This invention relates generally to the field of electronic sensors, particularly non-contact sensors and strain sensors.
There is a need to determine the structural integrity of support beams and other related materials and substrates in real-time. A common current practice includes visual inspection. Many structures of interest, however, are often in hard to reach or hidden locations making visual inspection difficult. Other approaches may employ electronic sensor packages. These are often large, space-consuming devices, often accompanied by data storage devices. Furthermore, present sensor systems store data and do not report real-time information and cannot be incorporated into on-board systems or transmitted off-board to prognostic and diagnostic equipment. Moreover, present sensors are often “active” and can cause signature management, communication, and other interference issues. Fiber optics and other similar sensors have been developed but fail to meet certain requirements. Wired Sensors often have interconnect failures, inherent faults, constantly transmit, and require more space.
As such, current practices are expensive, time consuming, require experienced personnel, and are often times inaccurate and not based on real-time data.
In accordance with an exemplary embodiment of the present invention, a non-contact, radio-frequency (RF) strain sensor comprises a resistor-inductor-capacitor (RLC) circuit whose natural resonant frequency varies as the sensor is perturbed by an applied load. The exemplary sensor is formed on a decal-like, flexible dielectric substrate that can be attached to a structural member of interest and embedded underneath any type of non-conductive paint.
The wireless RF strain sensor of the present invention can be implemented as a passive device with no power supply attached thereto. The sensor is read by illuminating it with an RF signal and monitoring the signals reflected and/or transmitted by the sensor.
As such, issues with known systems such as battery lifetime support, heating, and wiring problems such as contact engagement etc. are overcome with the present invention. Also, an exemplary sensor in accordance with the present invention is low-cost, light-weight, robust, and easy to attach to hard to reach members. The sensor can also be easily read to provide real-time information on demand using, for example, a non-invasive hand-held device operated from a convenient location, e.g. from outside of a vehicle, even though the sensor may be deeply embedded in the vehicle, in a hard to reach location. Moreover, multiple sensors can be used in a particular application with each sensor being readable individually. Passive operation does not emit or broadcast any active RF signal, either intermediately or continuously to the surroundings, thus making the sensors suitable for discreet or silent mode operations and avoiding interference with other systems with current operations or communications.
Moreover, the ability to sense structural integrity, stress strain, impact, etc. in real-time will facilitate the transition from scheduled maintenance to condition-based maintenance (CBM) and provide logistic staff real-time prognostic and diagnostic information to assist in rapid decision making. The ability to make CBM decisions will help extend the lifetime of numerous platforms and systems.
The aforementioned and other aspects and advantages of the present invention will be apparent from the drawings and the detailed description which follows below.
The following illustrates the principles of the invention. It will thus be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope.
Furthermore, all examples and conditional language recited herein are principally intended expressly to be only for pedagogical purposes to aid the reader in understanding the principles of the invention and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions.
Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
The conductive element 130 comprises two sets 131 and 132 of substantially parallel conductive segments. The set of segments 131 are conductively coupled to each other, as are the set of segments 132. The segments of set 131 and the segments of set 132 are arranged interstitially adjacent to each other and are conductively isolated from each other. The set of segments 131 and the set of segments 132 thus act as the plates of a capacitor whose capacitance varies as the sensor 100 is flexed or perturbed. One set of segments 131 is coupled to the element 120 and the other set of segments 132 is coupled to the conductive element 135.
The conductive elements 125 and 135 are coupled by a wire 140, or other suitable electrically conductive member, thereby completing a closed circuit which includes the conductive elements 120 and 130.
In an exemplary embodiment, the non-contact strain sensor 100 is fabricated using thin film semiconductors, such as described in U.S. Pat. No. 7,082,834 (hereinafter the '834 patent), which is entitled “Flexible Thin Film Pressure Sensor” and is incorporated herein by reference in its entirety. Accordingly, the conductive elements 120 and 130 are piezoresistive and their resistances will vary as the substrate is flexed. This, in turn, will cause variations in the sensor's spectral response which can be detected to monitor the degree of deformation of the sensor.
An exemplary sensor in accordance with the present invention is approximately 1.5″×1.5″, although a wide range of dimensions is possible. Using well-known fabrication techniques, each sensor can be fabricated individually or as part of an array of multiple devices fabricated together on the same substrate which may or may not be later separated.
As is well-known, the series resonant frequency fs for the RLC circuit of
fs=1/2π√{square root over (LC)} (1)
As such, as C and/or L vary, the series resonant frequency of the sensor will vary.
The results illustrated in
As an alternative to monitoring and processing the incident and transmitted signals, the incident and reflected signals can be monitored and processed, in a similar manner, to provide an indication of the spectral response of the sensor 410.
In applications using multiple sensors, it may be preferable to design the sensors so as to have distinct resonant frequencies (stretched and unstretched) so as to distinguish their emissions from each other, particularly if more than one sensor is to be illuminated by the same RF signal source. This can be done by adjusting the L and C parameters of the sensor circuits accordingly, such as by varying the lengths or numbers of conductive elements of the sensors.
When the sensor is deformed, in addition to a shift in resonant frequency, a change may also occur in the amplitude of the sensor's transmitted signal. As is well understood, as the L, C and/or R parameters change, the spectral response of the sensor (i.e., the shape and/or amplitude of the graphs of
As shown in
The use of thin film technology or the like makes it possible to implement a sensor of the present invention with small thicknesses, allowing the sensor to be placed in space-restricted environments. Additionally, the sensor is lightweight, with minimal impact on the overall weight of the structure to which it is applied, even when multiple sensors are used.
By thus providing an indication of deflection, sensors in accordance with the present invention can be used to monitor the condition of structural members. For example, when material corrosion and fatigue occur, such as the rusting of metallic members, the Young's modulus of the member will decrease, thus allowing the member to deflect more than an unimpaired member for a given load. By thus monitoring the degree of deflection of a structural member using the sensor, an indication is thus provided of the condition (e.g., degree of corrosion) of the member.
Sensors implemented in accordance with the principles of the present invention can be used in a wide variety of applications which entail monitoring the condition of structural material or supports, including for example weapon systems and munitions, land, air or sea vehicles, unmanned systems, bridges, buildings, and aerospace, among others.
It is to be understood that the above-described embodiments are merely illustrative of the instant invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. For example, in this Disclosure, numerous specific details are provided in order to provide a thorough description and understanding of the illustrative embodiments of the instant invention. Those skilled in the art will recognize, however, that the invention can be practiced without one or more of those details, or with other methods, materials, components, etc.
This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 60/766,826, filed Feb. 14, 2006, the entire contents of which are hereby incorporated by reference for all purposes into this application.
UNITED STATES GOVERMENT INTEREST The inventions described herein may be manufactured, used and licensed by or for the U.S. Government for U.S. Government purposes. FEDERAL RESEARCH STATEMENT The inventions described herein may be made, used, or licensed by or for the United States Government for government purposes without payment of any royalties thereon or therefore.
Number | Date | Country | |
---|---|---|---|
60766826 | Feb 2006 | US |