This application claims priority to Chinese Application No. 201910454194.5 filed on May 29, 2019, the entire contents of which are herein incorporated by reference.
The disclosure belongs to the field of intelligent micro devices, and mainly relates to micro electromechanical system technology, precision machining technology, precision assembly and the like.
Ultrasonic motor is a brand-new concept micro-motor developed at the end of the 20th century. Different from the principle of the traditional electromagnetic motor, the inverse piezoelectric effect of piezoelectric material is utilized so that an elastic body stator vibrates in an ultrasonic frequency band, torque and motion are obtained through the frictional coupling between the rotor and the elastic body stator to drive the rotor. The ultrasonic motor has the advantages of small volume, light weight, compact structure, fast response, low noise, no electromagnetic interference and the like, so that the ultrasonic motor plays an important role in modern weapon equipment, industrial automation, home life automation and office automation. The ultrasonic motor is free of coil, simple in structure, easy to process, and wide in application scenarios in the fields of micro-electromechanical systems (MEMS) and the like, miniaturization and integration are important development directions of the ultrasonic motor.
A longitudinal/torque piezoelectric motor (Kurosawa M, Ueha S.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1991, 38(2): 89-92) was developed by Kurosawa in 1991, a long shaft penetrate through central hole of the stator and the rotor, the rotor is pressed against the stator by virtue of spring deformation force, the pre-load pressure applied to the rotor is 90 N, the diameter of the motor is 50 mm, and the full length of the motor is about 82 mm. In 1999, researchers of Japanese Seiko Instrument Co., Ltd. developed a miniature rod-type ultrasonic motor (SuzukiY, TaniK, SakuharaT. Sensors and Actuators A: Physical, 2000, 83(3): 244-248.), the center part of a leaf spring and the top of the shaft are welded, and the contact pressure between the stator and the rotor is generated by bending a suspension component to the rotor through a flat spring structure. The novel motor is 2 mm in diameter and 0.3 mm in height. It can be seen that the manner in which the pre-pressure is applied has an important effect on the miniaturization and integration of the ultrasonic motor. According to an implementation method of a non-contact force type micro-rotating mechanism provided by the disclosure, the friction between the stator and the rotor is guaranteed through magnetic force, and the volume of the motor can be greatly reduced.
In order to improve the shortcomings of the traditional rotary driving device in the aspects of complex composition, low mechanical efficiency and the like, which causes by contact type pretightening force provided by using a pressure spring and the like, the disclosure provides an implementation method of a non-contact force type micro-rotating mechanism, which is simple and compact in structure, convenient to integrate, and is applicable to the fields of silicon wafers, integrated circuit chips and the like.
Referring to
The attractive force type rotating mechanism consists of wafer 1, the first magnet 2, elastic body 3, piezoelectric ceramic 4, the first base 5, the second magnet 6 and the first shell 7. The wafer 1 and the first magnet 2 form the rotor part. The wafer 1 and the first magnet 2 are bonded coaxially. A layer of wear-resistant material, such as polytetrafluoroethylene-based friction material, is added to the wafer 1 to improve the mechanical properties and prolong service life. The elastic body 3 and the piezoelectric ceramic 4 form the stator part. The elastic body 3 and the piezoelectric ceramic 4 are also bonded coaxially. The elastic body 3 is an annular structure, and mechanical vibration of the piezoelectric ceramic 4 is about to propagate in the elastic body 3 in the form of waves. A reinforcing rib on the inner ring of the elastic body 3 is used for increasing the strength and rigidity of the elastic body 3 and overcoming twisted deformation caused by uneven stress during working. On the one hand, the tooth-shaped structure on the elastic body 3 is used for amplifying the vibration amplitude of the stator under the condition that the bending rigidity of the stator ring is basically kept unchanged. On the other hand, debris generated by friction between the stator and the rotor can be accommodated in grooves of the tooth-shaped structure, so that the normal operation of the motor is guaranteed. The stator, the rotor and the second magnet 6 are coaxially assembled. The first magnet 2 of the rotor part is arranged in the elastic body 3 of the stator part. The first magnet 2 and the elastic body 3 are in clearance fit to ensure normal rotation. The attractive force type rotating mechanism utilizes mutual attraction of the first magnet 2 on the rotor and the second magnet 6 on the first base 5 with opposite magnetic poles to provide pre-pressure required for rotation.
The repulsive force type rotating mechanism consists of wafer 1, first magnet 2, elastic body 3, piezoelectric ceramic 4, the second magnet 6, the second base 8 and the first shell 9. The wafer 1 and the first magnet 2 form the rotor part. The wafer 1 and the first magnet 2 are bonded coaxially. A layer of wear-resistant material, such as polytetrafluoroethylene-based friction material, is added to the wafer 1 to improve the mechanical properties and prolong service life. The elastic body 3 and the piezoelectric ceramic 4 form the stator part. The elastic body 3 and the piezoelectric ceramic 4 are also bonded coaxially. The elastic body 3 is of an annular structure, and mechanical vibration of the piezoelectric ceramic 4 is about to propagate in the elastic body 3 in the form of waves. A reinforcing rib on the inner ring of the elastic body 3 is used for increasing the strength and rigidity of the elastic body 3 and overcoming twisted deformation caused by uneven stress during working. On the one hand, the tooth-shaped structure on the elastic body 3 is used for amplifying the vibration amplitude of the stator under the condition that the bending rigidity of the stator ring is basically kept unchanged. On the other hand, debris generated by friction between the stator and the rotor can be accommodated in grooves of the tooth-shaped structure, so that the normal operation of the motor is guaranteed. The stator, the rotor and the second magnet 6 are coaxially assembled. The first magnet 2 on the rotor and the stator are in clearance fit to ensure normal rotation. The repulsive force type rotating mechanism utilizes mutual repulsion of the first magnet 2 on the rotor and the second magnet 6 on the second shell 9 with same magnetic poles to provide pre-pressure required for rotation.
The working principle of the attractive force type rotating mechanism refers to
The working principle of the repulsive force type rotating mechanism refers to
Referring to
Referring to
The implementation method of the non-contact force type micro-rotating mechanism provided by the disclosure adopts the interaction force between magnetic poles to replace the connection mode of the traditional through-hole bearing pressure spring positioning shaft, so that the component part structure of the mechanism can be optimized, and the space utilization rate can be greatly improved. Moreover, the attractive force type structure also has the effect of weakening the radial vibration of the motor, and the coaxiality of the rotor. The stator is improved in the running process of the motor. When the magnet is selected, it should be noted that the magnitude of provided prestress is appropriate, the friction, wear and noise between the stator and the rotor are taken into account. And at the same time ensure that the motor has good output performance. The appropriate prestress can enable the motor to be high in no-load speed and large in output torque. Meanwhile, the rotating mechanism does not directly output shaft work, the structure can be added on the disc-shaped rotor to realize different functions, an actuator and the control object are integrated. For example, when the rotor is made of the glass material, the grating or the filter coating and the like can be added on the rotor to obtain polarized light or light with the specific wavelength, integration and chip design of the motor and the filter wheel can be realized, and the volume of related devices is greatly reduced. The disclosure provides a feasible idea for implementing chip application of the micro motor.
wherein, 1, wafer; 2, first magnet; 3, elastic body; 4, piezoelectric ceramic; 5, first base; 6, second magnet; 7, first shell; 8, second base; and 9, second shell.
The embodiment is an attractive force type rotating mechanism, which consists of the wafer 1 made of the glass material with the diameter phi of 25 mm and the thickness of 0.3 mm, the rubidium-iron-boron first magnet 2 with the diameter phi of 6.8 mm and the thickness of 0.6 mm, the toothed annular phosphor bronze elastic body 3 with the inner diameter phi of 6.9 mm and the outer diameter phi of 12 mm, the piezoelectric ceramic 4 with electrodes with the thickness of 0.3 mm, the inner diameter phi of 6.9 mm and the outer diameter phi of 12 mm, the first base 5 with the thickness of 1 mm with a blind hole with the diameter phi of 10 mm and the depth of 0.4 mm, the rubidium-iron-boron second magnet 6 with the diameter phi of 6.8 mm and the thickness of 0.6 mm, and the first shell 7 made of a PMMA material. The wafer 1 and the first magnet 2 form the rotor part, and the wafer 1 and the first magnet 2 are bonded coaxially. A layer of wear-resistant material, such as polytetrafluoroethylene-based friction material, may be added to the wafer 1 to improve mechanical properties and prolong service life. The elastic body 3 and the piezoelectric ceramic 4 form the stator part, and the elastic body 3 and the piezoelectric ceramic 4 are also bonded coaxially. The elastic body 3 is of an annular structure, and mechanical vibration of the piezoelectric ceramic 4 is about to propagate in the elastic body 3 in the form of waves. The reinforcing rib on the inner ring of the elastic body 3 is used for increasing the strength and rigidity of the elastic body 3 and overcoming twisted deformation caused by uneven stress during working. On one hand, the tooth-shaped structure on the elastic body 3 is used for amplifying the vibration amplitude of the stator under the condition that the bending rigidity of the stator ring is basically kept unchanged. And on the other hand, debris generated by friction between the stator and the rotor can be accommodated in grooves of the tooth-shaped structure, so that the normal operation of the motor is guaranteed. The stator, the rotor and the second magnet 6 are coaxially assembled, the first magnet 2 of the rotor part is arranged in the elastic body 3 of the stator part, and the first magnet 2 and the elastic body 3 are in clearance fit to ensure normal rotation. The attractive force type rotating mechanism utilizes mutual attraction of the first magnet 2 on the rotor and the second magnet 6 on the first base 5 with opposite magnetic poles to provide pre-pressure required for rotation.
Referring to
The material of the glass wafer 1 may also be silicon, steel, copper, aluminum, plastic or the like, and the material of the phosphor bronze elastic body 3 may also be stainless steel, aluminum or the like.
The embodiment is a repulsive force type rotating mechanism, which consists of the wafer 1 made of a glass material with the diameter phi of 25 mm and the thickness of 0.3 mm, the rubidium-iron-boron first magnet 2 with the diameter phi of 6.8 mm and the thickness of 0.6 mm, the toothed annular phosphor bronze elastic body 3 with the inner diameter phi of 6.9 mm and the outer diameter phi of 12 mm, the piezoelectric ceramic 4 with electrodes with the thickness of 0.3 mm, the inner diameter phi of 6.9 mm and the outer diameter phi of 12 mm, the rubidium-iron-boron second magnet 6 with the diameter phi of 6.8 mm and the thickness of 0.6 mm, the second base 8 with the diameter phi of 28 mm and the thickness of 1 mm, and the second shell 9 made of a PMMA material. The glass wafer 1 is plated with fan-shaped filter films, with six channels, capable of transmitting visible light of six different wave bands. Each sector is 60 degrees, each sector-shaped filter film is composed of four layers of thin films, each sector-shaped filter film comprises a chromium film of 1 nm, a silver film of 18 nm, a silicon film of 20-40 nm and a silver film of 18 nm from bottom to top respectively, and the wavelength of transmitted visible light is realized by changing the thickness of the silicon film. The wafer 1 and the first magnet 2 form the rotor part, and the wafer 1 and the first magnet 2 are bonded coaxially. A layer of wear-resistant material, such as polytetrafluoroethylene-based friction material, may be added to the wafer 1 to improve mechanical properties and prolong service life. The elastic body 3 and the piezoelectric ceramic 4 form the stator part, and the elastic body 3 and the piezoelectric ceramic 4 are also bonded coaxially. The elastic body 3 is of an annular structure, and mechanical vibration of the piezoelectric ceramic 4 is about to propagate in the elastic body 3 in the form of waves. The reinforcing rib on the inner ring of the elastic body 3 is used for increasing the strength and rigidity of the elastic body 3 and overcoming twisted deformation caused by uneven stress during working. On one hand, the tooth-shaped structure on the elastic body 3 is used for amplifying the vibration amplitude of the stator under the condition that the bending rigidity of the stator ring is basically kept unchanged, and on the other hand, debris generated by friction between the stator and the rotor can be accommodated in grooves of the tooth-shaped structure, so that the normal operation of the motor is guaranteed. The stator, the rotor and the second magnet 6 are coaxially assembled, the first magnet 2 on the rotor and the stator are in clearance fit to ensure normal rotation. The repulsive force type rotating mechanism utilizes mutual repulsion of the first magnet 2 on the rotor and the second magnet 6 on the second shell 9 with same magnetic poles to provide pre-pressure required for rotation.
Referring to
step one, referring to
Step two, referring to
The material of the glass wafer 1 may also be silicon, steel, copper, aluminum, plastic or the like, and the material of the phosphor bronze elastic body 3 may also be stainless steel, aluminum or the like.
Number | Date | Country | Kind |
---|---|---|---|
201910454194.5 | May 2019 | CN | national |