration compressors having tubes capable of decreasing the heat exchange between the cooler gas and the muffler walls. It must be pointed out, however, that this solution takes into consideration the use of tubes such that the exit of one is directed to the entry of the subsequent tube, which causes negative implications from the noise point of view.
Document U.S. Pat. No. 4,370,104 describes a suction muffler for refrigeration compressors arranged based on two parts, and made of a plastic material. The assembly of the two parts reveals a cylinder-shaped muffler. The muffler is installed, as in other solutions of the state of the art, between the suction tube and the return line of the cooling gas. The object of the invention described in this document presents the relative advantage of using insulating material, meaning its heat transfer rate between the compressor parts is lower. In any case, the document does not reveal an optimal solution for noise dampening, maintaining the efficiency of the equipment.
Document U.S. Pat. No. 5,971,720 reveals a suction muffler for hermetic compressors, made from a hollow body, the hollow body being built of a heat insulating material. The muffler receives the cooling gas at one end of the duct, and same is sent to a second end of the duct, known as the suction end, from the hollow body.
The hollow body further comprises a deflector element and an inverted T-shaped portion, in order to define the entry and exit parts of the suction chamber. Said document offers a solution for the problem of heat exchanges related to the parts of the compressor during circulation of the cooling gas, but there is no critical approach on the noise reduction related with the efficiency of the compressor.
So, the inventions found in the state of the art present constructive aspects that usually do not take into consideration the directing of the flow, or disregard the constructive characteristics whereby it is possible to establish a better balance between noise dampening and compressor performance.
A first objective of the present invention is to provide a noise muffler for refrigeration compressor, capable of dampening the noise generated by the intermittent flow of the compressor and at the same time a muffler that reduces the loss of load.
It is also an objective of the present invention to provide a compressor for refrigeration circuit, having a suction muffler as defined in the present invention.
One way of achieving the objective of the present invention is by means of a noise muffler for a refrigeration compressor comprising at least one suction chamber, the suction chamber comprising at least one flow entry channel, the suction chamber comprising at least one flow exit channel.
The suction chamber comprises at least one directional duct, and the directional duct comprises at least one first end and at least one second end, the directional duct comprising at least one flow control means, the first end comprising an area substantially greater than the second end, the first end being associated to the flow entry channel, the second end being associated to the flow exit channel, the directional duct being capable of directing a preferred flow received at the first end to the second end, the flow control means being capable of offering reduced resistance to the passage of the preferred flow and the flow control means being capable of offering increased resistance in the opposite direction to the passage of the preferred flow.
A second way of achieving the objective of the present invention is by providing a compressor for a refrigeration circuit, comprising a noise muffler as defined in the present invention.
The present invention will now be described in greater detail, with references to the appended drawings, wherein:
FIG. 1—depicts a view of a suction muffler present in the state of the art;
FIG. 2—depicts a perspective view of a suction muffler, which is the object of the present invention;
FIG. 3—depicts an upper sectional view of a first embodiment of the suction muffler, highlighting the main components of the object of the present invention;
FIG. 4—depicts a side sectional view of a first embodiment of the suction muffler;
FIG. 5—depicts an upper sectional view of the object of the invention, highlighting the lines in the preferred flow direction and the flow deflector element;
FIG. 6—depicts an upper sectional view of the object of the invention, highlighting the lines in the opposite direction to the preferred flow and the flow deflector element;
FIG. 7—depicts an upper sectional view of a second embodiment of the suction muffler, highlighting the main components of the object of the present invention.
As mentioned previously, in this type of arrangement the muffler leads to a loss of load in each one of the volumes associated to the refrigeration circuit, and consequently reduces its efficiency.
A solution found to balance the efficiency and the noise reduction is presented by way of the present invention.
One of the embodiments of the invention is by way of a noise muffler for refrigeration compressor 1, as illustrated in
The muffler 1 comprises at least one suction chamber 2, and the suction chamber 2 comprises at least one flow entry channel 3. Said flow entry channel 3 is a duct whose shape allows the flow of cooling gas on its inside.
The suction chamber 2 further comprises at least one flow exit channel 4, and the channel 4 is also disposed in the form of a duct. In the present invention, the suction chamber 2 comprises at least one directional duct 5, and the directional duct 5 comprises at least one first end 70, and one second end 80, as shown in
The directional duct 5 has a greater passage area than the passage area of the flow entry channel 3, and a greater area than the passage area of the flow exit channel 4.
Said duct 5 is, in the present invention, substantially aligned with the flow entry channel 3 and with the flow exit channel 4, as illustrated in
A first end 70 comprises an area substantially greater than the second end 80, giving the duct 5 a trapezoidal shape. Optionally, other shapes can be adopted and implemented. It is important to note that the first end 70 is associated to the flow entry channel 3, and that the second end 80 is associated to the flow exit channel 4.
The primary characteristic of the directional duct 5 is to develop a convergence of the most part of the flow received in the entry channel 3, to the flow exit channel 4. The flow received at the first end 70, and directed to the second end 80, is called the preferred flow 200.
In this sense, the duct 5 minimizes the effect of contraction and subsequent expansion of the flow, which is a potential situation for greater loss of load. This approach further allows greater efficiency to be maintained for the whole system.
Another important characteristic, related to the use of the directional duct 5, is that the flow is substantially confined in a space with additional heat insulation in relation to the outside of the muffler 1, and normally at a higher temperature than the vacuum flow. The additional heat insulation is provided by the wall of the directional duct 5 itself.
As mentioned, the duct 5 is provided, preferably solidarily to the bottom region of the suction muffler 1, with little or no communication area with the inner surface of the suction chamber 2. Optionally, the duct 5 is not solidary to the bottom region of the suction muffler 1.
Said arrangement favors a confinement of the flow, implying in the maintenance of an average pressure in the antechamber of the suction valve(s).
A communication between the final section of the directional duct 5, and the inner environment of the suction muffler 1, can be developed in some cases to provide for the drainage of oil potentially carried by the flow, but this communication would cause a restriction upon the greater flow than the passage section of the duct 5.
The directional duct 5 comprises at least one flow control means 300. Preferably, the flow control means 300 is disposed adjacent to the second end 80. However,
Preferably, the flow control means 300 is capable of offering reduced resistance to the passage of the preferred flow 200, as shown in
An important aspect in relation to the flow control means 300, is that it has a convex surface in the region downstream of the preferred flow 200, as shown in
It is possible to note, by means of
As mentioned previously, the flow control means 300 is located substantially near the second end 80 of the directional duct 5, as shown in
Said arrangement of the flow control means 300 produces a minimum loss of load in the direction of the preferred flow 200, and a substantially larger loss of load in the reflux direction. Consequently, the pressure waves (pulsation) are mitigated by the intermittent working of the valve(s), that is, a greater noise dampening, and the maintenance of a greater pressure in the antechamber of the suction valve(s).
A loss of load having different characteristics in the flow and reflux conditions occurs due to a recirculation of the current lines, in the reflux condition. Recirculation does not occur in the direction of the preferred flow 200.
The concavity of the flow control means 300 acts as a barrier to the propagation of pressure waves that form in the reflux condition.
The present invention preferably refers to the use of a muffler comprised of a single suction chamber 2, but can optionally have mufflers with more than one chamber or volume, applying pairs of directional/deflector ducts in series, between the exit of each volume and the entry of the subsequent volume.
Lastly, it should be emphasized that the subject matter described in the present invention, related to the difference in loss of load in flow and reflux condition, has the advantage of establishing a pressure in the antechamber of the suction valve 8 normally greater than in other situations, favoring the opening of the valve in the following cycle, and decreasing the vacuum losses. Said approach leads to increased efficiency for the whole system, as well as lower amplitude pressure transients, which contributes to minimize the noise generated.
The use of suction mufflers, as described in the present invention, is provided for compressors applied in refrigeration circuits.
Having described an example of a preferred embodiment, it should be understood that the scope of the present invention encompasses other possible variations, being limited only by the content of the appended claims, potential equivalents being included therein.
Number | Date | Country | Kind |
---|---|---|---|
08018901 | Jun 2008 | BR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/BR2009/000171 | 6/18/2009 | WO | 00 | 3/28/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/152594 | 12/23/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4370104 | Nelson et al. | Jan 1983 | A |
4449610 | Bar | May 1984 | A |
4755108 | Todescat et al. | Jul 1988 | A |
5971720 | Fagotti et al. | Oct 1999 | A |
6012908 | Tanaka et al. | Jan 2000 | A |
6105716 | Morehead et al. | Aug 2000 | A |
6715582 | Nissen et al. | Apr 2004 | B2 |
7316291 | Thomsen et al. | Jan 2008 | B2 |
20040103683 | Yoon | Jun 2004 | A1 |
20040179955 | Lee | Sep 2004 | A1 |
20040247457 | Kim et al. | Dec 2004 | A1 |
20050006172 | Thomsen et al. | Jan 2005 | A1 |
20050031461 | Lilie et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
1017564 | Jan 1966 | GB |
WO 03038280 | May 2003 | WO |
Entry |
---|
International Search Report mailed Sep. 23, 2009 for International application No. PCT/BR2009/000171. |
Reply to Written Opinion and International Search Report mailed May 27, 2010 for International application No. PCT/BR2009/000171. |
International Preliminary Report on Patentability mailed Nov. 10, 2010 for International application No. PCT/BR2009/000171. |
Number | Date | Country | |
---|---|---|---|
20110171046 A1 | Jul 2011 | US |