This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2017-187528 filed Sep. 28, 2017.
The present invention relates to a noise reducing structure and an image forming apparatus.
According to an aspect of the invention, there is provided a noise reducing structure including a first resonance tube that extends in a first direction, that takes in from a sound absorbing opening portion a sound wave that is generated from a noise source, and that causes the sound wave to resonate to reduce leakage to outside; and a second resonance tube that extends in a second direction differing from the first direction, and that, along with the first resonance tube, causes the sound wave that is generated from the noise source to resonate to reduce the leakage to the outside.
Exemplary embodiments of the present invention will be described in detail based on the following figures, wherein:
Exemplary embodiments of the present invention are described below with reference to the drawings.
Structure of Entire Image Forming Apparatus
The image forming apparatus 1 according to the first exemplary embodiment is, for example, a monochrome printer. The image forming apparatus 1 includes, for example, an image forming unit 2 that forms a toner image (image) formed by performing development with toner of developer; a sheet-feeding unit 4 that supplies recording paper 3, serving as an exemplary recording medium, to the image forming unit 2; a transporting unit 5 that transports to, for example, the image forming unit 2 pieces of recording paper 3 that are supplied one at a time from the sheet-feeding unit 4; and a fixing unit 6 that performs fixing on the recording paper 3 on which the toner image has been formed by the image forming unit 2.
The image forming unit 2 forms an image on a surface of recording paper 3 by performing an electrophotographic process that uses developer. The image forming unit 2 includes, for example, a photoconductor drum 21, serving as an exemplary image carrier; a charging device 22 that charges a peripheral surface of the photoconductor drum 21; an exposure device 23 that exposes the photoconductor drum 21 to light and forms an electrostatic latent image; a developing device 24 that supplies developer to the electrostatic latent image on the photoconductor drum 21 and develops the electrostatic latent image; a transfer device 25 that transfers the toner image formed on the photoconductor drum 21 to the recording paper 3; and a cleaning device 26 that cleans the peripheral surface of the photoconductor drum 21. The transfer device 25 may be one that does not directly transfer the toner image to the recording paper 3 from the photoconductor drum 21. That is, the transfer device 25 may be one that transfers the toner image to the recording paper 3 via an intermediate transfer body, such as an intermediate transfer belt. The developer may contain, for example, black toner. The developer may contain, in addition to black toner, color toners, such as yellow toner, magenta toner, and cyan toner.
The sheet-feeding unit 4 includes, for example, a holding container 41 that holds recording paper 3 and a sheet-feeding roller 42 that feeds pieces of the recording paper 3 one at a time from the holding container 41. By setting the holding container 41 at an apparatus body 1a of the image forming apparatus 1, the sheet-feeding unit 4 is capable of supplying the pieces of recording paper 3 held in the holding container 41. The holding container 41 is mounted such that, for example, the holding container 41 is capable of being drawn out towards the front of the apparatus body 1a (towards a side surface that a user faces when the user operates the image forming apparatus 1), that is, towards a side of a left side surface in the illustrated example.
The transporting unit 5 transports recording paper 3 that is fed from the sheet-feeding unit 4 to the image forming unit 2 and the fixing unit 6 to discharge the recording paper 3 on which the image has been formed to a discharging section 7 that is disposed at a top portion of the apparatus body 1a. When images are to be formed on both surfaces of the recording paper 3, the transporting unit 5 re-transports the recording paper 3 on which the image has been formed on one surface thereof to the image forming unit 2 with the front and back surfaces of this recording paper 3 being reversed without discharging this recording paper 3 to the discharging section 7.
The fixing unit 6 fuses the toner image, formed on the surface of the recording paper 3 by the image forming unit 2, by using heat and pressure, and fixes the toner image to the recording paper 3. The recording paper 3 to which the image has been fixed by the fixing unit 6 is discharged to and is held by the discharging section 7 with the recording paper 3 placed thereon.
In
Structure of Apparatus Body of Image Forming Apparatus
As illustrated in
As illustrated in
Various members that constitute, for example, the image forming unit 2, the sheet-feeding unit 4, the transporting unit 5, and the fixing unit 6 are mounted on the left and right side frames 16. A driving device 80 that drives, for example, the image forming unit 2, the sheet-feeding unit 4, and the transporting unit 5 is mounted on the right side frame 16. Furthermore, as illustrated in
As illustrated in
As illustrated in
When performing an image forming operation, the image forming apparatus 1 generates a driving sound due to the driving device 80 rotationally driving, for example, the image forming unit 2, the sheet-feeding unit 4, the transporting unit 5, and the fixing unit 6. In addition, as illustrated in
In Japanese Unexamined Patent Application Publication No. 2000-235396, a resonance space corresponding to the frequency that is generated during operation is formed between an exterior member and an interior member. The resonance space in Japanese Unexamined Patent Application Publication No. 2000-235396 constitutes a Helmholtz resonator as described in the detailed description of the invention. As is publicly known, a Helmholtz resonator is a device in which the air existing in a container having an open portion acts as a spring and resonates, and has a silencing effect of attenuating sound due to resonating air vibration passing through the open portion.
However, a Helmholtz resonator has technical problems in that since the air existing in the container acts as a spring, the device tends to be large; and in that since the attenuating effect is produced by using the open portion, the silencing effect is not easily sufficiently produced. In particular, when a Helmholtz resonator is used to absorb a sound having a low frequency, the size of the device is increased.
Regarding such technical problems, paragraph [0007] in Japanese Unexamined Patent Application Publication No. 2015-169701 that provides an electrical device including a Helmholtz arrester states that “However, in the case described in PTL 2, the noise reducing effect that is actually obtained is less than the expected noise reducing effect.” Incidentally, PTL 2 that is discussed in paragraph [0007] in Japanese Unexamined Patent Application Publication No. 2015-169701 refers to Japanese Unexamined Patent Application Publication No. 2003-43861 in which a Helmholtz resonator is similarly used.
In the exemplary embodiment, attention is paid to a function as a resonance tube that generates a standing wave of a sound of a particular frequency in a space formed with a tubular shape or the like, instead of to a Helmholtz resonator in which the air existing in a container having an open portion acts as a spring. Moreover, this is based on a new technical idea that, instead of forming a resonance tube as a structural body extending simply straight, forms a resonance tube that is disposed two-dimensionally or three-dimensionally.
When sound is incident upon a tube 200 (hereunder referred to as “resonance tube”) having one end 201 open and the other end 202 closed from a sound absorbing opening portion 203 open at the other end 202, resonance occurs at a frequency dependent upon a length L of the resonance tube 200. Therefore, by setting the length L of the resonance tube 200 as appropriate, it is possible to cause a sound having a target frequency to resonate to reduce leakage to outside. In addition, when a sound absorbing material or a sound absorbing mechanism is provided in the resonance tube 200 (an antinode of particle speed or an antinode of sound pressure), it is possible to increase a noise reducing effect of reducing the incident sound. The one end 201 may be closed, in which case the sound pressure distribution of the one end 201 becomes a node. In general, when the one end 201 is closed, the length L of the resonance tube 200 may be L=λ/4, which is shorter than the length L=λ/2 of the resonance tube 200 when the one end 201 is open.
In the resonance tube 200 that causes noise to resonate, the wavelength λ of sound is increased when the sound is a low-frequency sound whose frequency is relatively low, and hence it is required to set the length L of the resonance tube 200 at a large value.
However, in the image forming apparatus 1, it may be difficult to ensure the length L of the resonance tube 200 corresponding to a target low-frequency sound at a relatively low frequency only in one direction, due to reduction in size of the apparatus body 1a and the layout of various members.
Owing to this, in the exemplary embodiment, to form a resonance tube corresponding to a low-frequency sound at a relatively low frequency even if it is difficult to form the resonance tube 200 only in one direction due to limitation on size, there are provided a first resonance tube that extends in a first direction, that takes in from a sound absorbing opening portion a sound wave that is generated from a noise source, and that causes the sound wave to resonate to reduce leakage to outside, and a second resonance tube that extends in a second direction differing from the first direction, and that, along with the first resonance tube, causes the sound wave that is generated from the noise source to resonate to reduce the leakage to the outside. Also, in the exemplary embodiment, there is provided a third resonance tube that extends in a third direction differing from the first and second directions, and that, along with the first and second resonance tubes, causes the sound wave that is generated from the noise source to resonate to reduce the leakage to the outside.
A resonance tube 210 is formed with a tube shape having a rectangular cross-section and bent in an L shape or a substantial L shape. The cross-sectional shape of the resonance tube 210 is not limited to the rectangular shape, and may be a circular shape. The resonance tube 210 has a sound absorbing opening portion 211 in a surface of one end portion closed in a longitudinal direction of the resonance tube 210. Also, the resonance tube 210 has an opening 212 at an end portion opposite to the air absorbing opening portion 211 in the longitudinal direction. Also, a sound absorbing material 213 is disposed at a position corresponding to an antinode of the particle speed if required. The end portion opposite to the sound absorbing opening portion 211 may be closed.
In the exemplary embodiment illustrated in
When the relationship between the resonance wavelength, at which the first to third resonance tubes 721 to 723 make resonance, and the length of the tube is formulated, the formula is as follows as illustrated in
Open tube λn=2L/n (n=1, 2, . . . )
Closed tube λn=4L/(2n−1) (λ: wavelength (=sound speed/frequency))
These are rewritten according to the lengths of the first to third resonance tubes 721 to 723 as follows.
Open tube L=(λ/2)n
Closed tube L=(λ/4) (2n−1)
The exemplary embodiment is further specifically described. As illustrated in
As illustrated in
At a central portion of the housing 840 of the driving device 80, a drum supporting cover (bracket) 841 is mounted on the right side frame 16 by, for example, screwing. The drum supporting cover 841 is formed with a substantially rhombic shape by using, for example, a metal sheet; and rotatably supports an end portion of the photoconductor drum 21 in an axial direction via a bearing member (not illustrated). An open portion 842 corresponding to the shape of the drum supporting cover 841 is provided in a region of the right side frame 16 corresponding to the drum supporting cover 841. As illustrated in
As illustrated in
As illustrated in
As illustrated in
In addition, a second duct member 90 made of synthetic resin and constitutes an exhaust duct is attached to an outer side surface of the right side frame 16 at a position corresponding to the exhaust fan 165. The second duct member 90 is integrally formed with the exterior body of the exhaust fan 165 at a lower end portion of the exhaust fan 165. The second duct member 90 is formed with a laterally elongated substantially rectangular-parallelepiped shape whose side surface at the right side frame 16 side being open. The second duct member 90 constitutes the third resonance tube 723 that extends in the third direction differing from the first and second directions, and that, along with the first and second resonance tubes 721 and 722, causes the sound wave that is generated from the noise source to resonate to reduce the leakage to the outside. As illustrated in
Consequently, the first resonance tube 721, the second resonance tube 722, and the third resonance tube 723 constitute a single continuous resonance tube. The length of the single resonance tube is the sum of the lengths L1, L2, and L3 of the first to third resonance tubes 721 to 723.
Action of Image Forming Apparatus
In the image forming apparatus 1 according to the exemplary embodiment, even if it is difficult to form a resonance tube only in one direction due to limitation on size, it is possible to form a resonance tube as follows.
In the image forming apparatus 1, when the controlling device 100 receives command information regarding a request for an image forming operation (print), the driving device 80 drives, for example, the image forming unit 2, the sheet-feeding unit 4, the transporting unit 5, and the fixing unit 6. In the image forming apparatus 1, the intake fan (not illustrated) and the exhaust fan 165 are driven in synchronization with an image forming operation.
As illustrated in
At this time, the driving device 80 generates driving noises resulting from, for example, meshing of the driving force transmission gears 821 to 830 and 831. Of the driving noises resulting from the meshing of the driving force transmission gears 821 to 830 and 831, in particular, the driving noise resulting from the meshing of the driving force transmission gear 831 having a large outside diameter tends to have a low frequency of 1000 Hz or less because the rotation speed of the driving force transmission gear 831 having the large outside diameter is less than the rotation speeds of driving force transmission gears having small outside diameters.
Also, the intake fan (not illustrated) and the exhaust fan 165 generate rotation sounds resulting from driving of the intake fan and the exhaust fan 165. The rotation sounds of the intake fan and the exhaust fan 165 tend to have low frequencies of 1000 Hz or less.
As illustrated in
As illustrated in
By closing the spaces formed by the multiple reinforcing ribs 171 to 177 that are adjacent to each other, the open sides are closed to constitute multiple resonance tubes formed by closed spaces. In this way, by closing the side cover 14, the open sides of the multiple reinforcing ribs 171 to 177 are closed by a housing 840 and a drum supporting cover 841 of the driving device 80. When the lengths of the multiple resonance tubes formed by the multiple reinforcing ribs 171 to 177 are made to differ from each other, it is possible to cause sounds having different wavelengths to resonate. The opening of the driving device 80 constitutes the sound absorbing opening portion of each resonance tube.
Although, in the exemplary embodiments, a monochrome image forming apparatus that forms a black toner image is described as the image forming apparatus, the type of image forming apparatus is not limited thereto. Obviously, as the image forming apparatus, a full-color image forming apparatus that forms toner images of four colors, yellow (Y), magenta (M), cyan (C), and black (K) may also be similarly used.
The foregoing description of the exemplary embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-187528 | Sep 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5274201 | Steele | Dec 1993 | A |
7712576 | Goto | May 2010 | B2 |
8641494 | Matthews | Feb 2014 | B2 |
9767783 | Ishida | Sep 2017 | B2 |
9904229 | Matsuda | Feb 2018 | B2 |
10281876 | Umenai | May 2019 | B2 |
10540953 | Ishida | Jan 2020 | B2 |
20080053749 | Utsunomiya | Mar 2008 | A1 |
20160070230 | Kokubu | Mar 2016 | A1 |
20160161904 | Matsuda | Jun 2016 | A1 |
20160225363 | Ishida | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
107204181 | Sep 2017 | CN |
2000235396 | Sep 2000 | JP |
2002023598 | Jan 2002 | JP |
2003043861 | Feb 2003 | JP |
2009145740 | Jul 2009 | JP |
2015169701 | Sep 2015 | JP |
WO-2018235797 | Dec 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20190092058 A1 | Mar 2019 | US |