Non-force reflecting method for providing tool force information to a user of a telesurgical system

Information

  • Patent Grant
  • 8944070
  • Patent Number
    8,944,070
  • Date Filed
    Wednesday, March 30, 2005
    19 years ago
  • Date Issued
    Tuesday, February 3, 2015
    9 years ago
Abstract
Tool force information is provided to a user of a telesurgical system using an alternative modality other than force reflection on a master manipulator, such as providing the information on user-visible, user-audible, or haptic “buzz” or “viscosity” indicators, so as to allow expanded processing, including amplification, of the information, while not significantly affecting the stability of the telesurgical system or any closed-loop control systems in the telesurgical system.
Description
FIELD OF THE INVENTION

The present invention generally relates to telesurgical systems and in particular, to a non-force reflecting method for providing tool force information to a user of a telesurgical system.


BACKGROUND OF THE INVENTION

Telesurgical systems are well-known and commonly used to robotically manipulate objects such as tools in remote or other environments where it is advantageous for a human not to do so in person. One example of such a system is the minimally invasive robotic surgery system described in commonly owned U.S. Pat. No. 6,699,177 entitled “Method and Apparatus for Performing Minimally Invasive Surgical Procedures,” which is incorporated to the extent consistent herein by this reference.


To manipulate the remote object, a human operator or user of the telesurgical system manipulates or otherwise commands a locally provided master manipulator. Such commands to the master manipulator are then translated as appropriate, and sent to a remotely deployed slave manipulator. The slave manipulator then manipulates the object according to the user's commands.


In order to enhance the user's ability to “feel” the effects of his or her control inputs, force reflection is commonly included in telesurgical systems by having the remote slave manipulator feed back force or other motion relative signals to the master manipulator so that the user feels as if he or she is manipulating the controlled object directly by hand.


One problem with such force reflection telesurgical systems, however, is that a large feedback gain and/or signal filtering may cause the closed-loop control system between the master and slave manipulators to go unstable. Without such gain and/or filtering, however, the user may not properly feel objectionable force levels being applied by the manipulated object against obstructions in its path. In a minimally invasive surgical application such insensitivity to tool forces can result in the surgical tool exerting excessive forces so as to, for example, injure the patient or otherwise affect the safety or comfort of the patient in some manner.


OBJECTS AND SUMMARY OF THE INVENTION

Accordingly, one object of aspects of the present invention is a method for providing tool force information to a user of a telesurgical system without affecting the stability of the telesurgical system.


Another object of aspects of the invention is a method for providing tool force information to a user of a telesurgical system without restricting feedback gain or filter values and configurations while maintaining the stability of the telesurgical system.


Still another object of aspects of the invention is a method for providing tool force information to a user of a telesurgical system that effectively warns the user if excessive tool force is being applied against an obstruction in an environment in which the tool is being manipulated.


These and additional objects are accomplished by the various aspects of the present invention, wherein briefly stated, one aspect is a method for providing force information to a user of a telesurgical system, comprising: determining force values associated with a tool robotically manipulated in the telesurgical system; processing at least one of the force values to generate force information; and providing the force information to the user of the telesurgical system in a manner so as not to significantly affect the stability of the telesurgical system.


Another aspect is a method for providing force information to a user of a telesurgical system, comprising: determining force values associated with a slave manipulator for manipulating a tool; using one or more of the force values in a feedback path to a master manipulator operated by a user of the telesurgical system so that the master manipulator and the slave manipulator move substantially in tandem; processing at least one of the force values to generate force information; and providing the force information to the user in a manner so as to have substantially no effect on the stability of a closed-loop control system including the feedback path.


Still another aspect is a telesurgical system comprising: a slave manipulator having a plurality of joints for manipulating a tool; a master manipulator linked to the slave manipulator and operated by a user to control movement of the tool; a plurality of closed-loop control systems individually controlling movement of a corresponding one of the plurality of joints so that the slave manipulator manipulates the tool according to the operation of the master manipulator by the user; and a force indicator coupled to individual of the plurality of closed-loop control systems to provide force information generated from torque values for motors driving the plurality of joints in a manner to the user so as not to significantly affect the stability of the telesurgical system.


Additional objects, features and advantages of the various aspects of the present invention will become apparent from the following description of its preferred embodiment, which description should be taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a top view of an operating room employing a minimally invasive robotic telesurgical system utilizing aspects of the present invention.



FIG. 2 illustrates a block diagram of a telesurgical system utilizing aspects of the present invention.



FIGS. 3-6 illustrate block diagrams of telesurgical systems using different joint torque values for tool force indication, utilizing aspects of the present invention.



FIG. 7 illustrates a block diagram of an observer useful in the telesurgical system of FIG. 6.



FIG. 8 illustrates a flow diagram of a method for providing force information to a user of a telesurgical system utilizing aspects of the present invention.



FIG. 9 illustrates a flow diagram of a method for providing force information to a user of a telesurgical system with escalating warnings, utilizing aspects of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 illustrates, as an example of a telesurgical system, a Minimally Invasive Robotic Surgical (MIRS) system 100 including a Console (“C”) utilized by a Surgeon (“S”) while performing a minimally invasive diagnostic or surgical procedure, usually with assistance from one or more Assistants (“A”), on a Patient (“P”) who is lying down on an Operating table (“O”).


The Console includes a support 102, a monitor 104 for displaying an image of a surgical site to the Surgeon, and one or more control devices 108 (also referred to herein cumulatively as a “master manipulator”). The control devices 108 may include any one or more of a variety of input devices such as joysticks, gloves, trigger-guns, hand-operated controllers, or the like.


The Surgeon performs a procedure by manipulating the control devices 108 which in turn, cause robotic mechanisms 114 (also referred to herein as “slave manipulators”) to manipulate their respective removably coupled instrument or tool assembly 110 (hereinafter simply referred to as a “tool”) through a minimally invasive incision in the body of the Patient while the Surgeon views the surgical site through the monitor 104.


To manipulate the tools 110, each of the slave manipulators 114 is conventionally formed of linkages that are coupled together and manipulated through motor controlled joints. Since the construction and operation of such robotic manipulators are well known, their details need not be repeated here. For example, general details on robotic manipulators of this type can be found in John J. Craig, Introduction to Robotics Mechanics and Control, 2nd edition, Addison-Wesley Publishing Company, Inc., 1989.


The number of surgical tools 110 used at one time and consequently, the number of robotic mechanisms 114 in the system 100 will generally depend on the diagnostic or surgical procedure and the space constraints within the operating room among other factors. If it is necessary to change one or more of the tools 110 being used during a procedure, the Assistant may remove the tool 110 no longer being used at the time from its robotic mechanism 114, and replace it with another tool 110 from a tray (“T”) in the operating room.


The Surgeon's Console is usually located in the same room as the Patient so that the Surgeon may directly monitor the procedure, is physically available if necessary, and is able to speak to the Assistant(s) directly rather than over the telephone or other communication medium. However, it will be understood that the Surgeon can also be located in a different room, a completely different building, or other remote location from the Patient allowing for remote surgical procedures.


Preferably, control devices 108 will be provided with the same degrees of freedom as their associated tools 110 to provide the Surgeon with telepresence, or the perception that the control devices 108 are integral with the tools 110 so that the Surgeon has a strong sense of directly controlling the tools 110. To this end, position, force, and tactile feedback sensors are preferably employed on the tools 110 to transmit position, force, and tactile sensations from the tools 110 back to the Surgeon's hands as he/she operates the control devices 108.


A monitor 104 is suitably coupled to a viewing scope assembly 112, including one or more cameras, through a processor 101, and positioned on the support 102 of the Console such that an image of the surgical site is provided near the Surgeon's hands. Preferably, the monitor 104 will display a projected image on a display 106 that is oriented so that the surgeon feels that he or she is actually looking directly down onto the operating site. To that end, an image of the tools 110 appear to be located substantially where the operator's hands are located even though the observation points (i.e., the endoscope or viewing camera) may not be from the point of view of the image.


In addition, the real-time image is preferably projected into a perspective image such that the operator can manipulate the end effector of a tool 110 through its corresponding control device 108 as if viewing the workspace in substantially true presence. By true presence, it is meant that the presentation of an image is a true perspective image simulating the viewpoint of an operator that is physically manipulating the tools 110. Thus, the processor 101 (or another processor in the Console) transforms the coordinates of the tools 110 to a perceived position so that the perspective image is the image that one would see if the viewing scope assembly 112 was located directly behind the tools 110.


The processor 101 performs various functions in the system 100. One important function that it performs is to translate and transfer the mechanical motion of control devices 108 to robotic mechanisms 114 through control signals such as CS1 and CS2 so that the Surgeon (“S”) can effectively manipulate the tools 110. Another important function is to provide force information to one or more force indicators so that the Surgeon and/or Assistant(s) may be informed, for example, if excessive force is being applied by a monitored tool that may harm or cause discomfort to the Patient. In providing such force information, it is important that it is done in such a manner so as to not significantly affect the stability of the telesurgical system 100. In particular, it should not drive the telesurgical system 100 unstable.


The force indicators, for example, may be integrated or attached to the support 102, and/or displayed on the monitor 104. Force indicators may also be activated on the control devices 108 in the form of vibration or viscous feel as described herein, provided the control devices 108 are equipped for such tactile sensations. Force indicators may also be placed so as to be proximate to or positioned on their respective slave manipulators 114.


The force information, for example, may be derived from strain gauge measurements on linkages in the slave manipulator manipulating the tool that is being monitored, or it may be derived from encoders associated with joints in the slave manipulator manipulating the tool that is being monitored. Typical processing to generate the force information may include filtering and/or gain adjustments.


The processor 101 may be separate from or integrated as appropriate into the robotic mechanisms 114 and 115, it may be or be part of a stand-alone unit, or it may be integrated in whole or in part into the Console serving as its processor or as a co-processor to its processor. Although described as a processor, it is to be appreciated that the processor 101 may be implemented in practice by any combination of hardware, software and firmware. Also, its functions as described herein may be performed by one unit, or divided up among different components, each of which may be implemented in turn by any combination of hardware, software and firmware.



FIG. 2 illustrates, as an example, a block diagram of a telesurgical system 200 used in manipulating one of the tools 110 through its respective slave manipulator 114 in the MIRS system 100. The user 201 in this case is the Surgeon (“S”) since it is the Surgeon (“S”) who manipulates the master manipulator 108 in the MIRS system 100.


As the user 201 manipulates the master manipulator 108, the slave controller 203 translates its position from the coordinate frame of the master manipulator 108 to the coordinate frame of the tool 110. The slave controller 203 then determines the joint positions for the slave manipulator 114 that correspond to that tool position, and commands motors corresponding to each of those joints to move their respective joints to those positions using a closed-loop control system for each of the motors. Meanwhile, a master controller 207 feeds back any position error to the master manipulator 108 so that the master manipulator 108 tends to move in tandem along with the slave manipulator 114.


The functions of the slave controller 203 and the master controller 207 are implemented, for example, by programming them into a processor such as the processor 101 in the MIRS system 100. An example showing additional detail for such an implementation will now be described in reference to blocks 301-310 of FIG. 3. Referring to that figure, a closed-loop control system for driving a joint motor in the slave manipulator 114 is shown.


In this example, the closed-loop control includes a proportional, integral, derivative (“PID”) function 305 and a feed-forward (“FFD”) gain 304. Although a PID function is described herein, it is to be appreciated, however, that different control laws may also be implemented and are fully contemplated to be within the full scope of the various aspects of the present invention. As indicated by the sets of arrows 302 and 309, the master manipulator 108 is understood to also be driving other similarly configured closed-loop control systems corresponding to other joints of the slave manipulator 114.


The PID function 305 generates a feedback torque command (“TFBK”) by operating on the joint position error between a commanded joint position from the inverse Jacobian 301 (ignoring coordinate transformations) and the detected joint position “Qx” from the joint encoder. The FFD gain 304 generates a feed-forward torque command (“TFFD”) by operating on the commanded joint position, velocity, and acceleration. The feedback torque (TFBK”) and the feed-forward torque (“TFFD”) are then added together to generate a total torque command (“TJ”) that is applied to the joint motor, whose dynamics are depicted along with those of its joint in block 307, which is labeled JOINT DYNAMICS.


The joint position error is also provided to the master manipulator 108 through a gain (“K”) 308 and transpose Jacobian 310. Although not shown to simplify the example, it is to be appreciated that a coordinate transformation from slave joint space to Cartesian space is also generally performed at this point. Since forces applied to the tool 110 such as a static force experienced when the tool 110 is pressing against an obstruction can create a joint position error, such reflected forces are effectively passed back to the master manipulator 108 by such position error being fed back.


One problem with the part of the telesurgical system described so far with respect to FIG. 2 is that additional filtering and/or gain to increase the sensitivity for detecting certain forces on the tool is difficult, since those changes may drive the joint closed-loop control systems incorporated therein to unstable conditions. As an example, if a relatively low level force is applied for an extended period of time by the tool against an obstruction such as the Patient's rib-cage, it may not be detected through the reflected forces being provided through the position error that is fed back to the master manipulator 108 due to a low value of the gain “K” 308 that is required to maintain system stability. As a consequence, bruising and/or prolonged discomfiture by the Patient during and/or after the minimally invasive surgical procedure may result.


Accordingly, referring back to FIG. 2 now, a force indicator 209 and processing unit 208 are added to the telesurgical system 200 to provide such types of tool force information to the user 201 without affecting the stability of the closed-loop control systems in the telesurgical system 200. In this case, the processing function 208 processes force or torque information received from the slave controller 203 substantially without restriction as to gain or filtering, because it is outside of the closed-loop control systems previously described herein. As an example of such processing, the generation of force information to be provided to the force indicator 209 may comprise: generating a Cartesian force by multiplying the torque values by an inverse transform of the Jacobian matrix, generating a filtered force by filtering the Cartesian force with a low pass filter to remove unwanted high frequency noise, generating a filtered scalar force by taking a norm of the filtered force, and generating a static force by multiplying the filtered scalar force by a velocity dependent multiplier that is relatively small at high velocities and large at low velocities, wherein the velocity dependent multiplier is a natural exponential function with power of −Av, where v is a column vector of joint velocities and A is a tunable row matrix used to tune and weight the joint velocities as desired.


As shown in FIGS. 3-6, the force or torque information from the slave controller 203 may be picked-off from several different points in the joint motor control systems. For example, in FIG. 3, the total joint torque (“TJ”) command provided to the joint motor may be picked-off for generating the force information to be provided to the user 201 through the force indicator 209. In FIG. 4, the feedback torque (“TFBK”) generated by the PID function 305 is picked-off for generating the force information. In FIG. 5, the integrator torque (“TL”) from the integrator in the PID function 305 is picked-off for generating the force information. In FIG. 6, an observed disturbance torque “TO” that is generated by an observer 601 is used for generating the force information to be provided to the user 201 through the force indicator 209. An example of the observer 601 is illustrated FIG. 7. Since observers of this type are well-known in robotic control theory, detailed discussion of this figure is deemed unnecessary.


Note that depending upon the force that is to be presented to the user 201, the picked-off force locations may differ for different joints of the slave manipulator 114, and only selected ones of the joints may be tapped for picking off force or torque information. In addition, the gains and filters used for processing the picked-off force or torque values may be different for each of the joints. The processed force information thus picked off the joint control systems for the selected joints are then combined in an appropriate fashion before providing the force information to the user 201 through the force indicator 209.


The force indicator 209 may take any one of many different forms or modalities that is preferably turned-on or activated and turned-off or deactivated according to force threshold criteria. In the following examples, the force information is generated so as to determine a static force produced as the tool is pressed against an obstruction.


In one example of the force indicator 209, the force information may be provided to the user by turning on a user-visible indicator when information of the static force is greater than a first threshold value, and turning off the user-visible indicator when the information of the static force is less than a second threshold value. In this case, the first threshold value would generally be greater than the second threshold value.


One example of the user-visible indicator is a bar graph which may be displayed on the screen 106 of the monitor 104 of the MIRS system 100 so that it is visible to the user of the telesurgical system. In this case, as the static force asserted against the tool increases, the length of the bar graph increases accordingly.


Another example of the user-visible indicator is a blinking icon on the screen 106 of the monitor 104. Similarly, the user-visible indicator may be a flashing light on the support 102 of the Console or on the master manipulator 108 of the MIRS system 100 where the Surgeon would be able to readily see it, or the flashing light may be on or in the proximity of the slave manipulator 114 of the MIRS system 100 where the Surgeon and/or the Assistant(s) may be able to see it.


The color of the user-visible indicator may also change as the static force increases, such as going from green (indicating a safe level of force), to yellow (indicating a warning that the force is getting close to an unsafe or undesirable level), and to red (indicating an unsafe or undesirable level of force has been reached). In addition or alternatively to a change in color, the intensity of the user-visible indicator may change as the static force changes.


Another type of force indicator 209 is a user-audible indicator which preferably increases in intensity as the magnitude of the applied force increases. Another type of force indicator 209 uses haptic or tactile sensation features that may be implemented on the master manipulator 108, such as a haptic “buzz” that provides a buzzing sensation to the Surgeon while manipulating the master manipulator 108 or a haptic “viscosity” that makes operation of the master manipulator 108 feel more sluggish to the Surgeon. In the case of these tactile sensations being activated on the master manipulator 108, the frequency and/or amplitude of the “buzz” or the “viscosity” should be limited so as not to substantially affect the stability of the closed-loop control systems of the telesurgical system.



FIG. 8 illustrates a method for providing force information to the user 201 which is implemented, for example, by the addition of the force indicator 209 and the processing unit 208 to the telesurgical system 200. In 801, torque values are determined for joints employed in the telesurgical system for manipulating a tool. The torque values in this case are determined, for example, by the slave controller 203 processing the movement of the master manipulator 108 as manipulated by the user 201 (to determine TFFD, for example) and the movement of the joints of the slave manipulator 114 (to determine TFBK, for example).


The operation of the closed-loop controls systems and the providing of force information to the user may then take place concurrently. In particular, in 802, the determined joint torque values are used in their respective closed-loop control systems, for example, as described in reference to blocks 301-310 of FIG. 3, while in 803, at least one of the torque values is processed to generate force information for the tool, and in 804, the force information is provided to the user of the telesurgical system in a manner so as not to significantly affect the stability of the joint closed-loop control systems.


Although the processing function 208 of the telesurgical system 200 is shown as being a simple gain and/or filter in corresponding blocks of FIGS. 3-6, it is to be appreciated that the processing may take on additional sophistication such as illustrated in FIG. 9. In particular, as shown in that figure, various force indications may be activated as the static force asserted on the tool increases. At each level, the force indication may be a different color or intensity as described previously herein, or it may be a different modality. For example, the level 1 force indication may be a user-visible indication, the level 2 force indication may be a user-audible indication, and the level 3 force indication may be a tactile sensation on the master manipulator 108. As in the cases of the slave controller 203 and the master controller 207, the processing function 208 is also implemented in a processor such as the processor 101 in the MIRS system 100.


Although the various aspects of the present invention have been described with respect to a preferred embodiment, it will be understood that the invention is entitled to full protection within the full scope of the appended claims.

Claims
  • 1. A method for providing force information to a user of a telesurgical system, wherein the telesurgical system includes a tool, a slave manipulator having a plurality of joints for manipulating the tool, a master manipulator, and a first closed-loop control system for driving a first joint of the plurality of joints in response to manipulation of the master manipulator by a user, the method comprising: processing at least a first value at a first node in the first closed-loop control system to generate force information indicative of a force being exerted against the tool, wherein the processing includes at least one of multiplying the first value by a first gain and passing the first value through a first filter, wherein the force being exerted against the tool results in a reflected force being applied to the master manipulator through at least the first closed-loop control system; andproviding the force information to the user of the telesurgical system in a non-tactile sensory manner so as to be detectable by the user, wherein the providing is initiated upon the force being exerted against the tool being greater than a first threshold value, and wherein the first threshold value corresponds to a reflected force that is less than a minimum force level which is tactilely detectable on the master manipulator by the user.
  • 2. The method according to claim 1, wherein the force information is provided to the user so as to warn the user if excessive force is being applied by the tool against an obstruction.
  • 3. The method according to claim 1, wherein the force information is provided to the user by displaying the force information on a user-visible indicator.
  • 4. The method according to claim 3, wherein the providing of the force information to the user is terminated upon the force being exerted against the tool being less than a second threshold value which is less than the first threshold value.
  • 5. The method according to claim 3, wherein the user-visible indicator increases in intensity as the magnitude of the applied force increases.
  • 6. The method according to claim 3, wherein the user-visible indicator is in the form of a bar graph.
  • 7. The method according to claim 3, wherein the telesurgical system includes a monitor having a screen visible to the user, and the user-visible indicator is a blinking icon displayed on the screen.
  • 8. The method according to claim 3, wherein the user-visible indicator is located in the proximity of the slave manipulator.
  • 9. The method according to claim 8, wherein the user-visible indicator is a flashing light.
  • 10. The method according to claim 1, wherein the force information is provided to the user by using a user-audible indicator.
  • 11. The method according to claim 10, wherein the user-audible indicator increases in intensity as the magnitude of the applied force increases.
  • 12. The method according to claim 1, wherein the force information is provided to the user in the non-tactile sensory manner by turning on a first indicator upon the force being exerted against the tool being greater than the first threshold value, and wherein the force information is provided to the user in the non-tactile sensory manner by turning on a second indicator upon the force being exerted against the tool being greater than a third threshold value which is greater than the first threshold value.
  • 13. The method according to claim 1, wherein the first value at the first node derives from an encoder measurement taken at the first joint.
  • 14. The method according to claim 13, wherein the generation of the force information comprises generating a Cartesian force by using an inverse transform of a Jacobian matrix corresponding to the slave manipulator.
  • 15. The method according to claim 14, wherein the generation of the force information further comprises generating a filtered force by filtering the Cartesian force with a low pass filter to remove unwanted high frequency noise.
  • 16. The method according to claim 15, wherein the generation of the force information further includes generating a filtered scalar force by taking the norm of the filtered force.
  • 17. The method according to claim 16, wherein the generation of the force information further includes generating a static force by multiplying the filtered scalar force by a velocity dependent multiplier that is relatively small at high velocities and large at low velocities.
  • 18. The method according to claim 17, wherein the velocity dependent multiplier is a natural exponential function with power of −Av, where v is a column vector of joint velocities and A is a tunable row matrix used to tune and weight the joint velocities as desired.
  • 19. The method of claim 1, wherein the telesurgical system includes a second closed-loop control system for driving a second joint of the plurality of joints in response to manipulation of the master manipulator by the user, wherein the generation of the force information includes at least processing a second value at a second node in the second closed-loop control system, and wherein the processing includes at least one of multiplying the second value by a second gain and passing the second value through a second filter.
  • 20. The method of claim 19, wherein the first and second closed-loop control systems are similarly configured, and wherein the first and second nodes correspond to different locations in the first and second closed-loop control systems.
  • 21. The method of claim 19, wherein the first and second gains are different values.
  • 22. The method of claim 19, wherein the first and second filters process input values differently.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 10/314,001 filed Dec. 5, 2002, now U.S. Pat. No. 7,107,090, which is a continuation of U.S. application Ser. No. 09/464,455 filed Dec. 14, 1999, now U.S. Pat. No. 6,522,906, which is a continuation-in-part of U.S. applicaion Ser. No. 09/457,406, filed Dec. 7, 1999, now U.S. Pat. No. 6,799,065, each of which is incorporated herein by reference. This application is also a continuation-in-part of U.S. application Ser. No. 10/644,406, filed Aug. 19, 2003, now abandoned, which is a continuation of U.S. application Ser. No. 10/163,626, filed Jun. 5, 2002, now U.S. Pat. No. 6,671,581, which is a continuation of U.S. application Ser. No. 09/373,678, filed Aug. 13, 1999, now U.S. Pat. No. 6,424,885, which claims benefit of U.S. Provisional Applic. Ser. No. 60/128,160, filed Apr. 7, 1999, each of which is incorporated herein by reference.

US Referenced Citations (214)
Number Name Date Kind
3628535 Ostrowsky et al. Dec 1971 A
3818284 DeVersterre et al. Jun 1974 A
3905215 Wright Sep 1975 A
3923166 Fletcher et al. Dec 1975 A
4150326 Engelberger et al. Apr 1979 A
4349837 Hinds Sep 1982 A
4588348 Beni et al. May 1986 A
4644237 Frushour et al. Feb 1987 A
4672963 Barken Jun 1987 A
4722056 Roberts et al. Jan 1988 A
4762455 Coughlan et al. Aug 1988 A
4762456 Nelson Aug 1988 A
4791934 Brunnett Dec 1988 A
4831549 Red et al. May 1989 A
4833383 Skarr et al. May 1989 A
4837703 Kakazu et al. Jun 1989 A
4837734 Ichikawa et al. Jun 1989 A
4839838 LaBiche et al. Jun 1989 A
4853874 Iwamoto et al. Aug 1989 A
4858149 Quarendon Aug 1989 A
4860215 Seraji Aug 1989 A
4863133 Bonnell Sep 1989 A
4942539 McGee et al. Jul 1990 A
4979949 Matsen, III Dec 1990 A
4984157 Cline et al. Jan 1991 A
4989253 Liang et al. Jan 1991 A
5046022 Conway et al. Sep 1991 A
5053976 Nose et al. Oct 1991 A
5079699 Tuy et al. Jan 1992 A
5086401 Glassman et al. Feb 1992 A
5098426 Sklar et al. Mar 1992 A
5099846 Hardy Mar 1992 A
5142930 Allen et al. Sep 1992 A
5170347 Tuy et al. Dec 1992 A
5182641 Diner et al. Jan 1993 A
5184009 Wright et al. Feb 1993 A
5184601 Putman Feb 1993 A
5187796 Wang et al. Feb 1993 A
5217003 Wilk Jun 1993 A
5230338 Allen et al. Jul 1993 A
5230623 Guthrie et al. Jul 1993 A
5235510 Yamada et al. Aug 1993 A
5239246 Kim Aug 1993 A
5251127 Raab Oct 1993 A
5257203 Riley et al. Oct 1993 A
5261404 Mick et al. Nov 1993 A
5266875 Slotine Nov 1993 A
5279309 Taylor et al. Jan 1994 A
5299288 Glassman et al. Mar 1994 A
5313306 Kuban et al. May 1994 A
5321353 Furness Jun 1994 A
5341950 Sinz Aug 1994 A
5343385 Joskowicz et al. Aug 1994 A
5368015 Wilk Nov 1994 A
5368428 Hussey et al. Nov 1994 A
5382885 Salcudean et al. Jan 1995 A
5397323 Taylor et al. Mar 1995 A
5402801 Taylor Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5417210 Funda et al. May 1995 A
5430643 Seraji Jul 1995 A
5445166 Taylor Aug 1995 A
5454827 Aust et al. Oct 1995 A
5474571 Lang Dec 1995 A
5503320 Webster et al. Apr 1996 A
5515478 Wang May 1996 A
5524180 Wang et al. Jun 1996 A
5528955 Hannaford et al. Jun 1996 A
5531742 Barken Jul 1996 A
5553198 Wang et al. Sep 1996 A
5617858 Taverna et al. Apr 1997 A
5624398 Smith et al. Apr 1997 A
5631973 Green May 1997 A
5638819 Manwaring et al. Jun 1997 A
5657429 Wang et al. Aug 1997 A
5695500 Taylor et al. Dec 1997 A
5704897 Truppe Jan 1998 A
5715729 Toyama et al. Feb 1998 A
5737500 Seraji et al. Apr 1998 A
5748767 Raab May 1998 A
5754741 Wang et al. May 1998 A
5755725 Druais May 1998 A
5762458 Wang et al. Jun 1998 A
5784542 Ohm et al. Jul 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5797900 Madhani Aug 1998 A
5807377 Madhani Sep 1998 A
5808665 Green Sep 1998 A
5810880 Jensen et al. Sep 1998 A
5814038 Jensen et al. Sep 1998 A
5815640 Wang et al. Sep 1998 A
5820545 Arbter et al. Oct 1998 A
5820623 Ng Oct 1998 A
5841950 Wang et al. Nov 1998 A
5855553 Tajima et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5859934 Green Jan 1999 A
5876325 Mizuno et al. Mar 1999 A
5877819 Branson Mar 1999 A
5878193 Wang et al. Mar 1999 A
5907664 Wang et al. May 1999 A
5911036 Wright et al. Jun 1999 A
5931832 Jensen Aug 1999 A
5938678 Zirps et al. Aug 1999 A
5950629 Taylor et al. Sep 1999 A
5964707 Fenster et al. Oct 1999 A
5971976 Wang et al. Oct 1999 A
5980460 Oestensen et al. Nov 1999 A
5980461 Rajan Nov 1999 A
5987591 Jyumonji Nov 1999 A
5993390 Savord et al. Nov 1999 A
5993391 Kamiyama Nov 1999 A
6019724 Gronningsaeter et al. Feb 2000 A
6063095 Wang et al. May 2000 A
6084371 Kress Jul 2000 A
6096025 Borders Aug 2000 A
6120433 Mizuno et al. Sep 2000 A
6196081 Yau Mar 2001 B1
6224542 Chang et al. May 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6270453 Sakai Aug 2001 B1
6292712 Bullen Sep 2001 B1
6307285 Delson et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6330837 Charles et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6371952 Madhani Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6398726 Ramans et al. Jun 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6425865 Salcudean et al. Jul 2002 B1
6442417 Shahidi et al. Aug 2002 B1
6459926 Nowlin Oct 2002 B1
6468265 Evans et al. Oct 2002 B1
6493608 Niemeyer Dec 2002 B1
6522906 Salisbury, Jr. et al. Feb 2003 B1
6569084 Mizuno et al. May 2003 B1
6574355 Green Jun 2003 B2
6594552 Nowlin Jul 2003 B1
6645196 Nixon Nov 2003 B1
6659939 Moll Dec 2003 B2
6671581 Niemeyer et al. Dec 2003 B2
6676669 Charles et al. Jan 2004 B2
6699177 Wang Mar 2004 B1
6770081 Cooper et al. Aug 2004 B1
6786896 Madhani et al. Sep 2004 B1
6799065 Niemeyer Sep 2004 B1
6837883 Moll et al. Jan 2005 B2
6847922 Wampler, II Jan 2005 B1
6926709 Bieger et al. Aug 2005 B2
6991627 Madhani et al. Jan 2006 B2
7107090 Salisbury et al. Sep 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7181315 Watanabe et al. Feb 2007 B2
7194118 Harris et al. Mar 2007 B1
7491198 Kockro Feb 2009 B2
7574250 Niemeyer Aug 2009 B2
7806891 Nowlin et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7963913 Devengenzo et al. Jun 2011 B2
7979157 Anvari Jul 2011 B2
8062288 Cooper et al. Nov 2011 B2
8120301 Goldberg et al. Feb 2012 B2
8130907 Maurer, Jr. et al. Mar 2012 B2
8155479 Hoffman et al. Apr 2012 B2
8170716 Coste-Maniere et al. May 2012 B2
8221304 Shioda et al. Jul 2012 B2
8256319 Cooper et al. Sep 2012 B2
8315720 Mohr et al. Nov 2012 B2
8335590 Costa et al. Dec 2012 B2
20010035871 Bieger et al. Nov 2001 A1
20020045905 Gerbi et al. Apr 2002 A1
20020120188 Brock et al. Aug 2002 A1
20030032878 Shahidi Feb 2003 A1
20030055410 Evans et al. Mar 2003 A1
20030109780 Coste-Maniere et al. Jun 2003 A1
20040039485 Niemeyer et al. Feb 2004 A1
20040106916 Quaid et al. Jun 2004 A1
20040238732 State et al. Dec 2004 A1
20050054895 Hoeg et al. Mar 2005 A1
20050059960 Simaan et al. Mar 2005 A1
20050096502 Khalili May 2005 A1
20050203380 Sauer et al. Sep 2005 A1
20050251113 Kienzle, III Nov 2005 A1
20060142657 Quaid et al. Jun 2006 A1
20060258938 Hoffman et al. Nov 2006 A1
20060261770 Kishi et al. Nov 2006 A1
20070013336 Nowlin et al. Jan 2007 A1
20070038080 Salisbury, Jr. et al. Feb 2007 A1
20070135803 Belson Jun 2007 A1
20070142968 Prisco et al. Jun 2007 A1
20070265491 Krag et al. Nov 2007 A1
20070270650 Eno et al. Nov 2007 A1
20070283970 Mohr et al. Dec 2007 A1
20070287884 Schena Dec 2007 A1
20070287992 Diolaiti et al. Dec 2007 A1
20080004603 Larkin et al. Jan 2008 A1
20080033240 Hoffman et al. Feb 2008 A1
20080065105 Larkin et al. Mar 2008 A1
20080065109 Larkin Mar 2008 A1
20080081992 Kagermeier Apr 2008 A1
20080118115 Williamson May 2008 A1
20080140087 Barbagli Jun 2008 A1
20080247506 Maschke Oct 2008 A1
20090012531 Quaid et al. Jan 2009 A1
20090036902 DiMaio et al. Feb 2009 A1
20090088634 Zhao et al. Apr 2009 A1
20090192524 Itkowitz et al. Jul 2009 A1
20090248036 Hoffman et al. Oct 2009 A1
20090326553 Mustufa et al. Dec 2009 A1
20110105898 Guthart et al. May 2011 A1
20140051922 Guthart et al. Feb 2014 A1
Foreign Referenced Citations (17)
Number Date Country
812662 Dec 1997 EP
1125557 Aug 2001 EP
WO-9501757 Jan 1995 WO
WO-9729690 Aug 1997 WO
WO-9743942 Nov 1997 WO
WO-9743943 Nov 1997 WO
WO-2004014244 Feb 2004 WO
WO-2006079108 Jul 2006 WO
WO-2007088208 Aug 2007 WO
WO-2007136768 Nov 2007 WO
WO-2007146987 Dec 2007 WO
WO-2008002830 Jan 2008 WO
WO-2008103383 Aug 2008 WO
WO-2009034477 Mar 2009 WO
WO-2009037576 Mar 2009 WO
WO-2009158164 Dec 2009 WO
WO-2010039394 Apr 2010 WO
Non-Patent Literature Citations (80)
Entry
M. Tavakoli, A Force Refelective Master Slave System for Minimally Invasive Surgery Proceeding of the 2003 IEER/RSJ Intl Conf. on Intelligent Robots & System, Oct. 2003 , p. 3077.
Kitagawa, Masaya, Effects of Sensory Substituion on Suture Manipulation Forces for Surgical Teleoperation, Journal of Thoracic and Cardiovascular Surgery.2005; 129: 151-158.
Vertut, Jean and Coeffet, Philippe Coiffet; “Robot Technology; vol. 3A Teleoperation and Robotics Evolution and Development”; 1986; Prentice-Hall, Inc; Englewood Cliffs, N.J.
Adams et al. “Computer-assisted surgery” IEEE Computer Graphics and Applications, pp. 43-51 (1990).
Askew et al. “Ground control testbed for space station freedom robot manipulators,” IEEE Virtual Reality Annual International Symposium, Sep. 18-22, 1993, Seattle, Washington, pp. 60-75 (1993).
Bjura et al., “Merging virtual objects with the real world: Seeing ultrasound imagery within the patient” Computer Graphics 26(2):203-210(1992).
Cao et al. “Task and motion analysis in endoscopic surgery” Submitted for Fifth Annual Symposium on Haptic Interfaces for Virtual; Environment and Teloperator Systems for the Winter Meeting of ASME, pp. 1-32 (1998).
Christensen et al. “Model based, sensor directed remediation of underground storage tanks,” Proceedings of the IEEE International Conference on Robotics and Automation (1991) pp. 1377-1383.
Dolan et al., “A robot in an operating room; A bull in a China shop?” IEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society (1987).
Elder et al. “Specifying user interfaces for safety-critical medical systems,” Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, pp. 148-165 (1995).
Gayed et al. “An advanced control micromanpulator for surgical applications,” Systems Science 13:123-133 (1997).
Harris et al. “A robotic procedure for transurethral resection of the prostate,” Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, pp. 254-271 (1995).
Hunter et al. “A teleoperated microsurgical robot and associated virtual environment for eye surgery,” Presence Teleoperators and Virtual Environments, MIT Press 2(4):264-280 (1993).
Hunter et al. “Ophthalmic microsurgical robot and associated virtual environment” Comput. Biol. Med. 25(2):173-183 (1995).
Hurteali et al. “Laparoscopic surgery assisted by a robotic cameraman: Concept and Experimental results,” IEEE International Conference on Robotics and Automation, pp. 2288-2289 (1994).
Jackson et al. “Force feedback and medical simulation,” Interactive Technology and the New Paradigm, pp. 147-151 (1995).
Kazerooni “Design and analysis of the statically balanced direct-drive robot manipulator,” Robotics and Computer-Integrated Manufacturing 6(4):267-293 (1989).
Kilmer et al. “Watchdog safety computer design and Implementation,” RVSME Robots & Conference, pp. 101-117 (1984).
Kosugi et al. “An articulated neurosurgical navigation system using MRI and CT Images,” IEEE Transactions on Biomedical Engineering, 35(2):147-152 (1988).
Ng et al., “Robotic surgery” IEEE Engineering in Medicine and Biology, pp. 120-125 (1993).
Paul et al. “Development of a surgical robot for cementless total hip arthroplasty,” Clinical Orthopaedics and Related Research 285:57-68 (1992).
Preising et al., “A Literature Review: Robots in Medicine,” IEEE Engineering in Medicine and Biology, pp. 13-22 (1991).
Rosenberg “Human Interface hardware for virtual laparoscopic surgery,” Interactive Technology and the New Paradigm for Healthcare, Morgan et al., Eds., pp. 322-325 (1995).
Schenker et al. “Development of a telemanipulator for dexterity enhanced microsurgery,” Second Annual International Symposium on Medical Robotics and Computer Assisted Surgery, pp. 81-88 (1995).
Taylor et al. “A telerobotic assistant for laparoscopic surgery,” IEEE Engineering in Medicine and Biology, pp. 279-288 (1995).
Taylor et al. “Research report: A telerobotic assistant for laparoscopic surgery,” Computer Science, pp. 1-21 (1994).
Toon “Eye surgery simulator could help physicians learn and practice new techniques,” Research Horizons, pp. 22-23 (1993).
Trivedi et al. “Developing telerobotic systems using virtual reality concepts,” Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems(1993).
Debus, et al., “Multichannel vibrotactile display for sensory substitution during teleoperation,” Telemanipulator and Telepresence Technologies VIII Conference, Proceeding of SPIE vol. 4570, Newton, MA Oct. 28, 2001.
Alexander, Arthur D. III, “Impacts of Telemation on Modern Society,” Symposium on Theory and Practice of Robots and Manipulators, Centre for Mechanical Sciences 1st CISM IFToMM Symposium, Sep. 5-8, 1974, pp. 121-136, vol. 2, Springer-Verlag.
Arai, Tatsuo et al., “Bilateral control for manipulators with different configurations,” IECON Inn Conference on Industrial Electronics Control and Instrumentation, Oct. 22-26, 1984, pp. 40-45, vol. 1.
Baumann, Roger, “Haptic Interface for Virtual Reality Based Laparoscopic Surgery Training Environment,” These No. 1734 Ecole Pholytechnique Federale de Lausanne, 1997, 104 Total Pages.
Bejczy, Antal K. et al., “Controlling Remote Manipulators through Kinesthetic Coupling,” Computers in Mechanical Engineering, 1983, pp. 48-60, vol. 1—Issue 1.
Borovoi, A.V., “Stability of a manipulator with force feedback,” Izv. AN SSSR Mekhanika Tverdogo Teal, 1990, pp. 37-45, vol. 25—Issue 1, Allerton Press, Inc.
Burdea, Grigore et al., “Dextrous Telerobotics with Force Feedback—an overview. Part 2: Control and Implementation,” Robotica, 1991, pp. 291-298, vol. 9.
Christoforou, E.G. et al., “Robotic Arm for Magnetic Resonance Imaging Guided Interventions,” 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Feb. 20-22, 2006, pp. 911-916.
Cohn, Michael C., “Medical Robotics,” http://www-bsac.eecs.berkeley.edu/ , 1996, pp. 1-8 and 4.
Colgate, Edward, J., “Power and Impedance Scaling in Bilateral Manipulation,” IEEE International Conference on Robotics and Automation, Sacramento, California, Apr. 1991, pp. 2292-2297, vol. 3, IEEE.
Fisher, Scott S., “Virtual interface environment,” IEEE/A1AA 7th Digital Avionics Systems Conference Ft. Worth Texas, 1986, pp. 346-350, IEEE.
Fu, K.S. et al., “Robotics: control, sensing, vision, and intelligence,” 1987, pp. 12-76 and 201-265, Ch. 2 & 5, McGraw-Hill Book Company.
Fukuda, Toshio et al., “A new method of master-slave type of teleoperation for a micro-manipulator system,” IEEE Microrobots and Teleoperations Workshop, 1987, 5 pages, IEEE.
Funda, Janez et al., “Constrained Cartesian Motion Control for Teleoperated Surgical Robots,” IEEE Transactions on Robotics and Automation, IEEE, Jun. 1996, vol. 12, No. 3, pp. 453-465.
Furuta, Katsuhisa et al., “Master slave manipulator based on virtual internal model following control concept,” IEEE Intl. Conference on Robotics and Automation, 1987, pp. 567-572, vol. 1, IEEE.
Green, Philip, S. et al., “Mobile telepresence surgery,” 2nd Annual Intl Symposium on Med. Robotics and Computer Assisted Surgery, Maryland Nov. 1995, pp. 97-103.
Hannaford, Blake et al., “Experimental and simulation studies of hard contact in force reflecting teleoperation,” IEEE International Conference on Robotics and Automation Proceedings, 1988, pp. 584-589, vol. 1, IEEE.
Hill, John W., “Telepresence surgery demonstration system,” Robotics and Automation, 1994, pp. 2302-2307, vol. 3, SRI International.
Inoue, Masao; “Six-Axis bilateral control of an articulated slave manipulator using a Cartesian master manipulator,” Advanced robotics, 1990, pp. 139-150, vol. 4—Issue 2, Robotic society of Japan.
International Preliminary Examination Report for Application No. PCT/US00/08526, mailed on Jun. 29, 2001, 4 pages.
International Search Report for application No. PCT/US00/08526, Mailed on Jul. 14, 2000, 2 pages.
International Search Report for application No. PCT/US99/29145, Mailed on May 15, 2000, 1 page.
Jones, Daniel B. et al., “Next generation 3D videosystems may improve laprascopic task performance,” Interactive Technology and the New Paradigm for Healthcare, 1995, pp. 152-160, Ch 25.
Kazerooni, H. et al., “The Dynamics and Control of a Haptic Interface Device,” IEEE Transactions on Robotics and Automation, 1994, pp. 453-464, vol. 10—Issue 4, IEEE.
Kazerooni, H., “Human/Robot Interaction via the Transfer of Power and Information Signals Part I: Dynamics and Control Analysis,” IEEE International Conference on Robotics and Automation, 1989, pp. 1632-1640, IEEE.
Kim, Won S. et al., “Active compliance and damping in telemanipulator control,” Jet Propulsion Laboratory New technology Report, 1991, pp. 1-14a, vol. 15—Issue 4, JPL & NASA Case No. NP0-1796917466, Item 40.
Komada, Satoshi et al., “Bilateral robot hand based on estimated force feedback,” IEEE Proceedings IECON 87 Cambridge MA, Nov. 3-6, 1987, pp. 602-607, vol. 2, IEEE.
Kwoh, Yik, San et al., “A Robot With Improved Absolute Positioning Accuracy for CT Guided Stereotactic Brain Surgery,” IEEE Transactions on Biomedical Engineering, Feb. 1988, pp. 153-160, vol. 35—Issue 2, IEEE.
Lazarevic, Zoran, “Feasibility of a Stewart Platform with Fixed Actuators as a Platform for CABG Surgery Device,” 1997, 45 pages, Master's Thesis Columbia University Department of Bioengineering.
Madhani, Akhil J., “Design of Teleoperated Surgical Instruments for Minimally Invasive Surgery,” Feb. 1998, pp. 1-251.
Massie, Thomas H. et al., “The PHANTOM Haptic Interface: A Device for Probing Virtual Objects,” Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 1994, 7 pages.
Mitsuishi, Mamoru et al., “A tele-micro-surgery system with co-located view and operation points and a rotational-force-feedback-free master manipulator,” 2nd Annual Intl. Symposium on Medical robotics and Computer Assisted Surgery Baltimore Maryland, Nov. 4-7, 1995, pp. 111-118.
Neisius B. et al., “Robotic manipulator for endoscopic handling of surgical effectors and cameras,” 1st Intl. Symposium on Medical Robotics and Computer Assisted Surgery, 1994, pp. 169-176, vol. 2.
PCT/US07/71850 International Search Report and Written Opinion of the International Searching Authority, mailed Feb. 13, 2009, 9 pages.
PCT/US09/46234 International Search Report and Written Opinion of the International Searching Authority, mailed Sep. 9, 2009, 13 pages.
PCT/US09/56078 International Search Report and Written Opinion of the International Searching Authority, mailed Jan. 20, 2010, 12 pages.
PCT/US10/28886 International Search Report and Written Opinion of the International Searching Authority, mailed Jul. 6, 2010, 11 pages.
PCT/US10/28897 International Search Report and Written Opinion of the International Searching Authority, mailed Jul. 19, 2010, 16 pages.
PCT/US10/38246 International Search Report and Written Opinion of the International Searching Authority, mailed Sep. 14, 2010, 17 pages.
PCT/US2011/036109 International Search Report and Written Opinion of the International Searching Authority, mailed Oct. 19, 2011, 16 pages.
PCT/US2011/036109 Invitation to Pay Additional Fees and Partial International Search Report, mailed Aug. 18, 2011, 5 pages.
Sastry, Shankar et al., “Millirobotics for remote minamally invasive surgery,” Proceedings of the Intl. Workshop on Some Critical Issues in Robotics, Singapore, Oct. 2-3, 1995, pp. 81-98.
Sastry, Shankar, http://robotics.eecs.berkeley.edu, Nov. 1, 1995, Total 8 pages.
Sastry, Shankar, “MilliRobotics in Minimally Invasive Telesurgery,” Internet, http://robotics.eecs.berkeley.edu, 1996, 8 pages.
Supplementary European Search Report for Application No. EP00919930, mailed on May 9, 2003, 7 pages.
Supplementary Partial European Search Report for Application No. EP99966064, mailed on Jun. 12, 2007, 3 pages.
Taubes, Gary et al., “Surgery in Cyberspace,” Discover magazine, Dec. 1994, vol. 15, issue 12, pp. 85-92.
Thring, M.W., Robots and Telechirs: Manipulators with Memory; Remote Manipulators; Machine Limbs for the Handicapped, 1983, pp. 9-11, 108-131, 194-195, 235-279; Ellis Horwood Limited, Chapter 5,7,8,9.
Trevelyan, James P. et al., “Motion Control for a Sheep Shearing Robot,” IEEE Robotics Research Conference, the 1st International Symposium, Carroll, NH, USA., 1983, pp. 175-190, in Robotics Research, MIT Press.
Vibet, C., “Properties of Master Slave Robots,” Motor-con, 1987, pp. 309-316.
Wei, Guo-Quing et al., “Real-Time Visual Servoing for Laparoscopic Surgery,” IEEE Engineering in Medicine and Biology Magazine, Jan./Feb. 1997, pp. 40-45, vol. 16—Issue 1, IEEE.
Zhang, Xiaoli and Shahram Payandeh, “Application of Visual Tracking for Robotic-Assisted Laparoscopic Surgery,” Journal of Robotic Systems, vol. 19, No. 7, pp. 315-328, 2002.
Related Publications (1)
Number Date Country
20050200324 A1 Sep 2005 US
Provisional Applications (1)
Number Date Country
60128160 Apr 1999 US
Continuations (3)
Number Date Country
Parent 09464455 Dec 1999 US
Child 10314001 US
Parent 10163626 Jun 2002 US
Child 10644406 US
Parent 09373678 Aug 1999 US
Child 10163626 US
Continuation in Parts (4)
Number Date Country
Parent 10314001 Dec 2002 US
Child 11093372 US
Parent 09457406 Dec 1999 US
Child 09464455 US
Parent 11093372 US
Child 09464455 US
Parent 10644406 Aug 2003 US
Child 11093372 US