The present invention relates to digital communications systems, and in particular to noise power estimation in digital communications systems with fast fading channels.
In digital communication systems, a receiver employs error correction techniques to combat the effects of impairments in the communication channel (such as, for example, fading and noise). Modern error correction schemes require reliable estimates of noise power for optimum performance. To address this requirement, various exemplary embodiments of the present invention present a fast and accurate method for estimating noise power.
In general, there are two general classes of noise estimators: Data-Aided (DA) and Non Data-Aided (NDA). Data-Aided (DA) estimators rely on some known reference data sequence in the received signal itself to generate noise estimates. DA estimators are described, for example, in D. R. Paulizzi and N. N. Baeulieu, “A Comparison of SNR estimation techniques for the AWGN channel”, IEEE Trans. Commun., vol. 48, no. 10, pp. 1681-1691, October 2000 (“Paulizzi and Baeulieu”); and in C. E. Gilchriest, “Signal-to-noise monitoring”, JPL Space Programs Summary, vol. IV, no. 37-27, pp. 169-184, June 1966.
DA estimators can make fast and reliable estimates that can accurately represent the noise level at the time of occurrence of the reference data sequence. Thus, if the reference data sequence is present at short periodic intervals, a DA estimator can provide frequent updates of the noise level. However, this creates waste. Placing reference sequences at frequent intervals into a communication system robs bandwidth that is available for actual data transmission. On the other hand, in communication systems where the reference sequences appear less frequently, the rate of DA estimates will be correspondingly less. A low noise level estimation rate thus becomes problematic in communication systems where channel characteristics are varying quickly with time. This is due to the fact that noise level estimates can quickly become “stale”, i.e. they may no longer accurately represent the state of nature (i.e., the then extant state of the channel).
Non Data-Aided (NDA) estimators, described, for example, in Paulizzi and Beaulieu (see above), for example, and also described, for example, in R. Matzner, “An SNR Estimation Algorithm For Complex Baseband Signals Using Higher Order Statistics”, Facta Universtitatis (Nis), Series: Electronics and Energetics, vol. 6, no. 1, (1993), pp. 41-52, do not depend upon any known reference data. Instead, using knowledge of the signaling scheme used in a digital communication system, NDA estimators infer the noise level based on statistics extracted from the received signal.
What is needed in the art are faster and more accurate NDA methods for estimation of noise power in digital communication systems.
An accurate and fast Non-Data Aided (NDA) method for estimation of noise power in digital communication systems is presented. Thus, exemplary embodiments of the present invention do not rely upon the need for embedding reference sequences in the transmitted data. Accordingly, such exemplary embodiments are especially suited for tracking variations of noise power in digital communication systems with fast fading channels.
Inasmuch as NDA estimators do not rely upon prior knowledge of the received data, noise level estimates may be generated much more frequently than when using DA estimators. Moreover, NDA estimators do not occupy otherwise valuable bandwidth by sending embedded reference data sequences. This is advantageous in communication systems where channel characteristics may vary quickly with time. In what follows, NDA estimators according to various exemplary embodiments of the present invention are described that are low complexity, fast and accurate, and that can be implemented in hardware or software, or any combination of them. An exemplary NDA estimator described herein shall sometimes be referred to as a “decision-directed Euclidean Distance Estimator” (ddEDE).
As background to understanding the inventive decision-directed Euclidean Distance Estimator (ddEDE), the basic idea of Euclidean distance and its use as a measure of noise is presented. In communication theory, a signaling scheme used in a system is often represented geometrically. For example, in
In exemplary embodiments of the present invention, a transmitter may select a sequence of points from this signal set and use this sequence to generate a signal that is sent through a physical communications channel, e.g. a satellite broadcast channel, to a receiver. The receiver attempts to recover the sequence of points that was transmitted. However, the complication is that the communications channel through which the signal was sent corrupts the signal—making the receiver see a signal that is different from what was actually transmitted. An example of the effect of signal corruption is represented geometrically in
In
In exemplary embodiments of the present invention, a specific type of signal corruption that is of interest is Additive White Gaussian Noise (AWGN). This can be modeled mathematically, for example, using the equation below:
r=s+n
where s is the transmitted signal, n is the additive noise and r is the received signal.
Geometrically, the effect of additive noise can be seen as a shift of a point away from its correct location in the signal set. For example, in
Where n2EDE is the average noise power based on the Euclidean Distance Estimation (EDE) method, r(k) is the received sequence and s(k) is the sequence that was originally transmitted. Of course, in a normal communication system the values of s(k) are generally unknown to the receiver. To aid in the noise estimation, short reference sequences can be transmitted periodically, however as mentioned earlier, this robs valuable bandwidth otherwise available for actual data.
In exemplary embodiments of the present invention, to avoid the need for transmission of known sequences, the inventive method observes the received sequence of points r(k) and produces a new sequence of points ŝ(k), which is an estimate of the transmitted sequence. This is done using a technique called “hard-slicing.”
As the example of
{circumflex over (s)}(k)=signal set point closest to r(k)
Using a sequence of k points ŝ(k) produced by the hard-slicing, the following computation can, for example, be made:
Where n2ddEDE, raw is the raw decision-directed Euclidean Distance Estimate (ddEDE), r(k) are received points, and s(k) are hard-sliced points obtained from r(k).
In exemplary embodiments of the present invention, the value of n2ddEDE, raw represents the average noise power in the K-sample interval over which the computation is made. For low levels of noise, this technique, based on the Euclidean distance between the received signal points and their corresponding sliced points, works well. However, as the noise level increases, the technique can produce values of n2ddEDE, raw that underestimate the true noise level.
When the noise level is low, the hard-slicing process used to produce the sequence of points ŝ(k) from the received points is likely to have few slicing errors, i.e. most of hard-sliced points are mapped to the correct signal set points. As the noise level increases, however, the number of received points that are sufficiently offset to cross into the decision region of a neighboring set also increases—resulting in an increasing number of hard-slicing errors. Thus, assigning a received point to the nearest signal set point in this situation can result in an underestimate of the noise power, because the true signal set point is actually further away (i.e., d(k) as shown in
The expected SNR value for the simulation is presented on the x-axis. The ideal estimator would be a straight line with Y=X (this is shown as the dashed line) in
In order to compensate for this divergence, in exemplary embodiments of the present invention a correction factor can, for example, be applied to the raw ddEDE estimator to better match the ideal result. This can be represented as follows:
n
2
ddEDE
=n
2
ddEDE, raw×correction(SNR),
where n2ddEDE is the final (corrected) noise estimate, n2ddEDE, raw is the raw ddEDE noise estimate and correction(SNR) is a correction factor.
As the correction factor is a function of the SNR, and the SNR is unknown, in exemplary embodiments of present invention a novel technique can be used to compute a statistic of the SNR from which the correction factor may be inferred. This statistic is called the “correction count”. To compute the correction count statistic, the signal space can be, for example, partitioned as shown in
For a sequence of K received points, the correction count statistic can, for example, be computed as follows:
correction count=(number of points in R)+(number of points on P)
Thus,
It is noted that one may create the outer perimeter P to be slightly within the signal space, and thus allow points to either fall on P, or beyond it, if appropriate in given contexts to more accurately measure the noise level.
This correlation between the noise level and the correction count can be used, for example, in exemplary embodiments of the present invention, to apply a correction to n2ddEDE, raw and thereby obtain a better noise estimate, as follows:
n
2
ddEDE
=n
2
ddEDE, raw×correction(correction_count)
The relationship between the noise level and the correction count can, for example be determined using a simulation, or by measurement of one or more actual communications systems. Once this relationship is determined, it is possible to construct a correction curve similar to the one shown in
The correction curve in
The block diagram in
In exemplary embodiments of the present invention, it is possible to modify the basic ddEDE estimator structure shown in
In exemplary embodiments of the present invention, the received data r(k) can, for example, be processed in blocks of K points—the statistics n2ddEDEK and correction_countK can, for example, be calculated (where the subscript K is used to indicate that each statistic is computed using blocks of K samples). These statistics can be, for example, stored in a sliding window memory.
Thus, in exemplary embodiments of the present invention the sliding window can maintain the last N computed statistics n2ddEDEK and correction_countK. For example, for N=3, after the computation of T blocks of received data the sliding window memory will, for example, contain:
Then, after the statistics for the next input block, (T+1), have been computed, the sliding window memory will contain:
As every block is processed, the following computations can, for example, be performed on the data in the sliding window:
This effectively aggregates the individual block statistics to form statistics n2ddEDE, raw and correction_count over a sliding window of N blocks or L=N×K input samples. Using the aggregate correction_count statistic, a corrector factor can be determined and then applied to n2ddEDE, raw to compute the final n2ddEDE.
In exemplary embodiments of the present invention, the choices of N and K may be specific to the needs of a particular communication system. In a communication system that performs error control in blocks of K samples—this value of K becomes a natural choice for the update rate of the noise estimates. If the value of K is small, it is then possible to select a suitable value of N to reduce the variance in the estimates while maintaining sufficient sensitivity to be able to track quick variations in the signal quality.
It is important to note that each ddEDE estimate is valid for that block of K points used to compute the estimate. In the windowed ddEDE implementation the estimate is valid for the block of K points around the center of the window. An implementation, whether done in hardware or software, must thus preserve the proper alignment of the noise estimates with their corresponding blocks. This can be done by delaying the received signal sequence r(k) by the processing delay incurred in the computation of a noise estimate. An example of this alignment process (for N=3) is depicted in
In
What has been described above utilizes the decision-directed Euclidean Distance (ddEDE) algorithm, and also describes a variant—a windowed ddEDE algorithm, which uses a window of blocks of data to balance estimator variance and estimator sensitivity to signal quality variations. This ability to “tune” the estimator performance to meet specific needs of a communication system is a useful feature of various exemplary embodiments of the present invention.
In exemplary embodiments of the present invention, any suitable programming language can be used to implement the routines of particular embodiments including C, C++, Java, JavaScript, Python, Ruby, CoffeeScript, assembly language, etc. Different programming techniques can be employed such as procedural or object oriented. The routines can execute on a single processing device or multiple processors. Although the steps, operations, or computations may be presented in a specific order, this order may be changed in different particular embodiments. In some particular embodiments, multiple steps shown as sequential in this specification can be performed at the same time.
Particular embodiments may be implemented in a computer-readable storage device or non-transitory computer readable medium for use by or in connection with the instruction execution system, apparatus, system, or device. Particular embodiments can be implemented in the form of control logic in software or hardware or a combination of both. The control logic, when executed by one or more processors, may be operable to perform that which is described in particular embodiments.
Particular embodiments may be implemented by using a programmed general purpose digital computer, by using application specific integrated circuits, programmable logic devices, field programmable gate arrays, optical, chemical, biological, quantum or nanoengineered systems, components and mechanisms may be used. In general, the functions of particular embodiments can be achieved by any means as is known in the art. Distributed, networked systems, components, and/or circuits can be used. Communication, or transfer, of data may be wired, wireless, or by any other means.
It will also be appreciated that one or more of the elements depicted in the drawings/Figs. can also be implemented in a more separated or integrated manner, or even removed or rendered as inoperable in certain cases, as is useful in accordance with a particular application. It is also within the spirit and scope to implement a program or code that can be stored in a machine-readable medium, such as a storage device, to permit a computer to perform any of the methods described above.
As used in the description herein and throughout any claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
While there have been described methods for organization and presentation of photos thereof, it is to be understood that many changes may be made therein without departing from the spirit and scope of the invention. Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, no known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements. The described embodiments of the invention are presented for the purpose of illustration and not of limitation.
This application claims the benefit of U.S. Provisional Patent Application No. 61/786,336, filed on Mar. 15, 2013, entitled NOISE POWER ESTIMATION IN DIGITAL COMMUNICATIONS SYSTEMS WITH FAST FADING CHANNELS, the disclosure of which is hereby incorporated by reference in its entirety. This application is filed on Mar. 18, 2014, inasmuch as Mar. 15, 2013 was a Saturday, and Monday Mar. 17, 2014 the United States Patent and Trademark Office was closed due to inclement weather.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/031109 | 3/18/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61786336 | Mar 2013 | US |