The present invention is directed to blast mitigating devices. Specifically, the present invention is directed to a non-flammable blast mitigating mat to protect those in a vehicle.
Wars in Iraq and Afghanistan have subjected troops within combat vehicles to roadside improvised explosive devices (IED) which are cheap to make but are also highly potent. IEDs are very effective, in part, because they can be buried near the road and explode when a combat vehicle drives past, such that the energy of the blast is directed from the ground up through the under-carriage of the vehicle. In recent years combat vehicles have been shaped to help deflect the explosive percussions away from the undercarriage, thus reducing the amount of energy absorbed by the vehicle and its passengers. Since a vehicle cannot deflect all of the energy from an IED bomb blast, combat vehicles have also been designed with materials that absorb the force of the blast so that less of the blast is absorbed by the occupants.
Currently, some combat vehicles are outfitted with blast mitigating mats. Traditionally, mats are placed on the vehicle floor where soldiers stand or sit and protect the lower extremities from damaging impulse loads. Existing mats, which are typically made from polymeric materials such as molded elastomer or foam, significantly reduce the risk of injury from a bomb blast itself. However, a secondary effect of the blast is fire. Unfortunately, the existing mats are inherently flammable, even when formulated with flame retardants. Many times the blast force ignites combustibles in the vehicle. Not only is there a risk from fire, but burning polymers typically emit toxic gases which are also hazardous to soldiers in the vehicle. As the occupants are frequently belted in place, the fire and smoke from a burning mat creates unacceptable life threatening conditions. Therefore, there is a need for a non-flammable blast mitigating mat.
The current invention is a blast mitigation mat which protects soldiers from an explosion by absorbing the energy of a blast. Unlike existing mats which can burn and emit toxic gases, the current invention may melt but cannot burn; thus, it protects soldiers from fire and toxic fumes. The current invention, in one embodiment, consists of three layers: a surface layer, an absorbent layer which is primarily a hollow metallic structure, and a finishing layer.
In one embodiment, the surface layer consists of a diamond tread nonskid plate for walking or standing. The absorbent layer consists of a non-flammable energy absorbing material such as aluminum foam or Nomex™ Honeycomb. The thickness, density, and material may be tuned for specific purposes. The absorbing material layer deforms to minimize the amount of energy transmitted to the occupant standing or sitting on the mat. The finishing layer consists of a metal plate which provides a means of attachment to the vehicle structure or floor. It is clear that such material may also be placed on other walls and structures which maybe exposed to blast pressure from explosives.
The present invention is a mat for minimizing the effect of a blast impulse. The mat comprising; an upper plate, a hollow metallic core plate, and a mounting plate, wherein the upper plate is bonded to a first face of the hollow metallic core plate, the hollow metallic core plate at least five times thicker than the upper plate, and the mounting plate bonded to a second face of the hollow metallic core.
The upper plate provides an anti-slip surface such as a diamond plate. The upper plate is bonded to the hollow metallic core plate by adhesives, welding or brazing.
The hollow metallic core plate may be formed of a metallic foam. The metallic foam may be an open cell or closed cell foam. Alternatively, the hollow metallic core plate is formed of dimpled aluminum sheets, or an aluminum honeycomb.
The core may comprise a uniform or non-uniform construction. It may be formed of a discontinuous foam so as to create pillars between the upper plate and the mounting plate.
The present invention is a mat for minimizing the effect of a blast impulse, the mat comprising: an upper plate, a core plate, and a mounting plate. The core plate includes internal spaces formed by a honeycomb structure, the honeycomb structure absorbing force upon impact such that the mounting plate never experiences a force greater than the core plate crush strength. The core plate can be a Nomex™ honeycomb, an aluminum honeycomb or similar material have the required strength, energy absorption and flame retardation qualities.
The above summary of the various representative embodiments of the invention is not intended to describe each illustrated embodiment or every implementation of the invention. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices of the invention. The figures in the detailed description that follow more particularly exemplify these embodiments.
The invention can be completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Embodiments of the present invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the present invention is not intended to be limited to the specific terminology so selected. A person skilled in the relevant art will recognize that other equivalent parts can be employed and other methods developed without parting from the spirit and scope of the present invention.
By manufacturing the mat entirely out of non-flammable materials, this mat improves upon existing mats because it reduces the force which is transmitted from the blast to nearby soldiers and eliminates the risk of a subsequent fire. In addition to being non-flammable, the structure can absorb large blasts while remaining lightweight.
Referring to
Referring to
Material selection for absorptive layer 104 is preferably a non-flammable material, such as for example, aluminum foam, Nomex™ or a metal honeycomb. Aluminum foam can be open cell or closed cell. Nomex™ honeycomb is made from Nomex™ paper—a form of paper based on Kevlar®, rather than cellulose fibers. It is widely used in fire retardant applications. Aluminum honeycomb produces one of the highest strength/weight ratios of any structural material. Various configurations of the aluminium foil which can lead to a variety of geometric cell shapes (usually hexagonal). Properties can also be controlled by varying the foil thickness and cell size.
Finishing layer 106 is of similar thickness to surface layer 102. In one embodiment it is designed to provide a means of attachment to the vehicle structure or floor. It may be attached to absorptive layer 104 in a manner similar to the way surface layer 102 is attached to the absorptive layer 104. Finishing layer 106 may have apertures or other connecting elements to mount the blast mitigation surface to a structure.
In operation of the embodiment above, absorptive layer 104 is comprised of aluminum foam which will not burn. Existing mats typically use a polymer such as polyurethane foam. Polymer based foams are susceptible to fire, even if coated with a fire resistive material. Referring to
In operation, referring to
This concept is not limited to floor mats; additional embodiments of non-flammable blast mitigation mats may include mats for seats, walls, bulkheads, ceilings, ammunition compartments for ships and aircraft, and even protective gear such as helmets and body armor.
Referring to another embodiment,
Operably, energy from an explosive event impacts surface layer 202. Absorptive layer 204 absorbs the majority of the blast energy causing the aluminum foam to deform and melt. Finishing layer 206 is attached to the exterior of a structure. Because absorptive layer 204 absorbs most of the blast energy, the structure remains standing long enough for its occupants to make a safe exit. After the explosion, mat 200 may be replaced by removing detaching finishing layer 206 from the structure.
Referring to another embodiment,
An explosive event may occur within ammunition compartment 312 or outside ammunition compartment 312. Operably, when the explosion occurs outside ammunition compartment 312, energy from an explosive event impacts surface layer 302. Absorptive layer 304 absorbs the majority of the blast energy causing the aluminum foam to deform and melt. Finishing layer 306 prevents the melted foam from contacting the contents of ammunition compartment 312. If ordinance within ammunition compartment 312 explodes, absorptive layer 304 absorbs the blast energy, preventing injury to nearby soldiers.
Referring to another embodiment,
Number | Date | Country | |
---|---|---|---|
61878931 | Sep 2013 | US |