Non-electric sanitation water vessel system

Information

  • Patent Grant
  • 6760931
  • Patent Number
    6,760,931
  • Date Filed
    Friday, August 2, 2002
    23 years ago
  • Date Issued
    Tuesday, July 13, 2004
    21 years ago
Abstract
A system to sanitize water in a whirlpool bathtub, spa, swimming pool, and other water vessels comprising improvements to U.S. Pat. No. 6,395,167 and incorporating an integral top fill antimicrobial injector not in the prior art. The system also practices the adding of antimicrobial additives to the water vessel system components, which include but are not limited to the system's piping, pump, jets, acrylic sheet and fiberglass/resin reinforcements.
Description




FIELD OF THE INVENTION




The present invention relates to combining a replaceable filter and a suction device in a closed loop home or hotel whirlpool bath, hydrotherapeutic baths, and other bathing receptacles. The present invention also relates to a safety oriented pop off faceplate and an antimicrobial liquid dispenser. In addition, antimicrobial additives may be placed in one or more components of the water vessel system.




BACKGROUND OF THE INVENTION




Whirlpool-type baths have been employed to treat discomfort resulting from strained muscles, joint ailments and the like. More recently, such baths have been used increasingly as means of relaxing from the daily stresses of modern life. A therapeutic effect is derived from bubbling water and swirling jet streams that create an invigorating hydro massage of the user's body.




To create the desired whirlpool motion and hydro massage effect, a motorized water pump draws water through a suction fitting in a receptacle, such as a bathtub. The user first fills the bathtub. Then the user activates the closed loop whirlpool system. The water travels through a piping system and back out jet fittings. Jet fittings are typically employed to inject water at a high velocity into a bathtub. Usually the jet fittings are adapted to aspirate air so that the water discharged into the receptacle is aerated to achieve the desired bubbling effect. (See for instance, U.S. Pat. No. 4,340,039 to Hibbard et al., incorporated herein by reference from U.S. Pat. No. 6,395,167 to Mattson, Jr. et al. (“Mattson”) which is incorporated herein by reference.




Generally, whirlpool baths are designed as with a normal bathtub to be drained after each use. However, debris in the form of dead skin, soap, hair and other foreign material circulates throughout the piping and pump system. This debris does not completely drain and over time, accumulates in the piping system and may cause a health risk. Therefore, a filtration system designed for whirlpool baths was desirable. Mattson provides for a filtration system which filters debris in the water with respect to whirlpool baths. The present invention improves upon the Mattson filtration system for whirlpool baths. Before Mattson, filtration systems were found only in indoor and outdoor pools.




For some time, whirlpool bath manufacturers have tried to devise a way to incorporate a filtration system on a closed loop whirlpool bath. Although many problems exist, compliance with the plumbing codes is the major obstacle faced in using a filtration system for a whirlpool bath. Until Mattson, there was no filtration system that specifically designed for a drain down whirlpool bath that allows a whirlpool bath to pass requirements set forth by the current plumbing code.




Whirlpool baths must meet stringent drain down code requirements set up by the American Society of Mechanical Engineers (ASME). The code that governs whirlpool baths is entitled “Whirlpool Bath Appliances” (ASME A112.19.7M 1995). Section 5 of this code covers water retention and provides: “whirlpool bath appliances shall be of such design as to prevent retention of water in excess of 44 ml. (1½ fl oz) for each jet and suction filter.”




The average whirlpool bath has a six-jet system and has one suction fitting. In order to meet code, a six-jet/one suction system configuration may only retain 10½ ounces of water in the complete whirlpool bath system after draining. Most quality whirlpool baths, however, retain less than 4 ounces of water in the whirlpool bath system after draining. The filter part of the system cannot retain over 6½ ounces of water, because the total water retention would then exceed 10½ ounces. Mattson is currently the only known filtration system designed for whirlpool baths that retains less than 6½ ounces of water. The complete filtration system of the present invention, however, retains less than 4 ounces of water and as little as 2 ounces of water; so most whirlpool bath companies could use it on their whirlpool bath models and pass the drain down codes for whirlpool baths.




Another important consideration in developing a filtration system for whirlpool baths is the ease of replacing the filter. To eliminate access panels on the underside of the whirlpool bath which are used to access the filter, the filtration system was designed so the filter could be replaced from inside the bath. Therefore, the most logical choice for a filter location is in the suction fitting. However, placing the filter in the suction fitting presents a different range of design concerns. For example, placing a filter in the suction fitting may cause undue stress on the pump motor.




The suction filter must pass the codes set up by ASME for suctions which include a variety of load and structural tests. The code for suctions from ASME is titled Suction Fittings For Use in Swimming Pools, Spas, Hot Tubs, and Whirlpool Bathtub Appliances (ASME/IAMPO reaffirm 1996). Presently there is only one patented whirlpool bathtub suction filter that passes ASME code to be placed on a whirlpool bathtub. See Mattson incorporated herein. The present invention provides a cavity that houses a filter that could be installed in such a way that the filter is replaced from the inside of a whirlpool bath.




The filter was designed to be small to meet the drain down requirements. Because of its small size, however, it also had to be very efficient. Therefore, the present invention has a specially designed filter core. The core is engineered with varying spaced and sized holes along the length of the core. This design allows water to be drawn through the entire filter. Without this design, the filter would only pull water through about 20% of the filter near the outlet.




Other problems in whirlpool bathtub and spa use are encountered when a user's hair is twisted and entrapped in the whirlpool bath pump impeller. Hair entrapment occur when a bather's hair becomes entangled in a suction fitting drain cover as the water and hair are drawn powerfully through the drain. The Consumer Product Safety Commission has issued a safety alert article entitled “Children Drown and More Are Injured From Hair Entrapment In Drain Covers For Spas, Hot Tubs, And Whirlpool Bathtubs” (CPSC Document #5067). The safety alert urges consumers to ask their spa, hot tub, and whirlpool bathtub dealers for drain covers that meet voluntary standard ASME/ANSI A112.19.8M 1987) to help reduce hair entrapment. The present invention meets the voluntary ASME/ANSI standard.




The present invention also provides a new faceplate cover which is easily removable. The faceplate also has to pass the heavy load, impact and hair entrapment tests set out by ASME/IAMPO. One cover embodiment has a radius and back ribbing on it and a removable insert support to pass the strength tests. The preferred embodiment faceplate is flat with structural fins on its back side, thus eliminating the removable insert. Each cover has a sufficient number of sized holes to pass the prescribed hair entrapment tests. The result is the fluid suction filter device that is especially made just for whirlpool baths.




In the safety alert CPSC Document #5067, the Consumer Product Safety Commission suggests that consumers shut down the spa until the drain cover is replaced in the event that the consumer discovers the drain cover missing or broken. The present invention allows the water system to shut itself down if the faceplate drain cover is missing or broken by means of a non-electric cavitation mechanism. The water system is also shut down if a clog occurs.




It is found that even after debris is filtered from a whirlpool bathtub, trace amounts of bacteria still can grow in a whirlpool bathtub. In fact, even if normal tap water where to be run through the closed looped system of a whirlpool bathtub, trace amounts of bacteria can form in the whirlpool bathtub's closed looped piping system. To eliminate these trace bacteria, a special filter core with an antimicrobial chamber was developed.




This antimicrobial chamber emits antimicrobial agents to kill the trace bacteria that may grow in the whirlpool bathtub's closed looped piping system, upon initial whirlpool bathtub activation and between usages. However, most of the antimicrobial agents would dissipate as soon as they enter the inside of the bathtub where people bathe. In other words, due to breakdown and dissipation, the antimicrobial agents do not build up in the bath water as the whirlpool operates. Therefore, the user may activate the antimicrobial dispenser mechanism to distribute antimicrobial agents at will or on a timed basis. The antimicrobial dispenser is a top filled design not known in the prior art. Another embodiment teaches the use of multiple chambers wherein each chamber is used for additional additives desired by the user.




Only a very small amount of antimicrobial agent is necessary to kill the bacteria in the closed looped piping system since the filter helps to trap hair, soap and other debris which provides food for bacterial growth. Without the filter a greater amount of antimicrobial agent would need to be introduced into the system to kill the bacteria and this excessive amount could irritate the skin of sensitive bathers.




Another integral part of creating a total water vessel sanitation system is to include antimicrobial additives in each component of the water vessel. With respect to whirlpool bathtubs and spas, this would include at least the system's water and air pipes, pump, and pump impellor. The surfaces of whirlpool bathtubs and spas are comprised primarily of a thermo-formed acrylic or plastic sheet or gelcoat paint. Therefore, in a total water sanitation system, the acrylic or plastic sheet or the gelcoat paint would require antimicrobial additives. The fiberglass and resin reinforcement backing of the whirlpool bathtub and spa are impregnated with antimicrobial additives as are the whirlpool bathtub jets and suctions. While the technology exists to add antimicrobial additives to a whirlpool bathtub and spa component, there is no prior art that suggests that antimicrobial additives be placed in one or more component or in combination with all components to provide for optimum protection from bacteria.




U.S. Pat. No. 6,395,167 (2002) to Mattson, Jr. et al. discloses a whirlpool bath with combination suction fixture and disposable filter. The housing of the suction filter is one to two feet long. A correspondingly sized replaceable filter is mounted into the filter housing lengthwise.




U.S. Pat. No. 6,283,308 (2001) to Patil et al. discloses a bacteriostatic filter cartridge having elements impregnated with an anti-microbial agent.




U.S. Pat. No. 5,799,339 (1998) to Perry et al. discloses a suction device for a spa or jetted tub with a turbulence reduction design to reduce the possibility of entangling a user's hair in the faceplate.




SUMMARY OF THE INVENTION




The main aspect of the present invention is to provide a suction fixture and replaceable filter combination apparatus in a whirlpool bath.




Another aspect of the present invention is to provide a safety plate for the suction intake which resists hair entrapment.




Another aspect of the present invention is to provide a pop off suction faceplate and a pop out filter core to provide safety features to prevent drowning.




Another aspect of the present invention is to provide a non-electric safety cavitation port to cause cavitation which shuts down motor operation if the filter is absent or improperly inserted.




Another aspect of the present invention is to provide a minimal water retention filter to retain less than 6½ ounces of water after drain down.




Another aspect of the present invention is to provide a housing which is readily retrofitable and/or incorporated into a new whirlpool bath that retains minimal water.




Another aspect of the present invention is to reduce bacteria or microbes in a closed loop system of a whirlpool bathtub.




Another aspect of the present invention is to provide a total water vessel sanitation which includes antimicrobial additives in each component of the water vessel system.




Other aspects of this invention will appear from the following description and appended claims, reference being made to the accompanying drawings forming a part of this specification wherein like reference characters designate corresponding parts in the several views.




The suction filter is comprised of the filter core, the filter, and the filter housing. The filter core has a plurality of water draw holes having increasing diameters extending away from the water outlet. These holes provide for water draw along the entire length of the filter, instead of just making use of the filter at the outlet and of the filter. These increasing and decreasing holes provide for optimum water draw through the filter that surrounds the core. The filter core has a 2″ inside diameter (I.D.) to assure over 200 GPM water flow draw rates. Without this I.D., you would not be able to get 200 GPM to run through the filter core allowing a combination filter suction an overall 200 GPM rating. No other manufacturer makes a filter for whirlpool bathtubs or even a filter that fits into a housing outlet with a 2″ I.D. The core is made from injected plastic but could be machined from metal or a variety of other materials.




The filter core has an antimicrobial chamber that houses antimicrobial additives. The antimicrobial chamber measures approximately 1″ to 8″ in length and ½ to 2″ in diameter. The antimicrobial additives used in the antimicrobial chamber could be slow dissolving chlorine, bromine, or a variety of other antimicrobial additives. The cover to the antimicrobial chamber has an adjusting hole opening which can be increased or decreased by turning the main body of the antimicrobial chamber in one direction or another. The more the antimicrobial chamber is screwed on, the smaller the hole opening becomes. The antimicrobial chamber has one hole but could have multiple holes or slots. The filter core's plastic is injected with antimicrobial additives during the injected molding process and inhibits any germ growth on the core between uses.




Multiple chambers may be added on the filter core along with the antimicrobial chamber for the addition of other additives. For example, the filter core may have a built in ion exchange chamber allowing for a built in water softener that softens the bathwater. It may also have a fragrance chamber that emits fragrances into the bathwater. Both of these items are not known in prior art for a suction filter core for a whirlpool bathtub or spa.




Water flows past the antimicrobial chamber creating a vacuum which pulls a small quantity of antimicrobial additive from the chamber, thereby mixing it with the water. The amount of antimicrobial additives mixed into the water is in sufficient quantities to kill the trace bacteria that may grow between whirlpool bath usages in a filtered whirlpool bathtub system. The antimicrobial additives dissipate by the time the antimicrobial additives mix and enter the larger volume of water in the bathing area.




A filter which is generally treated with antimicrobial additives either slips over the filter core or is bonded onto the core making a one-piece filter core combination. Although the filter could be pleated or non-pleated, the preferred embodiment has a two staged pleat filter media. The first pleat has larger holes which allow larger sized particles and debris to pass through the antimicrobial treated filter pleat. The second pleat has smaller openings allowing only microscopic debris particles to pass through the treated filter pleat. Although microscopic debris may accumulate in the space between the inner and outer pleats, both filter media are impregnated with antimicrobial agents, which kill bacteria which would accumulate on the pleats. Together, the inner and outer pleat create a halo effect killing of the bacteria which accumulates between the inner and outer filter media. This layered filter design is important in decreasing the build up of debris on the outer layer of the filter which nearest to the bather.




The filter media is preferably made out of polypropylene or other media that will accept antimicrobial agents. In the spa industry, polyester media is used. Polypropylene media can be treated in the manufacturing process with antibacterial agents, whereas polyester media cannot. In the whirlpool industry, however, filters were not used on whirlpool baths until an approved filtration system for whirlpool baths under the Mattson '167 patent.




The preferred filter is designed to retain less than 3 ounces of water.




The housing of the suction filter is generally cylindrical having a diameter of four inches to two feet. The filter housing is tapered from front to back to allow water to drain back into the tub after shutdown. The preferred housing is the only known housing that has tapered sides of the inner wall to allow water to drain back into the whirlpool bathtub when the whirlpool bathtub system is deactivated whether the unit is installed facing left or right. The filter housing has a sharp radius end opposite the outlet end, thus allowing the housing to be fitted into the side wall of a tub through a standard size opening cut.




The filter housing is mounted to the inner tub wall by using a screw nut between the housing mounting flange and the inner tub wall. A gasket or silicone can be used between the outer tub wall and the screw nut to prevent leaks.




The filter core now fits into the filter housing in axial alignment with the filter housing's inlet opening. In other words, the filter is now perpendicular from that of U.S. Pat. No. 6,395,167. The filter core has two slots cut into the end that fits into the outlet of the filter housing. The filter housing has two male ridges which make the preferred filter core the only filter core that fits the preferred housing. As set forth above, the filter core is designed with varying sized holes and slots. The holes furthest from the outlet port are larger than the holes near the outlet port. This allows water to pull through the entire filter.




The filter housing has a safety cavitation port located at the inside wall of the housing. Placing a cavitation port at the inside wall of a suction fitting is not known in prior art.




The faceplate cover described below has a cavitation port fin which covers the non-electric cavitation port when the faceplate cover is attached to the filter housing. The cavitation port fin is one of four available cavitation port fins designed to fit into a receiving bracket adjacent to the cavitation port hole. If the filter were removed or if a person tried to operate the unit without the filter core covering this hole, air from the tube would be drawn into the pump and the pump would cavitate (draw more air than water). Since people have drowned by getting their hair caught in a suction cover while their head is below the tub waterline, this is an important feature. No user could run the unit without the filter in place. This feature also reduces the chance of drawing contaminants into the whirlpool bath system. Once contaminants such as hair are entrapped in the pump's impeller, the entire whirlpool bath system becomes contaminated until someone physically opens the whirlpool bath pump (a long and time consuming process usually requiring a professional), frees the entrapped hair, and sanitizes the complete system.




The filter core has a gasket that slides over the nonelectric safety cavitation port. Without this gasket, the replaceable filter core could rub against the filter housing outlet and cause wear over the years to the filter housing outlet.




The suction filter has been downsized to fit more whirlpool bathtubs. The downsized version attaches to the whirlpool bathtub with a nut which eliminates the attachment screws of U.S. Pat. No. 6,395,167. With the smaller filter design, however, filter replacement is likely to occur more often.




The present invention has two lights that are placed in a visible position on the whirlpool bathtub. The lights are hooked up to the whirlpool bathtub pump with a vacuum switch. If the combination suction filter, filter media (removable filter) accumulates enough debris, this blockage on the filter triggers a vacuum switch, which senses the blockage, and a preferably red indicator light comes on that indicates to the bather that it is time to remove and clean the removable filter or simply replace it. Otherwise a preferably green indicator light stays on indicating to the bather that the filter is not ready for replacement.




The present invention also provides another means to indicate when to replace the filter. The end cap of the filter is treated with a special chemical in the manufacturing process which creates a color reaction when the end cap is introduced to water. The first color would indicate the filter is not ready for replacement. The second color would indicate the filter should be replaced. For example, the end cap is white before water submersion. Once water is introduced to it, the reaction begins and the end cap will slowly turn to black over a predetermined period of time. During whirlpool bathtub operation but before the predetermined period of filter life time, the end cap color will range from white to varying shades of grey until it becomes totally black. Once it turns totally black, the bather knows it is time to replace the filter. This reaction may be have a time release factor and can last from 1 to 360 days depending upon the amount of chemicals used in the end cap manufacturing.




Another inlet orifice may be added to the filter housing of the present invention. This orifice can be hooked up in tandem to a skimmer filter in a spa in order to filter water which may bypass a filtration system. Currently spas, like whirlpool bathtubs, have one or multiple suction fittings that draw water into a pump and back out through jets. Although spas also have skimmers filters that draw surface water through the filters into a pump and back through the jets, the majority of the water passing through other suction points bypasses the filters in the skimmer causing contaminated water to circulate through the system. Most of the other suction points do not have filters. By replacing standard spa suction fittings with the present invention suction filter and hooking the outlet of the spa skimmer to one of the present invention suction filters, all water in a spa is filtered.




The faceplate shown in

FIGS. 4A through 4D

slides into the housing to cover the suction filter assembly. The faceplate has a radius shape to prevent a limb from being sucked up against it which could entrap a body part. ASME hair entrapment standards are met using a plurality of slots or holes. Impact and load tests are met.




In the preferred embodiment faceplate shown in

FIGS. 4B

,


4


C, support ribs (also known as support bars) are built into the faceplate and fit into receiving slots in the faceplate housing. This creates a solid part and allows it to pass impact and load tests called out by ASME code. This is the only suction faceplate for whirlpool bathtubs and spas that is designed with the structured supports in the faceplate. This allows a filter to be installed in the suction housing or replaced and still pass these test. All other known suctions have the main structured support as part of the body (housing) and these supports cannot be removed. See U.S. Pat. No. 5,799,339 to Perry et al. which represents all other known suctions. FIG. 5 of U.S. Pat. No. 5,799,339 shows a face view of the support. FIG. 3 shows how FIG. 5 screws in permanently into body


20


of FIG. 3. These supports (26b, 28b called a guide) cannot be removed once the suction is installed.




The preferred faceplate is larger than standard faceplates because of the size of the removable filter. Mattson teaches the combination of a filter and a suction in a single device. The faceplate has slots to allow a larger volume of water to pass through it. Because of the increased size of the faceplate the slots have to be designed and engineered in a radiating pattern. This is very important for the plastic injected molding process.




With the present design over a horizontal (see Perry '339 patent) or vertical design, the pressure of the injected plastic from the injection point of the mold (usually the injection point of a mold is located in the center of the mold) hits the small end of the slots instead of the wide end of the slots. The shorter end of the slot can withstand a great deal more pressure over time before failure than if the pressure were subjected to the wide side of the slots. This allows for much longer mold life and a more pleasing finished product. The radiating pattern of slots gives a straight-line flow to the outer edge of the faceplate part. U.S. Pat. No. 5,799,339 FIG. 4 shows a standard slot opening arrangement that represents the arrangement of slots used by manufacturers of slotted face faceplates. U.S. Pat. No. 6,038,712 to Chalberg et al. FIG. 2 shows circular hole openings which represent how other faceplates are made. Slots are preferable over circular holes to increase flow.




The preferred embodiment faceplate housing eliminates the drain down slots of the original design because water now evacuates through the bottom slots of the faceplate.




To prevent people's hair or body parts from getting trapped in the exposed hole where the faceplate cover is removed during whirlpool bath operation, current ASME plumbing code requires that all suction faceplate covers be engineered so the faceplate cannot be removed without the use of a tool. Most suction covers attach the faceplate to the housing with a screw and a screwdriver is needed to remove the screw. See U.S. Pat. No. 6,038,712 FIG. 2 which shows screw hole openings and U.S. Pat. No. 5,799,339 FIG. 3 number 22 which shows the screw. There are some suction manufacturers that have a non-electric cavitation device in the faceplate of the suction, see Chalberg U.S. Pat. No. 6,038,712. If the face of the suction is restricted significantly, the unit cavitates and the suction against the faceplate decreases. However, these designs are still dangerous. Hair can still become twisted in the faceplate before the unit shuts down. It is thought that if hair enters the Chalberg '712 cover and the cover is blocked to cease suction action, the hair can be easily removed. However, when hair enters a suction cover a vortex may form behind the cover causing the hair to twist and tangle, thereby preventing removal. Once the hair is trapped, you need a tool like a screwdriver by code to take the faceplate off. The entrapped hair can trap the head of the user under the tub's waterline. Therefore, people still can drown with these devices.




As stated above, the code requirement for a tool to remove the faceplate is to prevent body parts or hair from getting trapped in the exposed housing support cross members (which are an integral nonremovable part of the suction body in the event that the faceplate of current suctions is removed. But because the preferred embodiment suction filter will not operate without the filter in place, there is no need for the screw. The faceplate preferably attaches to the faceplate housing with magnets. The magnet hole openings of the housing are recessed for flush mounting. They also are flat recessed.




With the design of the present invention, there is no danger of limb entrapment because the system would simply not operate. If someone did get his or her hair caught in the preferred faceplate while the filter was in place, the whole faceplate pops off easily as the faceplate is held in place by magnets. As soon as the faceplate pops off, the cavitation fin which normally covers the safety cavitation port would move out of place. Once the non-electric cavitation port is uncovered, the pump cavitates, thereby immediately preventing body limbs or hair from becoming entrapped in the exposed suction opening. The suction cover has a pull-tab on the cover to allow the bather to easily remove the cover when the whirlpool bath pump is in operation if desired. Depending on the alignment of the faceplate with the faceplate housing, the pull tab could be at any of four locations, i.e., bottom, top, left, or right.




If the unit were to run without the faceplate cover, and hair is caught in the exposed filter, the filter itself also pops out easily. Therefore, there is no chance of getting entrapped if the filter is removed, because the unit will also cavitate under these circumstances.




With the present invention, we plan to have ASME revise their codes for suction covers to allow them to be removable without a tool such as a screwdriver.




U.S. patent application Ser. No. 09/417,156 SORENSEN, EDWIN C. shows a break away drain cover for a spa. Sorensen operates a magnetically actuated switch transmitting an electrical signal. It does not have a safe non-electrical safety cavitation port like the present invention. People are concerned when any electrical signal is transmitted in a water vessel. U.S. patent application Ser. No. 2001/0013373 WRIGHT, JAMES R. shows a drain cover which is similar to the drain cover of Sorensen.




Both these inventions are drain covers and not suction fittings because they do not conform to ASME suction fitting codes. Neither pass the ASME code requirements set out in Section 4 for “Suction Fittings For Use in Swimming Pools, Spas, Hot Tubs, and Whirlpool Bathtub Appliances” (ASME/ANSI A112.19M-1987 reaffirm 1996) and Section 7 ASME A112.19.7M-1995, the hair entrapment test. Sorensen uses a “snap fit” to attach the faceplate to a drain wall fitting that may present a wear problem over the years as the cover is repeatedly put on and taken off. The present invention uses earth magnets that will last the lifetime of the spa or bath it is placed on.




Further, the Sorensen invention does not claim, when used in conjunction with a whirlpool bath instead of a spa, that it will allow the whirlpool bath to meet the drain down requirements of ASME A112.19.7M-1995, “Whirlpool Bathtub Appliances.” The present invention does so claim. Another advantage of the present invention over Sorensen is that the non-electric cavitation safety feature (combination port hole, air tube, faceplate, cavitation fin) costs a fraction of what a signal-transmitting device would cost to manufacture. Therefore, while there is prior art for electronics-based breakaway covers in a variety of inventions, there is no prior art for a breakaway cover that utilizes a cost saving non-electrical cavitation port. Being non-electrical makes the present invention very safe for whirlpool bath, spa and swimming pool applications.




The faceplate back support ribbing is designed in an X pattern, which offers outstanding structural integrity. The circular ribbing adds tremendous strength to the center impact point of the faceplate.




The faceplate is designed to protrude less than ½″ into the tub when attached to the faceplate housing. This streamlined design protrudes much less than most current suctions adding more room to the bathing area of the whirlpool bathtub.




The slotted holes on the top, sides and bottom of the faceplate extend outward keeping in line with the radiating design pattern on the face of the faceplate. This makes it an easier part to inject with plastic.




Because the center faceplate is an area that would have a high fluid intake flow, the center of the faceplate is solid. This solid center section evens out the water flow across the rest of the faceplate so that there are no areas of high flow that would create unwanted areas of high suction force.




Support bars (or ribs) are integrally formed on the backside of the faceplate. The support bars are at right angles to each other and extend between opposite sidewalls of the faceplate. The support bars do not obstruct any of the faceplate slots formed in the face and sidewalls of faceplate. This configuration advantageously prevents hair from entering a faceplate slot and becoming entangled by wrapping around both sides of a support bar.




The faceplate housing has a flange that provides a resting area for the peripheral ledge of the faceplate when the faceplate is attached to the housing. This resting area allows for weaker magnets to be used to keep the faceplate attached to the faceplate housing.




An important feature of the present invention suction filter is the use of an antimicrobial system that is air actuated by depressing a button located on the inside wall or rim of a whirlpool bathtub. When the button is depressed, antimicrobial additives are injected via a tube into the outlet opening of the suction filter. This allows the bather the opportunity to inject a larger amount of antimicrobial additives into the whirlpool bathtub prior to entering the bathtub to give an added safeguard that all bacteria is killed in a whirlpool bath that has not been in operation for an extended period of time. Depressing the button not only injects antimicrobial additives into the outlet of the housing, it disperses the additives. When the tub is filled with water, the injected additives travel first to the pump housing in a high concentration (the pump housing is found to be the place where bacteria growth is the highest) and then throughout the rest of the closed looped piping system, all the while killing bacteria. The greater the period between uses, the more likely a larger amount of bacteria can form in the whirlpool bathtub's piping system. This safeguard ensures that when activated, the whirlpool bathtub will be bacteria-free even if months have passed since the whirlpool bathtub system was operated.




The present suction filter device could be designed in other configurations than its current square-shaped form. The unit could also be designed in a round form or any other shape or size. The filter and filter core could also be made shorter, longer, larger or smaller. The filter could be made smaller for less money to be disposable after each whirlpool bath use. The filter could even be designed in such a way to be incorporated into existing suctions with modification of those suctions. The filter media that filters the water could be pleated or wrapped without pleating around a filter core.




The housing could be designed to incorporate multiple filters. The ridges and slots at the end of the filter core could be made in a variety of shapes or locations to ensure the use of only one filter.




The main body housing could be vacuum formed and become an integral part of the whirlpool bathtub.




The magnets holding the faceplate to the housing could be larger or smaller and arranged in various other locations on each part. The amount of magnets used could be increased or decreased. The faceplate could also be attached using various snap-on configurations. An installation-sealing gasket could be used. The slope in the sidewalls of the housing could be increased or decreased. The overall size of the suction filter could be increased or decreased.




The housing body, faceplate or filter core could be made from other material than injected plastic; it could be stamped or machined out of metal or other material.




The radiating slotted design of the faceplate could have a radiating round hole design.




The safety cavitation hole could be placed anywhere rearward on the outlet of the housing and be various sizes or have multiple openings.




The filter could have various sanitizing materials in its core such as slow dissolving chlorine tablets or other sanitizing material incorporated into the filter core.




The screw nut that attaches the housing to the sidewall of the whirlpool bathtub could have a washer or use locking nuts and have varying sizes and be made out of a variety of materials, including plastic and nylon or some space age material.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a top perspective view of a whirlpool bath having an alternate embodiment of the suction filter and antimicrobial system installed therein.





FIG. 2

is an exploded view of an embodiment of the faceplate and housing design for a suction filter apparatus and the preferred embodiment of the suction filter apparatus.





FIGS. 3A

,


3


B are right side perspective views of the faceeplate housing shown in FIG.


2


.





FIGS. 4A

,


4


B,


4


C,


4


D present different perspective views of a faceplate embodiment having a pull tab to failitate the faceplate removal if desired.





FIG. 5A

is a top perspective view of the preferred embodiment of the suction filter core.





FIG. 5B

is a view from the opposite perspective view of the

FIG. 5A

suction filter core.





FIG. 5C

is a top perspective view of another embodiment of the suction filter core depicting multiple chambers therein.





FIG. 6A

is a cutaway plan view of the suction filter core housing shown in FIG.


2


.





FIG. 6B

is a rear plan view of the suction filter core housing showing a non-electric cavitation porthole.





FIG. 7

is a plan view of the faceplate of the suction filter as viewed from the inside of the whirlpool bath shown in FIG.


1


.





FIG. 8

is a top perspective view of a suction filter with end cap for the suction filter assembly.





FIG. 8A

is a perspective view of another embodiment of the suction filter end cap depicting a first color indicator, wherein the first color indicates the usability of the filter.





FIG. 8B

is a perspective view of the embodiment of

FIG. 8A

depicting a second color indicator, wherein the second color indicates the replaceability of the filter.





FIG. 8C

is a rear perspective view of the

FIG. 8

suction filter end cap.





FIG. 8D

is a rear plan view of the

FIG. 8

suction filter end cap.





FIG. 9

is a top perspective view of the housing and faceplate design for a suction filter apparatus.





FIG. 10

is an top perspective exploded view of a user getting her hair entrapped in the preferred embodiment faceplate/housing design, wherein only the magnets hold the faceplate to the housing, and an end cap with pull tab design, thereby enabling a safety oriented pop off faceplate and pull out filter.





FIG. 11

is the same view as

FIG. 9

with an embodiment of a faceplate fin shown inserted into a receiving bracket of the suction filter core housing, thereby enabling a seal over the non-electric cavitation porthole.





FIG. 12

is a top perspective exploded view of the preferred embodiment faceplate housing and faceplate design for a suction filter apparatus.





FIG. 13

is a rear perspective view of another embodiment of the housing for a suction filter apparatus showing a skimmer outlet and a pump outlet.





FIG. 14

is a bottom perspective view of a whirlpool bath of

FIG. 1

showing the preferred embodiment of the suction filter and antimicrobial dispenser installed therein.





FIG. 15

is a plan view of the

FIG. 1

whirlpool bath.





FIG. 16

is a top perspective view of an alternate embodiment of the present invention, wherein each water vessel component is impregnated with antimicrobial additives creating a total water vessel sanitation system.





FIG. 17

is a plan exploded view of one embodiment of an injector button assembly for dispensing antimicrobial agents.





FIG. 18

is a plan exploded view of one embodiment of the injector sub-assembly shown in FIG.


17


.





FIG. 19

is a longitudinal sectional view of the deck mount top fill dispenser of FIG.


17


and one embodiment of a antimicrobial liquid reservoir.





FIG. 20

is the same view as

FIG. 19

, wherein the injector button is depressed and antimicrobial liquid is dispensed into the water vessel system.





FIG. 21

is a close up plan view of the liquid pressure directing assembly of the dispenser for antimicrobial liquids shown in FIG.


20


.





FIG. 22

is a sectional view of the injector assembly housing shown in FIG.


17


.





FIG. 22A

is a close up sectional view of the inner tube injector port with the port closed.





FIG. 22B

is a close up sectional view of the inner tube injector port with the port open, thereby allowing antimicrobial liquids to enter the water vessel system.





FIG. 23

is a flow chart illustration of a total water vessel sanitation system that includes antimicrobial additives in each component of the water vessel.











Before explaining the disclosed embodiment of the present invention in detail, it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown, since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.




DETAILED DESCRIPTION OF DRAWINGS




Referring first to

FIGS. 1

,


14


,


15


a whirlpool bath water vessel


1


has a tub


6


with a standard tub wall


6


A and a standard tub drain


8


. During whirlpool use the pump


3


circulates water via outlet pipe


5


, air mixing pipe (not shown) and jets


75


. Water is drawn from the filled tub


6


via pump inlet pipe


4


which is connected to the suction filter


2


, an alternate embodiment, mounted within the filter housing


31


. A switch


12


activates the pump


3


. Filter sensing cavitation line


11


and faceplate sensing cavitation line


16


extend from suction filter housing


31


.




When filter sensing line


11


detects a missing filter, the pump


3


cavitates. Likewise, when faceplate sensing line


16


detects a missing or broken faceplate, pump cavitation occurs.




Injector button


14


is depressed to activate the antimicrobial additives dispenser


99


(see

FIG. 14

) which dispenses antimicrobial additives to water vessel


1


via antimicrobial line


15


. Electric power lines


9


A,


10


A for green and red indicator lights


9


,


10


respectively, connect to switch


12


.




Referring next to

FIG. 7

, the suction filter


2


is shown as seen by a bather in the tub of FIG.


1


. The only visible portion of the suction filter


2


is a the faceplate


21


attached to the inner tub wall


6


A.




Two lights are shown placed near the inside wall


6


A of the whirlpool bathtub near the suction filter


2


. However, the lights may be placed anywhere on the tub wall. If the system detects a blockage of the filter


200


(see FIG.


8


), a red indicator light


10


comes on that indicates to the bather that it is time to remove and clean the filter


200


or replace it. Otherwise, green indicator light


9


stays on indicating to the bather that filter


200


is not ready for replacement.





FIG. 2

is an exploded view of an embodiment of the faceplate and housing for a suction filter apparatus and the preferred embodiment of the suction filter apparatus. The faceplate


21


is preferably rectangular but could have any shape.




The faceplate housing


24


is attached to the inside surface of tub wall


6


A by mounting the threaded portion


29


A of faceplate housing


24


through gasket


28


, wherein the female fittings


25


A,


33


B on faceplate housing


24


receive the male end


25


B,


33


A on gasket


28


. The housing


24


is secured in placed by nut


29


B on the outer surface (back side) of the tub wall


6


A via a standard size opening cut. Support rib


35


extends from faceplate


21


having slots


23


and slidably fits into receiving notch


56


(see FIG.


9


). Any of four cavitation port fins


22


slidably fit into receiving bracket


37


to cover the cavitation port hole


44


. Magnets


26


hold faceplate


21


to the faceplate housing


24


. The faceplate is thus mounted inside tub


6


. The faceplate


21


is preferably square but could have any shape.




Filter core


2


is attached to filter housing


31


by male ridges


32


B which fit into receiving slots


32


A on filter core


2


(see

FIGS. 5B

,


2


). Water passes through filter core


2


and pump outlet


19


, whereby the filtered water circulates back into the water vessel system. The filter housing


31


is attached to the inner tub wall


6


A via screw nut


29


B.





FIGS. 3A

,


3


B are right side perspective views of the faceplate housing shown in FIG.


2


. Faceplate housing


24


has a sloped taper


28


B (high end) to


28


A (low end) to allow water to drain back into the tub after shutdown as shown in FIG.


3


B. Recessed port


27


receives faceplate sensing cavitation line


16


.

FIG. 3A

shows faceplate sensing line


16


mounted on faceplate housing


24


.





FIGS. 4A

,


4


B,


4


C,


4


D present different perspective views of faceplate


21


having a pull tab


45


which facilitates the removal of the faceplate


21


if desired. The faceplate slots


23


which are designed and engineered in a radiating pattern allow a larger volume of water to pass through the faceplate


21


, thereby entering filter housing


31


.




As shown in

FIG. 4B

, the rear of the faceplate


21


has support ribs (also known as support bars)


35


to strengthen the antivortex center'support


20


to prevent crushing. Drain slots


34


on faceplate


21


allow water to drain back into the tub after shutdown as shown in

FIG. 4B. A

cavitation port fin


22


is located in at least four positions on the rear of faceplate


21


. Providing multiple cavitation port fins


22


facilitates the mounting of the faceplate


21


on the housing


24


. Because each cavitation fin


22


slidably fits into receiving slot


56


to cover the cavitation port hole


44


, it would not be necessary to dictate a particular fin or particular orientation of the faceplate


21


to mount onto the housing


24


. Magnets


26


hold faceplate


21


to the faceplate housing


24


.





FIGS. 5A

,


5


B illustrate the preferred embodiment of the suction filter core


2


. Filter core


2


is attached to filter housing


31


(see

FIG. 2

) by male ridges


32


B on housing


31


which fit into receiving slots


32


A on filter core


2


. The filter core


2


is preferably an ABS pipe mountable in filter housing


31


. The preferred filter core plastic is injected with antimicrobial additives during the injected molding process to inhibit any bacteria growth on the core.




The filter core holes and slots (together known as apertures


37


) range from small


37


A at the outlet end


36


B to large


37


B at the closed end opposite the outlet end


36


B. The larger perforation sizes on the end opposite the outlet end


36


B distribute the water flow across the entire length of the filter media


53


,


54


. Without the enlarging feature of the varying apertures, the water would only be filtered by a small portion of the filter media


53


,


54


near the outlet


36


B.




The filter core


2


has an antimicrobial chamber


38


that houses antimicrobial additives such as slow dissolving chlorine, bromine, or a variety of other antimicrobial additives. Antimicrobial chamber


38


has an adjusting bleeder hole opening


85


from which the additive exits into the water that can be increased or decreased by turning the main body of the antimicrobial chamber


38


in one direction or another, wherein the more the antimicrobial chamber is screwed on, the smaller the hole opening


85


becomes. Although the preferred antimicrobial chamber has one hole, multiple holes or slots can be used. In addition, the configuration, size, and location of the singular or multiples bleeder holes or slots may vary.





FIG. 5C

is a top perspective view of another embodiment of the suction filter core


2


depicting multiple chambers therein. Alternate chambers


39


B,


39


C may be added on the filter core


2


along with antimicrobial chamber


39


A for the addition of other additives such as ion exchange resins for water softening, fragrances, or the like. Chamber support


40


prevents crushing. The corresponding additives exit chambers


39


A,


39


B,


39


C into the water from bleeder holes


61


,


62


,


63


. Additional alternate chambers may be included if desired.




As shown, the alternate embodiment antimicrobial chamber


39


A is located furthest from the outlet end


36


B. However, it may be configured at any location within filter core


2


. Just as the preferred antimicrobial chamber


38


may have multiple bleeder holes or slots of varying configurations, sizes, and locations, the embodiment having alternate chambers may include variations from which additives may exit or bleed from.




Referring next to

FIGS. 6A

,


6


B, the rear portion


400


of filter housing


31


is curved at the top rear wall


80


and generally shaped like a half-cylinder when integrated with the bottom rear


81


. The front portion of the elbow shaped filter housing


31


can be connected to a suction drain of a water circulation system that requires a relatively high rate of intake water flow. Housing


31


is readily installed into a standard size opening cut or formed into the tub wall


6


A (see FIG.


1


). Housing stop


41


prevents the filter housing


31


from protruding too far past the inner tub wall


6


A. Filter core


2


(see

FIGS. 5A

,


5


B,


5


C) is attached to filter housing


31


by male ridges


32


B on housing


31


which fit into receiving slots


32


A on filter core


2


. Water passes through filter core


2


, bypasses the antivortex ridges


42


and through pump outlet


19


, whereby the filtered water circulates back into the water vessel system.




As shown in

FIG. 6B

, antimicrobial additives enter the water system via antimicrobial line


15


connected to the additive port


17


through additive hole


43


(see FIG.


6


A), which lies adjacent to the port hole for the filter sensing cavitation line


11


. The filter sensing line


11


is connected to the filter cavitation port


18


.





FIG. 8

is a top perspective view of a suction filter


200


with end cap


50


, preferably rubberized. Pull tab


51


facilitates the removal of the filter


200


.




The end cap embodiments of

FIGS. 8A

,


8


B illustrate the use of color as an indicator for filter replacement. The first color


52


A would indicate the filter is not ready for replacement. The second color


52


B would indicate the filter should be replaced.





FIG. 8C

is a rear perspective view of the

FIG. 8

suction filter end cap showing the preferred two stages pleat filter media having outer filter media chamber


53


and inner filter media chamber


54


. Outer pleat


53


A of outer chamber


53


has larger pleat holes which allow larger sized particles and debris to pass through its antimicrobial treated filter pleat. Inner pleat


54


A of inner chamber


54


has smaller openings which allow only microscopic debris particles to pass through its treated filter pleat. The inner chamber's pleat media


54


A captures the particles which pass through the outer chamber pleat media


53


A. Preferably the outer and inner filter media is polypropylene or other media that will accept antimicrobial agents.




In

FIG. 8D

, debris


55


is shown captured in the spaces between the inner and outer pleats. However, since outer media


53


A and inner media


54


A are impregnated with antimicrobial agents, any accumulation of bacteria in debris


55


would be killed by the antimicrobial effects.





FIG. 9

is a top perspective view of the housing and faceplate design for a suction filter apparatus. In fact,

FIG. 9

shows how the exploded components shown in

FIG. 2

are assembled. The faceplate housing


24


is attached to the inside surface of tub wall


6


A (not shown) wherein the female fittings


25


A,


33


B on faceplate housing


24


receive the male end


25


B,


33


A on gasket


28


(see FIG.


2


). The housing


24


is secured in placed by nut


29


B on the outer surface (back side) of the tub wall


6


A. The appropriate cavitation port fin


22


(see

FIGS. 10

,


11


) extends from faceplate


21


and slidably fits into receiving notch


56


through receiving bracket


57


to cover the cavitation port hole


44


. Magnets


26


hold faceplate


21


to the faceplate housing


24


.





FIG. 11

is the same view as

FIG. 9

with a cutaway view of faceplate


21


exposing cavitation port fin


22


. Cavitation port fin


22


is shown inserted into receiving bracket


57


of filter housing


31


, thereby enabling a seal over the non-electric cavitation porthole


44


. Faceplate housing


24


has a sloped taper


28


B (high end) to


28


A (low end) to allow water to drain back into the tub after shutdown.





FIG. 12

is similar to FIG.


9


. Where

FIG. 9

depicts the front side of faceplate


21


, whereby magnets


26


attach the faceplate


21


to housing


24


,

FIG. 12

depicts the rear side of faceplate


21


.





FIG. 10

is an top perspective exploded view of a user U getting her hair entrapped in the preferred embodiment faceplate


21


/housing


24


design, wherein only the magnets


26


hold the faceplate


21


to the housing


24


, thereby enabling a safety pop off design. Pulling the faceplate


21


out will cause the cavitation port fin


22


to slidably detach from receiving notch


56


and expose cavitation port hole


44


to air. Once air from the faceplate sensing cavitation line


16


is drawn into the pump


3


, pump


3


would cavitate. Therefore, pump cavitation is triggered when the faceplate sensing cavitation line


16


detects a missing or broken faceplate


21


.




Likewise, when filter sensing line


11


detects a missing filter, pump cavitation occurs. User U can easily remove the filter assembly by using the end cap pull tab


51


to pull the end cap


50


and filter


200


out, thereby causing pump cavitation. The filter sensing line


11


is connected to the filter cavitation port


18


(see

FIGS. 6A

,


6


B).





FIG. 13

is a rear perspective view of another embodiment of the housing for a suction filter apparatus showing skimmer outlet


100


and pump outlet


119


. Although spas also have skimmer filters that draw surface water through the filters into a pump and back through the jets, the majority of the water passing through other suction points bypasses the skimmer filters. The alternate embodiment orifice


131


can be hooked up in tandem to a skimmer filter in a spa to filter water that bypasses the skimmer filter. Antimicrobial additives enter the water system via the additive port


117


adjacent to the filter cavitation port


118


.





FIG. 16

is a top perspective view of an alternate embodiment of the present invention, wherein each water vessel component is impregnated with antimicrobial additives creating a total water vessel sanitation system. The total water vessel sanitation system uses components that have been manufactured using antimicrobial additives including but not limited to the fiberglass/resin vessel backing


500


, acrylic sheet


506


, pump


503


, jets


575


, inlet pipe


504


, outlet pipe


505


. Treated filter sensing cavitation line


511


and treated faceplate sensing cavitation line


516


extend from treated suction filter housing


531


. As even the antimicrobial system components are treated, injector button


514


is depressed to activate the antimicrobial additives dispenser


599


that delivers antimicrobial additives to the water vessel covered by acrylic sheet


506


via antimicrobial line


515


. The preferred embodiment is impregnated with at least one of the components of a non-leaching antimicrobial agent selected from the group consisting of 2,4,4-trichloro-2-hydroxy diphenol ether and 5-chloro-2phenol(2,4dichlorophenoxy) compounds.





FIG. 23

presents a flow chart illustration of the total water vessel sanitation system of FIG.


16


. Antimicrobial additives may be added to each component of the water vessel to provide for optimum bacteria reduction in a water vessel system. The acrylic sheet or gelcoat surface may be treated at point of manufacture. In addition, fiberglass reinforced backing, air controls, jet fittings, suction fittings, pump, motor, piping and other components may treated with antimicrobial additives to provide for optimum protection from bacteria.





FIG. 17

is a plan exploded view of one embodiment of an injector button assembly for dispensing antimicrobial agents. Antimicrobial dispenser


99


is a deck mount top fill design. Injector assembly housing


1004


is fitted into the deck wall


6


A of a tub through a standard size opening cut. Flange nut


1007


having flange nut threads


1008


A is mounted onto antimicrobial reservoir


13


positioned on the underside of the deck of the tub wall


6


A. Inner tube injector assembly threads


1006


A secure reservoir


13


under tub wall


6


A by way of reservoir threads


1006


B while flange nut threads


1008


A secure injector assembly housing


1004


by threading into its outer assembly housing threads


1008


B. Inner tube injector port


1009


is thus located on the underside of the deck of the tub wall


6


A. Sub-assembly


1002


is inserted into the open end of injector assembly housing


1004


atop the deck of tub wall


6


A, wherein the antimicrobial pick up tube resides within reservoir


13


and sub-assembly injector port


1003


aligns with inner tube injector port


1009


by means of aligning line


1050


on the pick up housing


2004


of sub-assembly


1002


with line


1060


on injector assembly housing flange


1005


. Button cover


1000


having button cover threads


1001


A is mounted through its center hole over sub-assembly


1002


onto injector assembly housing flange


1005


and tightened by screwing button cover threads


1001


A into assembly housing threads


1001


B within inner assembly housing


1004


. Button cover


1000


and injector button


14


are exposed at the deck of tub wall


6


A (see FIG.


1


).





FIG. 18

is a plan exploded view of one embodiment of the injector sub-assembly


1002


shown in FIG.


17


. Button retainer


2000


fits over injector button


14


. Spring


2002


and check ball


2003


reside within pick up housing


2004


having an open end and a tapered check ball seat


2005


. Sub-assembly injector port


1003


is located on pick up housing


2004


adjacent to check ball seat


2005


. Antimicrobial pick up tube


2006


fits into the tapered end of pick up housing


2004


abutting check ball seat


2005


. Upon assembly, sub-assembly


1002


is inserted into the open end of injector assembly housing


1004


atop the deck of tub wall


6


A (see FIG.


17


).





FIG. 19

is a longitudinal sectional view of the deck mount top fill dispenser


99


of FIG.


17


and one embodiment of a antimicrobial liquid reservoir


13


.

FIG. 19

shows that initially there is no antimicrobial liquid


3001


in antimicrobial line


15


connected to inner tube injector port


1009


. As user depresses injector button


14


in direction F


d


(See (

FIG. 20

) spring


2002


within pick up housing


2004


compresses in direction P


d


.

FIG. 19

shows that as user releases injector button


14


in direction F


u


, spring


2002


expands unseating check ball


2003


and causing vacuum V to draw antimicrobial liquid


3001


into antimicrobial pick up tube


2006


. As vacuum V draws antimicrobial liquid


3001


up around check ball


2003


, antimicrobial liquid


3001


within reservoir


13


moves in direction L


d


. A second check ball


3003


and spring


3002


reside within inner tube injector port


1009


(see also

FIGS. 21

,


22


,


22


A) preventing antimicrobial liquid


3001


from entering antimicrobial line


15


.





FIG. 20

is the same view as

FIG. 19

, wherein the injector button is depressed, thereby causing antimicrobial liquid


3001


entering antimicrobial line


15


to be dispensed into the water vessel system.




As user depresses injector button


14


in direction F


d


, spring


2002


within pick up housing


2004


compresses in direction P


d


. Check ball


2003


reseats and holds antimicrobial liquid


3001


in reservoir


13


and antimicrobial pick up tube


2006


while spring


3002


compresses unseating check ball


3003


. Antimicrobial liquid


3001


which was drawn past check ball


2003


as shown in

FIG. 19

, may now move past check ball


3003


in direction P


o


to enter antimicrobial line


15


to be dispensed in the water vessel system.

FIG. 21

provides a close up view of the antimicrobial liquid movement into antimicrobial line


15


as shown in FIG.


20


.





FIGS. 22

,


22


A,


22


B show the inner tube injector port


1009


of injector assembly housing


1004


to which antimicrobial line


15


is connected. Check ball


3003


and spring


3002


residing within inner tube injector port


1009


prevents antimicrobial liquid


3001


from entering antimicrobial line


15


when the port


1009


is “closed.” The injector port


1009


is closed when check ball


3003


is seated as shown in FIG.


22


A. When the injector port


1009


is “open,” antimicrobial liquid


3001


may enter antimicrobial line


15


. The injector port


1009


is open when check ball


3003


is unseated as shown in FIG.


22


B.



Claims
  • 1. A combination water flow member and suction device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of a tub, below a fill line of the tub; said housing assembly having an input orifice and an output orifice, and a shape to enable drainage; said input orifice having a vertically oriented porous faceplate; a removable member mounted inside the housing assembly and located adjacent to said porous faceplate of said input orifice, thereby providing a suction device to intake all the water in the tub, and to continuously pass said water through said removable member; and wherein the removable member further comprises a replenishable chemical to inhibit bacteria growth in the whirlpool bathtub upon whirlpool bathtub activation and between whirlpool bathtub usages.
  • 2. A combination chemical dispenser and suction device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of a tub, below a fill line of the tub; said housing assembly having an input orifice and an output orifice, and a shape to enable drainage; said input orifice having a vertically oriented porous faceplate; a chemical dispenser mounted inside the housing assembly and located adjacent to said porous faceplate of said input orifice, thereby providing a suction device to intake all the water in the tub, and to continuously pass said water through said chemical dispenser; wherein said chemical dispenser is in axial alignment with the input orifice.
  • 3. A combination chemical dispenser and suction device comprising:a housing means functioning to support a removable member means and provide an inlet opening contiguous with an inner surface of a water vessel; said housing means having an inlet means functioning to intake water from the water vessel and an output means to discharge water passing through said combination water flow and suction device into the water vessel, and a shape to enable drainage; said inlet means having a vertically oriented porous faceplate means to cover said combination water flow and suction device; a removable member means mounted inside the housing means and located adjacent to said porous faceplate means of said inlet means, said removable member means functioning to provide a suction device to intake water in the water vessel, and to continuously pass said water through said removable member means; said removable member means functioning to support a replenishable chamber for chemicals therein; and wherein said removable member means is in axial alignment with the inlet means, thereby enabling a user to pull out the removable member means.
  • 4. A combination water flow and suction device comprising:a housing means functioning to support a removable member means and to provide a flush mount to an inside of a tub, below a fill line of the tub; said housing means having an input means functioning to intake water from the tub and an output means functioning to discharge water passing through said combination water flow and suction device into the tub, and a shape to enable drainage; said input means having a vertically oriented porous faceplate means to cover said combination water flow and suction device; said removable member means mounted inside the housing means and located adjacent to said porous faceplate of said input means, said removable member means functioning to provide a suction device to intake all the water in the tub, and to continuously pass said water through said removable member means; wherein the removable member means further comprises a replenishable chamber means functioning to hold chemicals therein; and wherein said removable member means is in axial alignment with the input means.
  • 5. In combination with a whirlpool bathtub, a combination chemical chamber and suction device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of a whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate; a chemical chamber in said housing assembly and located adjacent to said porous faceplate of said input orifice; said chemical chamber having a chemical that releases and mixes with water that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump; and wherein said chemical inhibits bacteria growth in the whirlpool bathtub.
  • 6. The apparatus of claim 5, wherein said bacteria growth in the whirlpool bathtub is inhibited upon whirlpool bathtub activation and between whirlpool bathtub usages.
  • 7. In combination with a whirlpool bathtub, a combination chemical chamber and suction device that kills bacteria in the whirlpool bathtub, said combination chemical chamber and suction device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate; a chemical chamber in said housing assembly and located adjacent to said porous faceplate of said input orifice; said chemical chamber having a chemical that releases and mixes with water that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub; and wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down.
  • 8. In combination with a whirlpool bathtub, a combination high velocity water flow chemical chamber and suction device that kills bacteria, said combination device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate; a chemical chamber in said housing assembly and located adjacent to said porous faceplate of said input orifice; said chemical chamber having a chemical that releases and mixes with water that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub upon whirlpool bathtub activation and between whirlpool bathtub usages; wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down; said combination chemical chamber and suction device having high velocity water flow; and wherein the output orifice is about two inches inside diameter or larger.
  • 9. In combination with a whirlpool bathtub, a combination high velocity water flow chemical chamber and suction device that kills bacteria, said combination device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate; a chemical chamber in said housing assembly and located adjacent to said porous faceplate of said input orifice; said chemical chamber having a chemical that releases and mixes with water that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub; wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down; and said combination chemical chamber and suction device having high velocity water.
  • 10. In combination with a whirpool bathtub, a combination high velocity water flow chemical chamber and suction device that kills bacteria, said combination device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate that resists hair entrapment; a removable chemical chamber with an attachment member for insertability into said housing assembly and located adjacent to said porous faceplate of said input orifice; said removable chemical chamber having a chemical that releases and mixes with water that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub; wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down; and said combination chemical chamber and suction device having high velocity water flow.
  • 11. In combination with a whirlpool bathtub, a combination high velocity water comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate; an axially aligned adjustable removable chemical chamber with an attachment means for insertability into said housing assembly and located adjacent to said porous faceplate of said input orifice; said removable chemical chamber housing a chemical that releases and mixes with water that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub; wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down; and said combination chemical chamber and suction device having high velocity water flow.
  • 12. In combination with a whirlpool bathtub, a combination high velocity water flow chemical chamber and suction device that inhibits bacteria, said combination device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate that resists hair entrapment; a chemical chamber located rearward of and adjacent to said porous faceplate of said input orifice; said chemical chamber having a chemical that releases and mixes with water having a high velocity water flow that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub; wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down; and wherein the housing assembly has means for inhibiting a suction force of the whirlpool pump if said faceplate is removed from said input orifice of said housing assembly.
  • 13. In combination with a whirlpool bathtub, a combination high velocity water flow chemical chamber and suction device that inhibits bacteria, said combination device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate that resists hair entrapment; a chemical chamber located rearward of and adjacent to said porous faceplate of said input orifice; said chemical chamber having a chemical that releases and mixes with water having a high velocity water flow that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub; wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down; and wherein the housing assembly has means for inhibiting a suction force of the whirlpool pump if said chemical chamber is absent from said housing assembly.
  • 14. In combination with a whirlpool bathtub, a combination high velocity water flow chemical chamber and suction device that inhibits bacteria, said combination device comprising:a housing assembly having a mounting surface for providing a flush mount to an inside of the whirlpool bathtub, below a fill line of the whirlpool bathtub; said housing assembly having an input orifice and an output orifice, said input orifice having a vertically oriented porous faceplate that resists hair entrapment; an axially aligned chemical chamber located rearward of and adjacent to said porous faceplate of said input orifice; said chemical chamber having a chemical that releases and mixes with water having a high velocity water flow that is directly induced into a suction line of the whirlpool bathtub leading to a whirlpool bathtub pump, wherein said chemical inhibits bacteria growth in the whirlpool bathtub; and wherein said combination chemical chamber and suction device retains less than 10½ ounces of water after whirlpool bathtub drain down.
REFERENCE TO RELATED APPLICATION

U.S. Pat. No. 6,395,167 (2002) to Mattson et al., U.S. Pat. No. 6,283,308 (2001) to Patil, et al., and U.S. Pat. No. 5,799,339 (1998) to Perry et al. are incorporated herein by reference.

US Referenced Citations (45)
Number Name Date Kind
2329987 Goodloe Sep 1943 A
3263811 Baker et al. Aug 1966 A
4233694 Janosko et al. Nov 1980 A
4340039 Hibbard et al. Jul 1982 A
4349434 Jaworski Sep 1982 A
4359790 Chalberg Nov 1982 A
4426286 Puckett et al. Jan 1984 A
4533476 Watkins Aug 1985 A
4552658 Adcock et al. Nov 1985 A
4637873 DeSousa et al. Jan 1987 A
4676894 Diamond et al. Jun 1987 A
4818389 Tobias et al. Apr 1989 A
4971687 Anderson Nov 1990 A
5167041 Burkitt, III Dec 1992 A
5236581 Perry Aug 1993 A
5277802 Goodwin Jan 1994 A
5328602 Brooks Jul 1994 A
5347664 Hamza et al. Sep 1994 A
5383239 Mathis et al. Jan 1995 A
5656159 Spencer et al. Aug 1997 A
5762797 Patrick et al. Jun 1998 A
5779913 Denkewicz, Jr. et al. Jul 1998 A
5799339 Perry et al. Sep 1998 A
5810999 Bachand et al. Sep 1998 A
5857594 Ozturk Jan 1999 A
5868933 Patrick et al. Feb 1999 A
5928510 Meredith Jul 1999 A
5976385 King Nov 1999 A
6019893 Denkewicz, Jr. et al. Feb 2000 A
6038712 Chalberg et al. Mar 2000 A
6065161 Mateina et al. May 2000 A
6066253 Idland et al. May 2000 A
6138703 Ferguson et al. Oct 2000 A
6165358 Denkewicz, Jr. et al. Dec 2000 A
6170095 Zars Jan 2001 B1
6171496 Patil Jan 2001 B1
6283308 Patil et al. Sep 2001 B1
6328900 King Dec 2001 B1
6331432 Bautista et al. Dec 2001 B1
6340431 Khan Jan 2002 B2
6390340 Lynch, Sr. May 2002 B1
6395167 Mattson, Jr. et al. May 2002 B1
6409864 Choi Jun 2002 B1
20010003217 Sorenson Jun 2001 A1
20010013373 Wright Aug 2001 A1
Foreign Referenced Citations (4)
Number Date Country
4-214150 Aug 1992 JP
7-80218 Mar 1995 JP
10-192847 Jul 1998 JP
11-267414 Oct 1999 JP
Non-Patent Literature Citations (2)
Entry
The American Society of Mechanical Engineers, ASME/ANSI A112.19.8M-1987, Reaffirmed 1996, Suction Fittings for Use in Swimming Pools, Wading Pools, Spas, Hot Tubs, and Whirlpool Bathtub Appliances (Index plus 5 pges).
The American Society of Mechanical Engineers, ASME A112.19.7M-1995, Whirlpool Bathtub Applicances (Index plus 8 Pages).