Non-Aqueous Electrolyte and Electrochemical Device With an Improved Safety

Abstract
Disclosed are a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 1-10 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic mono-nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte. Also disclosed is an electrochemical device comprising: a cathode having a complex formed between a surface of a cathode active material and an aliphatic mono-nitrile compound; and a non-aqueous electrolyte containing 1-10 wt % of a compound of Formula 1 or its decomposition product based on the weight of the electrolyte. The electrochemical device has an excellent low-temperature battery performance and an excellent high-temperature safety, by a synergic effect, and also can provide excellent.
Description
TECHNICAL FIELD

The present invention relates to a non-aqueous electrolyte having improved safety and to an electrochemical device comprising the same.


BACKGROUND ART

Recently, as electronic instruments have become wireless and portable, non-aqueous electrolyte-based secondary batteries with high capacity and high energy density have been practically used as drive sources for the electronic instruments. A lithium secondary battery, which is a typical example of the non-aqueous secondary batteries, comprises a cathode, an anode and an electrolyte and is chargeable and dischargeable because lithium ions coming out from a cathode active material during a charge process are intercalated into an anode active material and deintercalated during a discharge process, so that the lithium ions run between both the electrodes while serving to transfer energy. Such a high-capacity lithium secondary battery has an advantage in that it can be used for a long period of time due to high energy density. However, the lithium secondary battery has problems in that when the battery is exposed to high temperatures for a long period of time due to internal heat generation during the driving thereof, the stable structure of the battery, comprising a cathode (ex. lithium transition metal oxide), an anode (ex. crystalline or non-crystalline carbon) and a separator, will be changed due to gas generation caused by the oxidation of the electrolyte to deteriorate the performance of the battery or, in severe cases, to cause the ignition and explosion of the battery due to internal short circuits in severe cases.


To solve such problems, there have been many recent attempts to'improve the high-temperature safety of the battery by (1) using a porous polyolefin-based separator having a high melting point, which does not easily melt in the internal/external thermal environments or (2) adding a non-flammable organic solvent to a non-aqueous electrolyte comprising a lithium salt and a flammable organic solvent.


However, the polyolefin-based separator has a disadvantage in that it should generally have high film thickness in order to achieve high-melting point and to prevent internal short circuits. This high film thickness relatively reduces the loading amount of the cathode and the anode, thus making it impossible to realize a high capacity of the battery, or deteriorating the performance of the battery in severe cases. Also, the polyolefin-based separator consists of a polymer such as PE or PP, which has a melting point of about 150° C., and thus, when the battery is exposed to high temperatures above 150° C. for a long period of time, the separator will melt, causing short circuits inside the battery, thus causing the ignition and explosion of the battery.


Meanwhile, a lithium secondary battery comprising a flammable non-aqueous electrolyte containing a lithium salt, cyclic carbonate and linear carbonate has the following problems at high temperatures: (1) a large amount of heat is generated due to the reaction between lithium transition metal oxide and the carbonate solvent to cause the short circuit and ignition of the battery, and (2) a thermally stable battery cannot be realized due to the flammability of the non-aqueous electrolyte itself.


Recently, efforts to solve the problems associated with the flammability of the electrolyte by adding a phosphorus (P)-based compound having flame retardancy have been made, but the compound causes a problem of accelerating irreversible reactions, including Li corrosion, in a battery, thus significantly reducing the performance and efficiency of the battery.


DISCLOSURE OF THE INVENTION

The present inventors have found that when both a fluoroethylene carbonate (FEC) compound and an aliphatic mono-nitrile compound are used as electrolyte additive, these compounds show a synergic effect in terms of the performance of a battery, as well as in terms of the safety of the battery, for example in terms of the prevention of battery ignition at over-charged state and/or the prevention of ignition/explosion caused by internal short circuit of a battery at high temperatures above 150° C. The present invention is based on this finding.


The present invention provides a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 1-10 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic mono-nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte:







wherein X and Y are each independently hydrogen, chlorine or fluorine, except that both X and Y are not hydrogen.


In another aspect, the present invention provides an electrochemical device comprising: a cathode having a complex formed between a surface of a cathode active material and an aliphatic mono-nitrile compound; and a non-aqueous electrolyte containing 1-10 wt % of a compound of Formula 1 or its decomposition product based on the weight of the electrolyte.


In the present invention, the aliphatic mono-nitrile compound is preferably butyronitrile or valeronitrile.


Moreover, in the present invention, the decomposition product of the compound of Formula 1 has an opened-ring structure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graphic diagram showing the test results for battery performance after each battery obtained from Examples 1 and 2 and Comparative Examples 1 and 5 was stored at a high temperature of 80° C. for 10 days.



FIGS. 2 to 4 are graphic diagrams showing whether the ignition and explosion of batteries occur after the batteries are stored in an oven at 150 in a state in which the batteries are charged to 4.2V. Herein, FIG. 2 is for Example 1, FIG. 3 for Comparative Example 1, FIG. 4 for Comparative Example 2.



FIG. 5 is a graphic diagram showing the results of heat generation analysis conducted using differential scanning calorimetry (DSC) in order to examine the thermal safety of each of the batteries manufactured in Examples 1, 4 and 5 and Comparative Example 5.





MODE FOR CARRYING OUT THE INVENTION

Hereinafter, the present invention will be described in detail.


The present inventors have found through experiments that the compound of Formula 1 and a nitrile compound having a cyano (—CN) functional group show a synergic effect in terms of securing battery safety associated with thermal shock and in terms of high-temperature cycle life (see FIGS. 1 to 4).


When the compound of Formula 1 or its decomposition product and the aliphatic mono-nitrile compound are used in combination as additive, they can show a synergic effect in terms of the safety of a battery, and the mechanism thereof is as follows.


The ignition and explosion reactions of a lithium ion battery can occur due to a rapid exothermic reaction between a charged cathode and an electrolyte, and if the capacity of the battery increases, only controlling the exothermic reaction between the cathode and the electrolyte cannot secure the safety of the battery.


Generally, when the charge voltage of the cathode is high or the capacity of the battery is increased (an increase in the number of stacks (pouch type batteries, etc.) or the number of electrode windings of jelly-rolls (cylindrical or prismatic batteries, etc.)), the energy level of the battery will be increased, and thus the battery will tend to generate heat due to physical shock (e.g., heat, temperature, pressure, etc.), or in severe cases, explode, thus reducing the safety of the battery.


The compound of Formula 1 such as a fluoroethylene carbonate can prevent or delay the battery from being ignited by the exothermic reaction, compared to ethylene carbonate. This is because the compound of Formula 1 consists of a halogen-based compound (e.g., one introduced with at least one of fluorine (F) and chlorine (Cl)) having a high flame-retardant effect, and in particular, the compound can form an SEI layer (protective layer) on the anode surface upon charge to delay micro- or macro-thermal short circuits occurring inside the battery.


However, the compound of Formula 1 such as a fluoroethylene carbonate is so thermally fragile to be easily decomposed at high temperature and to generate a large amount of gas. The generated gas can vent a pouch-typed or can-typed battery case, thereby accelerating the combustion of the electrolyte and causing internal short circuits, particularly due to the exothermic reaction between the electrolyte and the oxygen introduced from the vented region, resulting in the ignition and explosion of the battery.


That is, when the compound of Formula 1 or its decomposition product is used alone, the safety of the battery, particularly the high-temperature safety of the battery, cannot be sufficiently secured (see FIG. 3). Accordingly, the present invention is characterized in that the aliphatic mono-nitrile compound is used in combination with the compound of Formula 1 or its decomposition product.


When the aliphatic mono-nitrile compound is used in combination with the compound of Formula 1 or its decomposition product, the aliphatic mono-nitrile compound can form a complex on the surface of a cathode consisting of lithium-transition metal oxide so as to inhibit the reaction between the electrolyte (ex. linear carbonates or cyclic carbonates) and the cathode, thus controlling heat generation and controlling an increase in the temperature of the battery. Also, the complex formation can prevent the combustion of the electrolyte, which is accelerated by oxygen liberated due to the structural collapse of the cathode, prevent thermal runaway phenomena, and prevent the internal short circuit of the battery from occurring due to heat generation (see FIG. 5).


Also, the continuous interaction chemically between the compound of Formula 1 and the cyano (—CN) functional group of the nitrile compound prevents a large amount of gas generation occurred when using the compound of Formula 1 alone.


In short, 1) the compound of Formula 1 or its decomposition product and 2) an aliphatic mono-nitrile compound such as butyronitrile or valeronitrile can show a synergic effect, thus improving the safety of the battery.


Furthermore, when the compound of Formula 1 or its decomposition product and the aliphatic mono-nitrile compound are used in combination, they can show a synergic effect in terms of the performance of a battery, and the mechanism thereof is as follows.


The compound of Formula 1 or its decomposition product forms a dense and close passivation layer on the anode upon the initial charge cycle (which is generally referred as formation of a battery). The passivation layer prevents co-intercalation of the carbonate solvent into the layered structure of active materials and decomposition of the carbonate solvent, and thus reduces irreversible reactions in the battery. Additionally, the passivation layer allows only Li+ to be intercalated/deintercalated through the layer, thereby improving the life characteristics of the battery.


However, the passivation layer (SEI layer) formed by the compound is easily decomposed at high temperature (above 60° C.) to generate a large amount of gas (CO2 and CO), and particularly in the case of a cylindrical battery, the generated gas breaks a current interruptive device (CID), an electrochemical device at a cylindrical cap region, to interrupt electric current, thus reducing the function of the battery. In severe cases, the generated gas opens the cap region, so that the electrolyte leaks to corrode the appearance of the battery or to cause a significant reduction in the performance of the battery.


According to the present invention, gas generation resulting from the compound of Formula 1 or its decomposition product can be inhibited through the use of the aliphatic mono-nitrile compound by the chemical interaction between the compound of Formula 1 or its decomposition and a cyano (—CN) functional group, thus improving the high-temperature cycle life characteristics of the battery (see FIG. 1).


When considering this effect together with an improvement in the performance of a high-capacity battery, butyronitrile or valeronitrile is most suitable as aliphatic mono-nitrile.


Among aliphatic mono-nitrile compounds, those having long chain length have no great effect on the performance and safety of the battery or adversely affect the performance of the battery, and thus those having short chain length are preferable. However, acetonitrile having an excessively short chain length causes side reactions in the battery, and thus it is preferable to use propionitrile (Formula 3), butyronnitrile (Formula 4), or valeronitrile (Formula 5). Among them, it is more preferable to select butyronnitrile or valeronitrile. Most preferred is butyronnitrile.







Meanwhile, among compounds containing a cyano functional group, aromatic nitriles and fluorinated aromatic nitrile compounds are not preferable because they are electrochemically easily decomposed in the battery to interfere with the migration of Li ions, thus deteriorating the performance of the battery.


The content of the compound of Formula 1 or its decomposition product for use in the inventive electrolyte is preferably 1-10 wt %, and more preferably 1-5 wt %, and most preferably 1-3 wt %. The compound of Formula 1 has a high viscosity, and thus when the compound of Formula 1 is used in an excessive amount, the ion conductivity of the electrolyte can be reduced and the mobility of Li ion can be inhibited, causing to a reduction of the cycle life and capacity of battery.


The aliphatic mono-nitrile compounds, particularly butyronitrile and valeronitrile, have the effects of increasing the ion conductivity of the electrolyte and reducing the viscosity of the electrolyte, and for this reason, the content of the aliphatic mono-nitrile compound in the electrolyte is preferably 1-40 wt %, more preferably 1-20 wt %, and most preferably 1-10 wt %.


The inventive electrolyte may contain as an additive an aliphatic di-nitrile compound having two cyano (—CN) functional groups such as CN—R—CN, wherein R is aliphatic hydrocarbon etc.), preferably succinonitrile. The content of the aliphatic di-nitrile compound, particularly succinonitrile is preferably 1-10 wt %, more preferably 1-5 wt %, and most preferably 1-3 wt %.


The inventive non-aqueous electrolyte for lithium secondary batteries contain a general non-aqueous organic solvents, including cyclic carbonates, linear carbonates and combinations thereof. Typical examples of the cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), gamma-butyrolactone (GBL) and the like, and typical examples of the linear carbonates include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC) and the like.


The non-aqueous electrolyte contains a lithium salt, non-limiting examples of which include LiClO4, LiCF3SO3, LiPF6, LiBF4, LiAsF6, LiSbF6, LiN(CF3SO2)2, LiN(C2F5SO2)r, LiAlO4, LiAlCl4, LiSO3CF3, and LiN(CxF2x+1SO2)(CyF2y+1SO2) (x and y=natural numbers).


Meanwhile, the aliphatic mono-nitrile compounds can form a bond with a transition metal, such as cobalt, contained in the cathode active material through their cyano functional groups having high dipole moment. Particularly, the cyano functional groups can form stronger bonds with the surface of the cathode at high temperature, thereby forming a complex structure.


In order to simplify a manufacturing process of a battery, it is preferable that the aliphatic mono-nitrile compound is introduced into an electrolyte, and then a complex is formed between the surface of a cathode active material and the aliphatic mono-nitrile compound. However, it is also possible to separately prepare a cathode having a complex formed on the surface thereof, before the assemblage of a battery.


Preferably, the complex between the surface of a cathode active material and the aliphatic mono-nitrile compound is formed by dipping a cathode, comprising a cathode active material coated on a collector, into an electrolyte containing the aliphatic mono-nitrile compound added thereto, followed by heat treatment at high temperature. The high-temperature heat treatment may be performed in such a temperature range as not to affect electrode active materials and a binder, generally at a temperature of 180° C. or lower. Otherwise, although the high-temperature heat treatment depends on the kind of the aliphatic mono-nitrile compound, it may be performed at such a temperature range as to prevent excessive evaporation of the aliphatic mono-nitrile compound, generally at a temperature of 100° C. or lower. In general, the high-temperature treatment is suitably performed at a temperature between 60° C. and 90° C. Long-term treatment at a temperature between 30° C. and 40° C. may provide the same effect.


In addition, in the present invention, a compound capable of forming a passivation layer on the surface of an anode may additionally be used to prevent side reactions where a passivation layer formed on the anode from the compound of Formula 1, such as fluoroethylene carbonate, emits a large amount of gas at high temperature. Non-limiting examples of the compound include alkylene compounds, such as vinylene carbonate (VC), sulfur-containing compounds, such as propane sulfone, ethylene sulfite and 1,3-propane sultone, and lactam-based compounds, such as N-acetyl lactam.


Furthermore, the electrolyte according to the present invention may comprise vinylene carbonate, propane sulfone and ethylene sulfite at the same time, but only a sulfur-containing compound may also be selectively added to the electrolyte to improve the high-temperature cycle life characteristics of the battery.


A typical example of electrochemical devices, which can be manufactured according to the present invention, is a lithium secondary battery, which may comprise: (1) a cathode capable of intercalating and deintercalating lithium ions; (2) an anode capable of intercalating and deintercalating lithium ions; (3) a porous separator; and (4) a) a lithium salt, and b) an electrolyte solvent.


In general, as a cathode active material for use in a lithium secondary battery, lithium-containing transition metal oxides may be used. The cathode active material can be at least one material selected from the group consisting of LiCoO2, LiNiO2, LiMn2O4, LiMnO2, and LiNi1−xCOxMyO2 (wherein 0≦X≦1, 0≦Y≦1, 0≦X+Y≦1, M is a metal such as Mg, Al, Sr or La). Meanwhile, as an anode active material for use a lithium secondary battery, carbon, lithium metal or lithium alloy may be used. In addition, other metal oxides capable of lithium intercalation/deintercalation and having an electric potential of less than 2V based on lithium (for example, TiO2 and SnO2) may be used as the anode active material.


The lithium secondary battery according to the present invention may have a cylindrical, prismatic or pouch-like shape.


Hereinafter, the present invention will be described in further detail with reference to examples. It is to be understood, however, that these examples are illustrative only and the present invention is not limited thereto.


EXAMPLES
Example 1

An electrolyte used in this Example was a 1M LiPF6 solution having a composition of EC:EMC=1:2. To the electrolyte, 5 wt % of fluoroethylene carbonate and 5 wt % of butyronitrile were added. Artificial graphite and LiCoO2 were used as an anode active material and a cathode active material, respectively. Then, a 3562 size of lithium polymer battery was manufactured according to a conventional method and aluminum laminate was used as the battery package.


Example 2

A lithium polymer battery was manufactured in the same manner as in Example 1, except that 10 wt % of butyronitrile was used instead of 5 wt % of butyronitrile.


Example 3

A lithium polymer battery was manufactured in the same manner as in Example 1, except that 1 wt % of fluoroethylene carbonate and 5 wt % of butyronitrile were added.


Example 4

A lithium polymer battery was manufactured in the same manner as in Example 1, except that valeronitrile was used instead of butyronitrile.


Example 5

A lithium polymer battery was manufactured in the same manner as in Example 1, except that propionitrile was used instead of butyronitrile.


Comparative Example 1

A lithium polymer battery was manufactured in the same manner as in Example 1, except that 5 wt % of fluoroethylene carbonate was added and butyronitrile was not added.


Comparative Example 2

A lithium polymer battery was manufactured in the same manner as in Example 1, except that 5 wt % of butyronitrile was added and fluoroethylene carbonate was not added.


Comparative Example 3

A lithium polymer battery was manufactured in the same manner as in Comparative Example 2, except that 10 wt % of butyronitrile was used instead of 5 wt % of butyronitrile.


Comparative Example 4

A lithium polymer battery was manufactured in the same manner as in Comparative Example 3, except that valeronitrile was used instead of butyronitrile.


Comparative Example 5

A lithium polymer battery was manufactured in the same manner as in Comparative Example 1, except that fluoroethylene carbonate was not added.


<Experiment>


1. Test for Battery Performance


Each battery obtained from Examples 1 and 2 and Comparative Examples 1 and 5 was stored at a high temperature of 80° C. for 10 days and tested for battery performance. The test results are shown in FIG. 1. Examples 1 and 2 comprising the non-aqueous electrolyte containing fluoroethylene carbonate and butyronitrile added thereto according to the present invention, showed excellent capacity restorability and battery performance even after a high-temperature storage.


In the case of Comparative Example 1 comprising the non-aqueous electrolyte containing fluoroethylene carbonate added thereto without butyronitrile, a large amount of gas was generated during a high-temperature storage, thereby venting a battery case, causing to exposure of the electrolyte.


2. Test for Safety (1)


Each of the batteries manufactured in Example 1 and Comparative Examples 1 and 2 was charged to 4.25V and stored in an oven at 150° C., and then whether the ignition and explosion of the batteries occurred was observed. The observation results are shown in FIGS. 2 to 4.


As can be seen in FIG. 2, only the case of the battery containing 5 wt % of fluoroethylene carbonate (FEC) and 5 wt % of the butyronitrile compound added to the electrolyte solvent realized a thermally stable battery at high temperature for 1 hour or longer without ignition.


On the other hand, in the case of adding fluoroethylene carbonate alone (FIG. 3) or the case of adding only butyronitrile or valeronitrile (FIG. 4), it could be seen that the battery was ignited and exploded at a high temperature above 150° C.


3. Test for Safety (2)


Each of the batteries manufactured in Examples 1, 4 and 5 and Comparative Example 5 was charged to 4.2V. A general thermogravimetric analyzer, DSC (Differential Scanning Calorimeter), was used, wherein two high-pressure pans capable of resisting the vapor pressure of the electrolyte were used as pans for measurement. To one pan, about 5-10 mg of the cathode sample separated from each of the batteries charged to 4.2V was introduced, while the other pan was left empty. The calorific difference between the two pans was analyzed while the pans were heated at a rate of 5° C./min to 400° C. to measure temperature peaks corresponding to heat generation.


As shown in FIG. 5, the battery manufactured without the aliphatic mono-nitrile compound shows heat generation peaks at about 200° C. and about 240° C. Generally, the peak at about 200° C. indicates heat generation caused by the reaction between the electrolyte and the cathode, while the peak at about 240° C. indicates heat generation caused by combined factors including the reaction between the electrolyte and the cathode, and the structural collapse of the cathode. The battery comprising the non-aqueous electrolyte containing butyronitrile or valeronitrile added thereto showed a remarkable reduction in heat generation without showing the above two temperature peaks. This indicates that heat generation caused by the reaction between the electrolyte and the cathode was controlled due to the formation of a protective layer through a strong bond between butyronitrile or valeronitrile and the cathode surface.


INDUSTRIAL APPLICABILITY

As can be seen from the foregoing, according to the present invention, when the compound of Formula 1 and the aliphatic mono-nitrile compound are used in combination, they can show a synergic effect in terms of securing safety at a high temperature, and in terms of improving the battery performance by maintaining a high capacity and efficiency.


Although the preferred embodiment of the present invention has been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims
  • 1. A non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 1-10 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic mono-nitrile compound:
  • 2. The non-aqueous electrolyte of claim 1, wherein the aliphatic mono-nitrile compound is represented by Formula 2: N≡C—R  [Formula 2]wherein R is (CH2)n—CH3 (n is an integer of 1-11)
  • 3. The non-aqueous electrolyte of claim 1, wherein the aliphatic mono-nitrile compound is butyronitrile, valeronitrile, propionitrile or a mixture thereof.
  • 4. The non-aqueous electrolyte of claim 1, wherein the solvent includes either or both of at least one cyclic carbonate selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC) and gamma-butyrolactone (GBL), and at least one linear carbonate selected from the group consisting of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and methyl propyl carbonate (MPC).
  • 5. The non-aqueous electrolyte of claim 1, wherein an aliphatic di-nitrile compound is further added to the electrolyte.
  • 6. The non-aqueous electrolyte of claim 1, wherein a compound selected from alkylene compounds, sulfur-containing compounds and lactam-based compounds, which can form a passivation layer on an anode surface, is further added to the electrolyte.
  • 7. An electrochemical device comprising a cathode, an anode, and the non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte comprises a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 1-10 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic mono-nitrile compound:
  • 8. An electrochemical device comprising: a cathode having a complex formed between a surface of a cathode active material and an aliphatic mono-nitrile compound; and a non-aqueous electrolyte containing 1-10 wt % of a compound of Formula 1 or its decomposition product based on the weight of the electrolyte:
  • 9. The electrochemical device of claim 8, wherein the aliphatic mono-nitrile compound is represented by Formula 2: N≡C—R  [Formula 2]wherein R is (CH2)n—CH3 (n is an integer of 1-11)
  • 10. The electrochemical device of claim 8, the complex between the cathode active material surface and the aliphatic mono-nitrile compound is formed either by high-temperature treating the electrochemical device manufactured from an electrolyte containing the aliphatic mono-nitrile compound added thereto, or by dipping the cathode, comprising the cathode active material coated on a collector, into the electrolyte containing the aliphatic mono-nitrile compound added thereto, followed by heat treatment at high temperature.
  • 11. The electrochemical device of claim 10, wherein the high-temperature treatment is performed at a temperature of 30° C. or more before or after assemblage of the electrochemical device.
  • 12. The electrochemical device of claim 8, wherein the aliphatic mono-nitrile compound is butyronitrile, valeronitrile, propionitrile or a mixture thereof.
  • 13. The electrochemical device of claim 7, wherein the aliphatic mono-nitrile compound is represented by Formula 2: N≡C—R  [Formula 2]wherein R is (CH2)n—CH3 where n is an integer of 1-11.
  • 14. The electrochemical device of claim 7, wherein the aliphatic mono-nitrile compound is butyronitrile, valeronitrile, propionitrile or a mixture thereof.
  • 15. The electrochemical device of claim 7, wherein the solvent includes either or both of at least one cyclic carbonate selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC) and gamma-butyrolactone (GBL), and at least one linear carbonate selected from the group consisting of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and methyl propyl carbonate (MPC).
  • 16. The electrochemical device of claim 7, wherein an aliphatic di-nitrile compound is further added to the electrolyte.
  • 17. The electrochemical device of claim 7, wherein a compound selected from alkylene compounds, sulfur-containing compounds and lactam-based compounds, which can form a passivation layer on an anode surface, is further added to the electrolyte.
Priority Claims (1)
Number Date Country Kind
10-2006-0014650 Feb 2006 KR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/KR2007/000810 2/15/2007 WO 00 8/12/2008