The present disclosure relates in general to wind turbine rotor blades, and more particularly to extension plates configured on the rotor blades.
Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a tower, generator, gearbox, nacelle, and one or more rotor blades. The rotor blades capture kinetic energy of wind using known airfoil principles. The rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or if a gearbox is not used, directly to the generator. The generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
In many cases, various components are attached to the rotor blades of wind turbines to perform various functions during operation of the wind turbines. These components may frequently be attached adjacent the trailing edges of the rotor blades. For example, noise reducers may be attached adjacent the trailing edges of the rotor blades to reduce the noise and increase the efficiency associated with the rotor blades. However, typical prior art noise reducers have a variety of disadvantages, and may not adequately reduce the noise associated with typical rotor blades. For example, many currently known noise reducers include a plurality of serrations. The serrations are designed to reduce noise when the wind flow over the noise reducer flows in a certain direction. If the direction of wind flow is altered, however, the effectiveness of the serrations in reducing the noise may be reduced.
Additionally, manufacturing limitations may limit the amount of noise reduction of which a rotor blade is capable. For example, a rotor blade is typically formed from a shell which includes various layers of material. Due to strength requirements for the rotor blade, the trailing edge of the rotor blade, such as of the shell forming the rotor blade, has minimum thickness limitations. Some rotor blades, for example, have trailing edges which are no less than 5 millimeters thick. Such minimum thickness limitations additionally limit further noise reduction efforts.
Accordingly, improved rotor blade assemblies would be desired in the art. For example, rotor blade assemblies which include improved noise reduction apparatus would be advantageous.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one embodiment, a rotor blade assembly is disclosed. The rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord. The rotor blade assembly further includes an extension plate mounted to one of the pressure side or the suction side, the extension plate extending in the chord-wise direction between a first end and a second end, the second end extending beyond the trailing edge. The rotor blade assembly further includes a filler substrate provided on an inner surface of the extension plate and the trailing edge, the filler substrate tapering from the trailing edge towards the second end.
In another embodiment, a rotor blade assembly is disclosed. The rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord. The rotor blade assembly further includes an extension plate mounted to one of the pressure side or the suction side, the extension plate extending in the chord-wise direction between a first end and a second end, the second end extending beyond the trailing edge. The extension plate has a thickness that is less than a thickness of the trailing edge.
In another embodiment, a method for constructing a rotor blade assembly is disclosed. The method includes mounting an extension plate to one of the pressure side or the suction side of a rotor blade, applying a filler substrate to the extension plate and the rotor blade, and forming the filler substrate such that the filler substrate tapers from a trailing edge of the rotor blade towards a second end of the extension plate.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring to
In some embodiments, the rotor blade 16 may include a plurality of individual blade segments aligned in an end-to-end order from the blade tip 32 to the blade root 34. Each of the individual blade segments may be uniquely configured so that the plurality of blade segments define a complete rotor blade 16 having a designed aerodynamic profile, length, and other desired characteristics. For example, each of the blade segments may have an aerodynamic profile that corresponds to the aerodynamic profile of adjacent blade segments. Thus, the aerodynamic profiles of the blade segments may form a continuous aerodynamic profile of the rotor blade 16. Alternatively, the rotor blade 16 may be formed as a singular, unitary blade having the designed aerodynamic profile, length, and other desired characteristics.
The rotor blade 16 may, in exemplary embodiments, be curved. Curving of the rotor blade 16 may entail bending the rotor blade 16 in a generally flapwise direction and/or in a generally edgewise direction. The flapwise direction may generally be construed as the direction (or the opposite direction) in which the aerodynamic lift acts on the rotor blade 16. The edgewise direction is generally perpendicular to the flapwise direction. Flapwise curvature of the rotor blade 16 is also known as pre-bend, while edgewise curvature is also known as sweep. Thus, a curved rotor blade 16 may be pre-bent and/or swept. Curving may enable the rotor blade 16 to better withstand flapwise and edgewise loads during operation of the wind turbine 10, and may further provide clearance for the rotor blade 16 from the tower 12 during operation of the wind turbine 10.
The rotor blade 16 may further define chord 42 and a span 44. As shown in
Additionally, the rotor blade 16 may define an inboard area 52 and an outboard area 54. The inboard area 52 may be a span-wise portion of the rotor blade 16 extending from the root 34. For example, the inboard area 52 may, in some embodiments, include approximately 33%, 40%, 50%, 60%, 67%, or any percentage or range of percentages therebetween, or any other suitable percentage or range of percentages, of the span 44 from the root 34. The outboard area 54 may be a span-wise portion of the rotor blade 16 extending from the tip 32, and may in some embodiments include the remaining portion of the rotor blade 16 between the inboard area 52 and the tip 32. Additionally or alternatively, the outboard area 54 may, in some embodiments, include approximately 33%, 40%, 50%, 60%, 67%, or any percentage or range of percentages therebetween, or any other suitable percentage or range of percentages, of the span 44 from the tip 32.
As illustrated in
As discussed, extension plate 110 in exemplary embodiments as shown in
Extension plate 110 when mounted to a rotor blade 16 extends in the chord-wise direction between a first end 120 and a second end 122. The extension plate 110 may be mounted to the rotor blade 16 such that the second end 122 extends beyond the trailing edge 28. Further, the second end 122 when viewed from a top or bottom view such that shown in
As discussed, extension plate 110, and in particular the second end 122 thereof, may have a thickness 112 that is less than the thickness 113 of the rotor blade 16 trailing edge 28. For example, in some exemplary embodiments, thickness 112 may be less than 2 millimeters. In other exemplary embodiments, thickness 112 may be approximately 1 millimeter. Other suitable thicknesses less than the thickness 113 of the rotor blade 16 trailing edge 28 are within the scope and spirit of the present disclosure. Such minimal thicknesses advantageously provide increased noise reduction characteristics for the rotor blade assembly 100 relative to the characteristics of the rotor blade 16 (and larger trailing edge thickness 113) itself
In exemplary embodiments, extension plate 110 may be formed from fiberglass or another suitable composite material. For example, to facilitate the minimal thickness 112 of the extension plate 110, a single ply of, for example, fiberglass may be utilized. Alternatively, however, other suitable materials, such as metals, may be utilized.
Extension plate 110 may further define a width 130 (in the chord-wise direction when mounted to rotor blade 16) and a length 132 (in the span-wise direction when mounted to rotor blade 16). Further, an extension portion 134 of the extension plate 110 may be defined as the portion that extends beyond the trailing edge 28 of the rotor blade, or in other words the portion between the second end 122 and the trailing edge 28. Extension portion 134 may define a width 136.
In some embodiments, width 136 of extension portion 134 is between approximately 5 times and approximately 20 times the thickness 113 of the trailing edge 28, such as between approximately 10 times and approximately 20 times the thickness 113. In other embodiments, width 136 is less than approximately 10 centimeters. In still other exemplary embodiments, width 136 is approximately 5 centimeters.
The overall width 130 may in some embodiments be less than or equal to approximately 20% of the chord 42 (such as the local chord 46 or average local chord 46 over the length of the 132 of the extension plate 110). In other embodiments, the overall width 130 may be between approximately 10% and approximately 20% of the chord 42 (such as the local chord 46 or average local chord 46 over the length of the 132 of the extension plate 110).
Extension plate 110 may further be mountable to the outboard portion 54 of the rotor blade, such that for example the entire extension plate 110 is within the outboard portion 54 in the span-wise direction. In some embodiments, for example, the length 132 of the extension plate 110 may be less than one-third of the span 44. In other embodiments, the length 132 of the extension plate 110 may be less than one-fourth of the span 44.
Such widths 130, 136 and 132 may advantageously facilitate the improved noise reduction characteristics of the extension plate 110 and rotor blade assembly 100 in general.
As illustrated in
Filler substrate 150 may be any suitable material. For example, in some embodiments, filler substrate 150 may be a bonding paste. Alternatively, filler substrate 150 may be a rubber or a silicone.
Use of a filler substrate 150 according to the present disclosure may advantageously facilitate the improved noise reduction characteristics of the extension plate 110 and rotor blade assembly 100 in general.
As illustrated in
Auxiliary filler substrate 160 may be any suitable material. For example, in some embodiments, auxiliary filler substrate 160 may be a bonding paste. Alternatively, auxiliary filler substrate 160 may be a rubber or a silicone.
Use of an auxiliary filler substrate 160 according to the present disclosure may advantageously facilitate the improved noise reduction characteristics of the extension plate 110 and rotor blade assembly 100 in general.
The present disclosure is further directed to methods for constructing rotor blade assemblies 100. A method may include, for example, mounting an extension plate 110 to one of the pressure side 22 or the suction side 24 of a rotor blade 16, as discussed herein. A method may further include, for example, applying a filler substrate 150 to the extension plate 110 and rotor blade 16, as discussed herein. A method may further include, for example, forming the filler substrate 150 such that the filler substrate 150 tapers from a trailing edge 28 of the rotor blade 16 towards a second end 122 of the extension plate 110, as discussed herein.
In some embodiments, a method according to the present disclosure may further include applying an auxiliary filler substrate 160 to the extension plate 110 and the rotor blade 16, as discussed herein. Such method may further include forming the auxiliary filler substrate 160 such that the auxiliary filler substrate 160 tapers from a first end 120 of the extension plate 110 towards the one of the pressure side 22 or the suction side 24 of the rotor blade 16.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
175355 | King | Mar 1876 | A |
573562 | Wittram | Dec 1896 | A |
1861065 | Poot | May 1932 | A |
RE19412 | Stoner | Jan 1935 | E |
2071012 | Adams | Feb 1937 | A |
2225312 | Mason | Dec 1940 | A |
2238749 | Peltier | Apr 1941 | A |
D131271 | Colura | Feb 1942 | S |
2312219 | Sensenich | Apr 1943 | A |
2469167 | Little | May 1949 | A |
2899128 | Vaghi | Aug 1959 | A |
3586460 | Toner | Jun 1971 | A |
4089618 | Patel | May 1978 | A |
4188171 | Baskin | Feb 1980 | A |
4204629 | Bridges | May 1980 | A |
4618313 | Mosiewicz | Oct 1986 | A |
4720244 | Kluppel et al. | Jan 1988 | A |
4962826 | House | Oct 1990 | A |
5088665 | Vijgen et al. | Feb 1992 | A |
5320491 | Coleman et al. | Jun 1994 | A |
5328329 | Monroe | Jul 1994 | A |
5522266 | Nicholson et al. | Jun 1996 | A |
5533865 | Dassen | Jul 1996 | A |
5819357 | Gould | Oct 1998 | A |
6023898 | Josey | Feb 2000 | A |
6352601 | Ray | Mar 2002 | B1 |
6491260 | Borchers et al. | Dec 2002 | B2 |
6729846 | Wobben | May 2004 | B1 |
6733240 | Gliebe | May 2004 | B2 |
6779978 | Camargo Do Amarante | Aug 2004 | B2 |
6789769 | Mau et al. | Sep 2004 | B2 |
6830436 | Shibata et al. | Dec 2004 | B2 |
7059833 | Stiesdal et al. | Jun 2006 | B2 |
7328770 | Owens et al. | Feb 2008 | B2 |
7351041 | Uselton et al. | Apr 2008 | B2 |
7413408 | Tafoya | Aug 2008 | B1 |
7458777 | Herr | Dec 2008 | B2 |
7632068 | Bak et al. | Dec 2009 | B2 |
7637721 | Driver et al. | Dec 2009 | B2 |
7740206 | Eaton et al. | Jun 2010 | B2 |
7909576 | van der Bos | Mar 2011 | B1 |
7976276 | Riddell et al. | Jul 2011 | B2 |
7976283 | Huck | Jul 2011 | B2 |
8083488 | Fritz | Dec 2011 | B2 |
8267657 | Huck et al. | Sep 2012 | B2 |
8414261 | Bonnet | Apr 2013 | B2 |
8430638 | Drobietz et al. | Apr 2013 | B2 |
8506250 | Bagepalli | Aug 2013 | B2 |
8523515 | Drobietz | Sep 2013 | B2 |
20010008032 | Llewellyn-Jones et al. | Jul 2001 | A1 |
20030175121 | Shibata et al. | Sep 2003 | A1 |
20040115060 | Grabau | Jun 2004 | A1 |
20040219059 | Barringer et al. | Nov 2004 | A1 |
20040253114 | Gunneskov et al. | Dec 2004 | A1 |
20070025858 | Driver et al. | Feb 2007 | A1 |
20070041823 | Miller | Feb 2007 | A1 |
20070065290 | Herr | Mar 2007 | A1 |
20070077150 | Llorente Gonzalez | Apr 2007 | A1 |
20070125919 | Hopkins | Jun 2007 | A1 |
20070294848 | Dumler | Dec 2007 | A1 |
20080001363 | Bhate | Jan 2008 | A1 |
20080061192 | Sullivan | Mar 2008 | A1 |
20080080977 | Bonnet | Apr 2008 | A1 |
20080107540 | Bonnet | May 2008 | A1 |
20080166241 | Herr et al. | Jul 2008 | A1 |
20080187442 | Standish et al. | Aug 2008 | A1 |
20080298967 | Matesanz Gil et al. | Dec 2008 | A1 |
20090016891 | Parsania et al. | Jan 2009 | A1 |
20090074585 | Koegler et al. | Mar 2009 | A1 |
20090087314 | Haag | Apr 2009 | A1 |
20090097976 | Driver et al. | Apr 2009 | A1 |
20090104038 | Grabau | Apr 2009 | A1 |
20090126131 | Delaere et al. | May 2009 | A1 |
20090169393 | Bagepalli et al. | Jul 2009 | A1 |
20090274559 | Petsche et al. | Nov 2009 | A1 |
20100028161 | Vronsky et al. | Feb 2010 | A1 |
20100068042 | Brück et al. | Mar 2010 | A1 |
20100101037 | Gross et al. | Apr 2010 | A1 |
20100104436 | Herr et al. | Apr 2010 | A1 |
20100127504 | Hancock | May 2010 | A1 |
20100143151 | Kinzie et al. | Jun 2010 | A1 |
20100266382 | Campe et al. | Oct 2010 | A1 |
20100329879 | Presz, Jr. et al. | Dec 2010 | A1 |
20110018282 | Hayashi et al. | Jan 2011 | A1 |
20110042524 | Hemmelgarn et al. | Feb 2011 | A1 |
20110142635 | Fritz | Jun 2011 | A1 |
20110142637 | Riddell et al. | Jun 2011 | A1 |
20110142666 | Drobietz | Jun 2011 | A1 |
20110223030 | Huck et al. | Sep 2011 | A1 |
20110268558 | Driver et al. | Nov 2011 | A1 |
20120027590 | Bonnet | Feb 2012 | A1 |
20120070281 | Fuglsang et al. | Mar 2012 | A1 |
20120134817 | Bagepalli | May 2012 | A1 |
20120141269 | Giguere et al. | Jun 2012 | A1 |
20130164141 | Lin | Jun 2013 | A1 |
20130272892 | Liu | Oct 2013 | A1 |
20130280085 | Koegler | Oct 2013 | A1 |
20150118058 | Vedula | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
4440744 | May 1996 | DE |
102006043462 | Mar 2008 | DE |
2138714 | Dec 2009 | EP |
2270312 | Jan 2011 | EP |
2000120524 | Apr 2000 | JP |
2003254225 | Sep 2003 | JP |
2008-115783 | May 2008 | JP |
WO 9821091 | May 1998 | WO |
WO 2008035149 | Mar 2008 | WO |
WO 2008113349 | Sep 2008 | WO |
WO 2009025549 | Feb 2009 | WO |
Entry |
---|
Risoe National Laboratory for Sustainable Energy, “Controllable Rubber Trailing Edge Flap May Ease Stress on Wind Turbine Blades”, Renewable Energy World.com, pp. 1-3, Feb. 17, 2010. |
Risoe National Laboratory for Sustainable Energy, “Successful Wind Tunnel Test of Controllable Rubber Trailing Edge Flap for Wind Turbine Blades”, Science Daily, pp. 1-2, Feb. 19, 2010. |
Risoe National Laboratory for Sustainable Energy, The Technical University of Denmark, “Flexible Trailing Edge Flap for Blades to Make Wind Power Cheaper”, Science Daily, pp. 1-2, Apr. 7, 2011. |
Co-pending U.S. Appl. No. 13/644,130, filed Oct. 3, 2012. |
Number | Date | Country | |
---|---|---|---|
20150139810 A1 | May 2015 | US |