The present disclosure relates to a noise reduction insert for an evaporator.
This section provides background information related to the present disclosure, which is not necessarily prior art.
Flow of refrigerant through an evaporator of an air conditioning system is often controlled by a thermal expansion valve (TXV) located within a TXV housing. The TXV meters flow of refrigerant to the evaporator based on temperature of the refrigerant that has passed through the evaporator, as sensed by a sensor bulb. TXVs are typically located in close proximity to the evaporator for the best possible air-conditioning performance. To facilitate servicing, TXVs are also typically located at a vehicle dash-wall, and coupled to the evaporator with metal tubes.
When the air conditioning is initially activated, due to lack of sufficient sub-cooling, gaseous or gas/liquid refrigerant at high pressure passes through a small orifice of the TXV resulting in high velocity refrigerant that readily excites the acoustical cavity modes and circular/cylindrical higher order modes of refrigerant system components, which results in undesirable noises being produced, such as transient/audible hiss and gurgle. With existing TXVs, heavy damping material layers are applied to the TXV, tubing, and evaporator in an attempt to suppress the undesirable noises. Application of these damping materials suppresses hiss and some compressor induced noises. However, use of damping materials often undesirably results in amplification of transient gurgle when the air conditioning is turned on, and after the air conditioning has been turned off. Use of damping materials is thus undesirable because they can add cost and weight, are difficult to apply consistently, and induce and/or amplify gurgle noises. It would therefore be desirable to provide an improved device and system for suppressing undesirable gurgle that may occur when an air conditioning system is initially activated. The present teachings address these needs, as well as numerous others, and provide improvements over the art.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present teachings provide for a noise reduction insert for an evaporator. The noise reduction insert includes a body defining an inner volume of the insert. The body extends along a longitudinal axis of the insert. A perforated portion of the body defines a plurality of openings configured to allow fluid to pass out from within the inner volume through the plurality of openings. A flange at a first end of the body is opposite to a second end of the body. The flange defines an aperture through which the longitudinal axis extends. The aperture is configured to permit fluid to flow therethrough and into the inner volume defined by the body.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
With initial reference to
The TXV housing 12 includes a first side, which is an evaporator side, and a second side, which is a compressor/condenser side. The TXV housing 12 is connected to the evaporator at the first side with a first output line 20 and a first input line 22. At the second side, a second output line 24 connects the TXV housing 12 to a compressor, and a second input line 26 connects the TXV housing 12 to a condenser. The second output and input lines 24 and 26 are connected to the TXV housing 12 in any suitable manner, such as with a connection block 36. The block 36 is fastened to the TXV housing 12 with any suitable fastener, such as with fastener 38.
The second output line 24 includes a flange 28, which is held against the TXV housing 12 with the block 36. A washer 30 is positioned between the flange 28 and the TXV housing 12. Similarly, the second input line 26 includes a flange 32, which is held against the TXV housing 12 by the block 36. A washer 34 is arranged between the flange 32 and the TXV housing 12.
The first input line 22 includes a terminal end 40, which is received within the TXV housing 12. A first input line flange 42 of the first input line 22 is proximate to the terminal end 40. A seal 44 is seated over the first input line 22, and against the first input line flange 42 between the first input line flange 42 and the terminal end 40. A block 46 holds the first input line 22 in connection with the TXV housing 12, and specifically presses the seal 44 against the TXV housing 12. The block 46 can be secured to the TXV housing 12 in any suitable manner, such as with any suitable fastener.
The first output line 20 includes a first output line flange 50. A seal 52 is seated on the first output line 20 against the first output line flange 50. The seal 52 is held against the TXV housing 12 by the block 46 when the block 46 is secured to the TXV housing 12. Seated within the first output line 20 is a noise reduction insert 110 according to the present teachings.
With continued reference to
The body 112 further includes ribs 120 and spine 122. The ribs 120 are spaced apart along the length of the body 112, and thus spaced apart along the longitudinal axis A. The ribs 120 are connected by the spine 122. The spine 122 can be configured in any suitable manner in order to support the ribs 120. For example and as illustrated, the spine 122 can extend from the first end 114 to the distal end 116, and then back to the first end 114. At the second end 116, the spine 122 can curve to provide the second end 116 with a rounded or cone-shaped end. The ribs 120 and the spine 122 can be made of any suitable material, such as any suitable polymeric or metallic material.
The body 112 further includes a mesh 130, which is arranged between the ribs 120 and the portions of the spine 122. The mesh 130 defines a plurality of openings 132 through which material, such as refrigerant, can pass through in order to flow out from within the insert 110 to the evaporator. The mesh 130 can be made of any suitable material, such as any suitable plastic, metallic, or nylon material. At the second end 116, the mesh 130 is formed as a rounded or cone-shaped end 134. The cone-shaped end 134 of the mesh 130 provides the insert 110 with an increased surface area as compared to a planar distal end. For example, the cone-shaped portion 134 can increase the surface area of the second end 116 of the insert 110 1.5 times greater than a planar distal end. As a result, there is a greater surface area for fluid, such as refrigerant, to flow out from within the inner volume 118 of the insert 110. This allows refrigerant to flow through the first output line 20 more freely, thus reducing the pressure of the refrigerant within the first output line 20 and reducing undesirable noise, such as gurgle.
The insert 110 further includes a flange 140 at the first end 114. With particular reference to
As illustrated in
With the insert 110 seated in the first output line 20, refrigerant exiting the TXV housing 12 flows through the aperture 142 of the flange 140, and into the inner volume 118 defined by the body 112. The refrigerant then exits the body 112 through the mesh 130, and flows through the first output line 20 into the evaporator. Without the insert 110, modal frequencies may be generated at 2,710 hz, 3,082 hz, 3,357 hz, and 4,866 hz, which may result in undesirable gurgling noises being generated. These frequencies depend on the physical dimensions of the refrigerant system components and refrigerant temperature and pressure. However, when the insert 110 is seated in the first output line 20 as illustrated in
The insert 110 illustrated in
With reference to
With reference to
With reference to
With reference to
The description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). The term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
This application claims the benefit of U.S. Provisional Application No. 62/132,557 filed on Mar. 13, 2015, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5906225 | Stark et al. | May 1999 | A |
6810683 | Eustice | Nov 2004 | B2 |
8047449 | Lou et al. | Nov 2011 | B2 |
Number | Date | Country |
---|---|---|
11063733 | Mar 1999 | JP |
2011133139 | Jul 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20160265823 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62132557 | Mar 2015 | US |