The present disclosure relates generally to dishwashers and, more particularly, to techniques for detecting a water fill level in dishwashers. A dishwasher is a mechanical device for cleaning dishes, utensils and other items. Various types of dishwashers are known and are currently available. Spray dishwashers, for example, spray warm water and detergent within a dishwasher cabinet to wash the items arranged in racks. Typically, the spray dishwasher employs one or more rotating spray arms that spray water through holes formed in the arms, a wash reservoir or “sump” where water is collected and a pump to pump the water from the sump to the spray arms.
A number of techniques have been proposed or suggested for reducing energy and water consumption in dishwashers. Existing water conservation techniques, for example, allow dishwashers to use less water while maintaining water velocity and pressure. One aspect of the known water conservation techniques attempt to only fill the dishwashers to an appropriate water fill amount.
Thus, a number of techniques exist for detecting a water fill level in dishwashers. For example, known techniques use timers or water level sensors to control the water fill level. Generally, when the pump motor stops cavitating, there is an appropriate water fill amount in the dishwasher. One technique for monitoring the cavitation utilizes gradients of the current drawn by the pump motor to detect that the water pump has stopped cavitating. While this technique effectively detects an adequate water fill level, it requires a costly increase in the fine balance of the pump motor rotor so that software algorithms can identify current fluctuations due to cavitation. Otherwise, current fluctuations generated from an unbalanced rotor will cause an error in cavitation detection.
A need therefore exists for improved techniques for detecting a water fill level in dishwashers. A further need exists for non-electronic methods and apparatus for controlling a water fill level in dishwashers.
As described herein, the exemplary embodiments of the present invention overcome one or more disadvantages known in the art. Generally, water fill level detection techniques are provided for a dishwasher system.
According to one aspect of the invention, a dishwasher system is provided that comprises a tub; a fluid circulation system for circulating water in the tub; and a cavitation sense fill system. The fluid circulation system comprises at least one recirculation pump and at least one fill valve. The cavitation sense fill system monitors an output pressure of the at least one recirculation pump. The cavitation sense fill system deactivates the at least one fill valve when the output pressure satisfies at least one predefined criteria.
According to another aspect of the invention, a cavitation sense fill system for a dishwasher system is provided. In one exemplary embodiment, the cavitation sense fill system comprises a pressure switch for monitoring an output pressure of at least one recirculation pump in the dishwasher system, wherein the pressure switch deactivates at least one fill valve in the dishwasher system when the output pressure satisfies at least one predefined criteria.
Another aspect of the invention provides a method for operating a dishwasher system by monitoring an output pressure of at least one recirculation pump in the dishwasher system; and deactivating at least one fill valve in the dishwasher system when the output pressure satisfies at least one predefined criteria.
These and other aspects and advantages of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. Moreover, the drawings are not necessarily drawn to scale and, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
In the drawings:
The present invention provides improved techniques for detecting a water fill level in dishwashers. According to one aspect of the invention, an appropriate water fill level is detected by monitoring the output pressure of the recirculation pump.
Dishwasher 100 includes a cabinet 102 having a tub 104 therein and forming a wash chamber 106. Tub 104 includes a front opening (not shown in
Upper and lower guide rails 124, 126 are mounted on tub side walls 128 and accommodate upper and lower roller-equipped racks 130, 132, respectively. Each of upper and lower racks 130, 132 is fabricated from known materials into lattice structures including a plurality of elongate members 134, and each rack 130, 132 is adapted for movement between an extended loading position (not shown) in which at least a portion of the rack is positioned outside wash chamber 106, and a retracted position (shown in
A control input selector 136 is provided, for example, at a convenient location on an outer face 138 of door 120 and is coupled to known control circuitry (not shown) and control mechanisms (not shown) for operating a fluid circulation assembly (not shown in
A lower spray-arm-assembly 144 is rotatably mounted within a lower region 146 of wash chamber 106 and above tub sump portion 142 so as to rotate in relatively close proximity to lower rack 132. A mid-level spray-arm assembly 148 is located in an upper region of wash chamber 106 in close proximity to upper rack 130 and at a sufficient height above lower rack 132 to accommodate items such as a dish or platter (not shown) that is expected to be placed in lower rack 132. In a further embodiment, an upper spray arm assembly (not shown) is located above upper rack 130 at a sufficient height to accommodate a tallest item expected to be placed in upper rack 130, such as a glass (not shown) of a selected height.
Lower and mid-level spray-arm assemblies 144, 148 and the upper spray arm assembly are fed by the fluid circulation assembly, and each spray-arm assembly includes an arrangement of discharge ports or orifices for directing washing liquid onto dishes located in upper and lower racks 130, 132, respectively. The arrangement of the discharge ports in at least lower spray-arm assembly 144 results in a rotational force as washing fluid flows through the discharge ports. The resultant rotation of lower spray-arm assembly 144 provides coverage of dishes and other dishwasher contents with a washing spray. In various alternative embodiments, mid-level spray arm 148 and/or the upper spray arm are also rotatably mounted and configured to generate a swirling spray pattern above and below upper rack 130 when the fluid circulation assembly is activated.
Tub 104 and tub sump portion 142 are downwardly sloped toward sump 150 so that water sprayed from lower spray arm assembly 144, mid-level spray arm assembly 148 (shown in
As discussed further below in conjunction with
The drain pump 320 comprises a small pump that drains water from the dishwasher system 100. The exemplary controller 330 energizes the fill valve 340 to add water to the dishwasher system 100. As previously noted, adequate water needs to be added to the dishwasher system 100 for proper wash performance. As discussed further below in conjunction with
In one exemplary embodiment, the fill valve 340 is a solenoid valve that turns the water supply on and off. The heating element 350 can be implemented, for example, using a tubular resistive heating element, such as commercially available Calrod™, heating elements for dishwasher heater applications, to heat the water in the dishwasher system 100 and thereby increase the cleaning performance. The exemplary turbidity sensor 360 senses the cleanliness of the water, in a known manner. Finally, the flood switch 370 comprises a flood protection float switch that interrupts power to the fill valve to prevent flooding of the home in the event of a failure.
In addition, as discussed further below in conjunction with
In this manner, the exemplary cavitation sense fill system 400 enables the dishwasher 100 to automatically deliver only a desired volume of water needed for proper wash pump operation.
In addition, when the exemplary cavitation sense fill system 400 detects that the output pressure 500 of the recirculation pump 315 reaches a predefined threshold value, Th, for example, 5 psi, as detected at a time T2, the exemplary cavitation sense fill system 400 deactivates the fill valve 340. In one exemplary implementation, a pressure switch can be activated by the water pressure at the output of the recirculation pump 315 reaching and maintaining the threshold pressure value, Th, for example, for a minimum predefined time interval, such as 1-2 seconds to assure responding to a relatively stable pressure condition. In one exemplary implementation, the cavitation sense fill system 400 also includes an upper time limit, at a time T3, such as 75 seconds, that if exceeded, will result in automatically deactivating the fill valve 340 regardless of the output pressure of the recirculation pump 315. Generally, the time T3, is a time-out value for controlling the fill valve 340 (e.g., a worst-case upper time limit) to prevent filling beyond the maximum acceptable level.
As previously indicated, the cavitation sense fill system 400 monitors the output pressure of the recirculation pump 315 and determines when an appropriate water fill level has been reached. According to a further aspect of the invention, a pressure wave damper may be employed to ensure that the cavitation sense fill system 400 is monitoring stable pressure measurements and thereby avoid a false trigger of the cavitation sense fill system 400. In this manner, the cavitation sense fill system 400 processes an overall average pressure over time.
For example, as shown in
The above examples are merely illustrative of several possible embodiments of various aspects of the present disclosure, wherein equivalent alterations and/or modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, systems, circuits, and the like), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component, such as hardware, software, or combinations thereof, which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the illustrated implementations of the disclosure. In addition, although a particular feature of the disclosure may have been illustrated and/or described with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, references to singular components or items are intended, unless otherwise specified, to encompass two or more such components or items. Also, to the extent that the terms “including”, “includes”, “having” “has”, “with”, or variants thereof are used in the detailed description and/or in the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”. The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.
Thus, while there has been shown and described and pointed out fundamental novel features of the invention as applied to exemplary embodiments thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. Moreover, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Furthermore, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5313964 | Dausch et al. | May 1994 | A |
5402809 | Smith | Apr 1995 | A |
5487528 | Richmond | Jan 1996 | A |
5878603 | Warren, Jr. et al. | Mar 1999 | A |
7621283 | Zentner et al. | Nov 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20120312325 A1 | Dec 2012 | US |