Claims
- 1. An outdoor air codled condenser assembly for a continuously operating refrigeration system having at least one refrigeration circuit and plural evaporator means adjusted to different varying load conditions, said condenser assembly including a condenser coil having a heat transfer surface for said refrigeration circuit, a condenser housing including a primary air flow chamber containing a primary section of said condenser coil and a separate secondary air flow chamber containing a section of said condenser coil, said condenser houwing having an open air inlet for the passage of ambient air across the primary and secondary section of said coil heat transfer surface and said primary and secondary chambers having primary and secondary outlets respectively, air flow control means associated with said primary chamber for effecting continuous air circulation through the primary section of said condenser coil, said air flow control means including selectively operable means for incrementally varying the volumetric air flow through said primary chamber and said primary section therein, air displacement means associated with said secondary chamber for effecting air flow therethrough, sensing means connected to the refrigerant outlet from said condenser coil to sense a predetermined condition of refrigerant in said condenser coil, control circuit means for monitoring said sensed refrigerant condition with respect to an established ideal condition set point value for said refrigeration system and for controlling said air flow control means of said primary outlet and said air displacement means of said secondary outlet to regulate the volume of air passing through the respective primary and secondary chambers of said condenser housing and said condenser coil heat transfer surfaces therein in response to changes in said refrigerant condition resulting from the heat rejection load in said condenser coil or the entering ambient air temperature in said condenser housing, whereby to substantially maintain said refrigeration system in constant operation at a preselected ideal condition set point value relative to the sensed refrigerant condition.
- 2. The condenser assembly according to claim 1, in which said control circuit means includes an integrator circuit programmed with said ideal condition set point and providing preselected positive and negative tolerance limits deviating from said set point.
- 3. The condenser assembly according to claim 2, in which said sensing means produces input data of the sensed refrigerant condition representative of said heat rejection load of said condenser coil or the entering ambient air temperature in said condenser housing, and said integrator circuit analyzes said input data in comparison with the ideal condition set point and produces an error signal dependent upon the relative deviation in values between such input data and said ideal condition set point.
- 4. The condenser assembly according to claim 3, in which said control circuit means includes converter and decoder means for converting and translating said error signal into usable form, and motor control means for operating said air flow control means and air displacement means in response to preselected deviations in said converted error signal from said converter and decoder means.
- 5. The condenser assembly according to claim 4, in which said air flow control means comprises at least one primary air moving means constructed and arranged in said condenser housing to move ambient air across said primary section of said condenser coil heat transfer surface to said primary outlet, and said selectively operable means comprising damper means for variably controlling the air flow area of said primary outlet between fully open and closed positions to compensate for data signal variations within said positive and negative tolerance limits.
- 6. The condenser assembly according to claim 5, in which said damping means comprise angularly variable baffles secured in said primary outlet opening to regulate the volume of air displacement therethrough, and the operation of said baffles being selectively controlled by said motor control means.
- 7. The condenser assembly according to claim 6, including damper controlled by-pass air passages in said condenser housing for producing modulating air flow recirculation from said primary air moving means to the inlet side of said condenser coil only when said controllable damping means is in fully closed position.
- 8. The condenser assembly according to claim 4, in which said selectively operable means comprises a plurality of air moving means constructed and arranged in said condenser housing for selective operation in variably moving ambient air through said primary section of said condenser coil in response to deviations of converted error signals within the positive and negative tolerance limits of said ideal condition set point.
- 9. The condenser assembly according to claim 8, in which said additional air moving means are of different volumetric air moving capacity, and said motor control means includes means for selectively operating said additional air moving means in varying combinations to produce incremental volumetric adjustment of primary air flow through said primary section.
- 10. The condenser assembly according to claim 5, in which said air displacement means is constructed and arranged in said condenser housing to move ambient air across said secondary section of the condenser coil heat transfer surface to said secondary outlet, and including damper means movable between a fully closed inactive position and a fully open active position when said air displacement means is operative.
- 11. The condenser assembly according to claim 10, in which said air displacement means is operated by said motor control circuit for increasing the volumetric ambient air displacement through said condenser housing to compensate for data signal variations exceeding the positive tolerance limit of said ideal condition set point.
- 12. The condenser assembly according to claim 10, in which a plurality of air displacement and damper means are provided for said secondary chamber and each is associated with a secondary outlet, and said motor control means selectively activates said plural air displacement means when said data signal variations are above said positive tolerance limit and deactivates selected air displacement means when said data signal variations are below said negative tolerance limit.
- 13. The condenser assembly according to claim 1, wherein there are a multiplicity of separate refrigeration systems for operating plural evaporator means at different levels, and each of said systems having a condenser coil with a heat transfer surface disposed in said condenser housing.
- 14. The condenser assembly according to claim 13, in which said sensing means comprises a separate sensor connected to the refrigerant outlet of each of said condenser coils to sense a predetermined condition of the refrigerant in its associated condenser coil.
- 15. The condenser assembly according to claim 14, in which said control circuit means includes an integrator circuit programmed with said ideal condition set point and providing preselected positive and negative tolerance limits deviating from said set point, and in which said separate sensors each produces input data of the sensed refrigerant condition in the respective condenser coils, and said integrator circuit integrates and analyzes such input data in comparison with the ideal condition set point and produces an error signal dependent on the relative average deviation in values between the input data base and said ideal condition set point.
- 16. A method of controlling condensing temperatures in an outdoor air cooled condenser having at least one refrigeration circuit connected to a condenser coil assembly having a heat transfer surface and being secured in a condenser housing having air inlet and outlet means with primary air control means and secondary air displacement means for the convection of ambient air from said inlet to said outlet means about said heat transfer surface, said method comprising the steps of:
- (i) sensing a refrigerant condition in said condenser coil and establishing an input data base representative of said condition,
- (ii) analyzing said input data base with respect to a predetermined set point value forming an ideal refrigerant condition for said refrigeration system and producing a control signal,
- (iii) controlling said air displacement means when said control signal exceeds positive or negative tolerance limits from said set point value, and
- (iv) controlling said primary air control means when said control signal is within said tolerance limits but deviates from said set point value whereby to substantially maintain said refrigeration system operating at said set point value.
- 17. The method according to claim 16 wherein said step (ii) of analyzing said input data base comprises:
- (a) providing an output signal representative of the control signal derived from said data base deviation relative to said set point value,
- (b) converting said output signal to feed a decoder circuit, and
- (c) decoding said converted signal to provide control signals to a motor control circuit for controlling said secondary air displacement means and primary air control means.
- 18. The method according to claim 16, in which said air cooled condenser has a plurality of refrigeration circuits for multiple refrigeration systems and wherein steps (i) and (ii) comprise:
- (a) sensing a refrigerant condition in each of said refrigeration circuits, and
- (b) analyzing and integrating the respective input data bases thereof and producing an integrated control signal relative to the set point value of the ideal refrigerant condition.
- 19. The method according to claim 16, in which said primary air control means comprise a plurality of different volumetric capacity air moving means in a primary housing section of said condenser coil, and wherein step (iv) comprises:
- (a) selectively controlling the operation of said plural air moving means in different combinations to variably control ambient air displacement through said primary housing section.
Parent Case Info
This application is a continuation-in-part application based upon U.S. patent application Ser. No. 430,699, filed Sept. 30, 1982, co-pending herewith, now U.S. Pat. No. 4,498,308.
US Referenced Citations (7)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0102849 |
Aug 1980 |
JPX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
430699 |
Sep 1982 |
|