1. Field of the Invention
The present invention relates to a level, and more particularly, to a non-contact electronic level.
2. Description of the Prior Art
Various forms of levels have been used as devices to enable the operator to determine when a particular surface is horizontal. Early levels consisted of a body of liquid in an open vessel since liquid is known to form a flat, horizontal surface. The surface of the liquid formed a reference surface which served as the standard against which the horizontal character of a second surface was estimated (e.g., an inclination direction and an inclination angle). This basic principle has evolved into a bubble level where a bubble is trapped in a body of liquid, with the liquid being enclosed in an upwardly curved, clear tube. An improved design uses a transparent ball instead of the clear tube for holding the liquid enabling the bubble to move in all four directions of the plane thereon so that the user does not need to pivot the level at an angle of ninety degrees over and over again while measuring.
1. After the metal electrodes 106 have been used for a period of time, the surface of the metal electrodes 106 will be corroded and the resistance thereof will be affected, such that the accuracy and sensitivity of the level 100 are reduced.
2. The electrolyte 104 must be changed regularly to maintain a proper ion concentration.
3. Even if the metal electrodes 106 and the electrolyte 104 are changed regularly, the resistance can still be varied by the gradual corrosion of the electrodes 106 and the gradual consumption of the electrolyte 104, thereby affecting the accuracy and sensitivity of the level 100.
4. The electrolyte 104 is vulnerable to the temperature of the environment, such that the temperature variation of the surrounding environment will affect the conductivity of the electrolyte 104, thereby reducing the accuracy and sensitivity of the level 100.
It is an object of the present invention to provide a non-contact electronic level that obtains a precise electronic level signal so as to enhance the precision, sensitivity, and testing reliability of the electronic level.
It is another object of the present invention to provide a non-contact electronic level which avoids using corrosive electrolytes, but which uses light as a medium to effectively extend the life of electronic level.
In order to achieve the objectives of the present invention, there is provided a non-contact electronic level that has a light source, a vial having an air bubble and positioned to be irradiated by light from the light source, a photo sensor located at a position corresponding to the air bubble at a fixed distance from the vial, with the photo sensor capturing an image of the air bubble after the vial is irradiated by the light source, and an image processing unit electrically coupled to the photo sensor and converting the image of the air bubble into an electronic level signal.
The present invention also provides a method of measuring a level which includes using a light source to irradiate a vial having an air bubble therein, capturing an image of the air bubble after the vial is irradiated by the light source, converting the image of the air bubble into an electronic level signal, and adjusting the inclination of the air bubble based on the electronic level signal.
The following detailed description is of the best presently contemplated modes of carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating general principles of embodiments of the invention. The scope of the invention is best defined by the appended claims.
Referring to
The vial 202 has a transparent tube 210 and a liquid 212 that is disposed inside the transparent tube 210, with the air bubble 214 floating on the surface of the liquid 212. In general, the transparent tube 210 is usually made of glass or plastic. If the vial 202 is tilted, the air bubble 214 will move to the upper section of the transparent tube 210. On the other hand, if the vial 202 is disposed in a perfectly-horizontal state, the air bubble 214 will be located at the center position of the transparent tube 210. The photo sensor 204 captures the image 220 of the air bubble 214 when the transparent tube 210 is irradiated by the light source 208, and the image processing unit 206 can calculate the image 220 to obtain the relative displacement W (which can be a positive value) between the center position of the air bubble image 220 and the center position of the transparent tube 210 in order to determine whether or not the vial 202 is disposed in a perfectly-horizontal state.
Continuing to refer to
Throughout the various embodiments of the present invention, the photo sensor 204 is used to capture the image of the air bubble 214, and the image processing unit 206 is used to process the air bubble image 220 to output a high-precision electronic level signal 304. However, the air bubble image 220 can be captured and processed by other known devices, and is not limited to the photo sensor 204 and the image processing unit 206.
In summary, the non-contact electronic level 200 of the present invention has at least the following advantages:
1. The non-contact electronic level 200 uses the photo sensor 204 to capture the air bubble image 220 and precisely detect the position of the air bubble 214 regardless of whether the level 200 is in a dynamic state or in a static state for the image processing unit 206 to output a precise electronic level signal 304 as a basis for determining the horizontal level.
2. The non-contact electronic level 200 uses the image processing unit 206 to process the air bubble image 220 and to correctly compute the distance between the center position 216 of the air bubble 214 and the center position 218 of the transparent tube 210, so as to determine the inclination of the vial 202 or the testing object 310.
3. After the air bubble image 220 of the non-contact electronic level 200 is processed by the image processing unit 206, a precise electronic level signal 304 can be outputted as a feedback signal to the externally connected circuit device 302 for adjusting the inclination of the vial 202.
4. The temperature of the environment will not affect the performance of the non-contact electronic level 200 because the level 200 uses a non-contact measuring method.
While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
093202210 | Feb 2004 | TW | national |