Non-fusion scoliosis expandable spinal rod

Information

  • Patent Grant
  • 11660124
  • Patent Number
    11,660,124
  • Date Filed
    Friday, December 6, 2019
    4 years ago
  • Date Issued
    Tuesday, May 30, 2023
    11 months ago
Abstract
A growing rod for mounting between attachment mechanisms that are secured to anatomical structures of a patient having scoliosis. The growing rod includes an outer housing and an inner housing disposed within the outer housing. The inner housing includes a magnet assembly including a magnet having a first pole and a second pole and a gear reduction mechanism coupled to the magnet. A first rod is secured to the inner housing and a second rod is secured to the outer housing. The gear reduction mechanism reduces an output rotation of the magnet to rotate a driver that operates to move the inner housing along a longitudinal axis with respect to the outer housing.
Description
BACKGROUND OF THE DISCLOSURE

Scoliosis is a medical condition where an individual's spine curves off of its anatomical shape, typically in an “S” or “C” shape, and may also be rotated about a vertical axis or a longitudinal axis of the spine. Scoliosis can be a particularly painful and dangerous condition for young persons including infants, juveniles and adolescents, who are not fully grown. Young persons with scoliosis may be treated in various manners depending upon age, severity of the curve and the likelihood of progression of the condition. Conventional options for scoliosis include observation, bracing and surgery.


Surgery is typically indicated for juvenile scoliosis when there is a high likelihood of progression, the curve is causing significant pain and/or the curve is impacting physiological functions, such as breathing. Surgical intervention typically results in fusion of the impacted portion of the spine, which is ideally delayed until the patient is skeletally mature. However, certain severe cases of juvenile scoliosis require surgical intervention prior to skeletal maturity to prevent progression of the curve and/or to stabilize the spine. Multiple surgeries in such cases are common to gradually correct the curvature and/or modify the surgical construct to permit growth or to gradually move the curved or twisted spine.


SUMMARY

The present disclosure relates generally to orthopedics. More specifically, the disclosure relates to a non-fusion scoliosis construct including a magnetically actuated growing rod that permits extension of the rod, growth of the construct and extension or correction of a patient's spine without significantly invasive surgical intervention. The device includes an actively expandable rod that is mounted to a patient's spine or ribs using hooks, screws and/or other fastening mechanisms to be fixed to the posterior of the patient's spine or to nearly any other portion of the patient's spine that permits correction of an undesirable spinal curvature. The system is preferably magnetically activated from outside of the patient's body utilizing a magnetic field without further surgery for expansion.


In accordance with some implementations, there is provided a growing rod for mounting between attachment mechanisms that are secured to anatomical structures of a patient having scoliosis. The growing rod may include an outer housing, an inner housing disposed within the outer housing, and a magnet assembly rotably mounted within the inner housing. The magnet assembly may include a magnet having a first pole and a second pole. A gear reduction mechanism may be coupled to the magnet within the inner housing. The gear reduction mechanism reduces an output rotation of the magnet to rotate a driver that operates to move the inner housing along a longitudinal axis with respect to the outer housing. The growing rod may include an interchangeable first rod attached to the inner housing and an interchangeable second rod attached to the outer housing.


In accordance with some implementations, there is provided a drive mechanism for a growing rod. The drive mechanism may include an inner housing comprising a magnet assembly including a magnet having a first pole and a second pole and a gear reduction mechanism coupled to the magnet, the gear reduction mechanism reducing an output rotation of the magnet to rotate a driver. The drive mechanism may further include an outer housing coupled to the inner housing by an engagement of the driver with the outer housing and a sliding bearing that engages the outer housing and the inner housing to prevent the inner housing from spinning freely within the outer housing. Rotation of the magnet assembly causes the gear reduction mechanism to rotate the driver to cause the inner rod to move along a longitudinal axis substantially without rotation relative to the outer housing.


In accordance with yet other implementations, there is provided a growing rod that includes an outer housing and an inner housing disposed within the outer housing. The inner housing may include a magnet assembly including a magnet having a first pole and a second pole, and a gear reduction mechanism coupled to the magnet within the inner housing. A first rod is secured to the inner housing and a second rod is secured to the outer housing. The gear reduction mechanism reduces an output rotation of the magnet to rotate a driver that operates to move the inner housing along a longitudinal axis with respect to the outer housing.


This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of several implementations of the device and methods of the present application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the growing rod or non-fusion scoliosis expandable spinal rod of the present application, there are shown in the drawings several implementations. It should be understood, however, that the application is not limited to the precise arrangements and instrumentalities shown. In the drawings:



FIG. 1A illustrates a perspective view of a growing rod or non-fusion scoliosis expandable spinal rod in accordance with the present disclosure;



FIG. 1B illustrates a cross-sectional view of growing rod or non-fusion scoliosis expandable spinal rod of FIG. 1A;



FIGS. 2A and 2B illustrate exploded views of the growing rod or non-fusion scoliosis expandable spinal rod of FIGS. 1A and 1B;



FIGS. 3A and 3B illustrate an exploded view and cross-sectional view, respectively, of a magnet assembly;



FIGS. 4A-4I illustrate several views of magnetic activation of a magnet of the growing rod of FIGS. 1A and 1B;



FIGS. 5A and 5B illustrate a perspective view and exploded view, respectively, of a first stage planetary gearset;



FIGS. 6A and 6B illustrate a perspective view and exploded view, respectively, of a second stage planetary gearset;



FIGS. 7A, 7B and 7C illustrate additional details of the growing rod of FIGS. 1A and 1B; and



FIGS. 8A, 8B and 8C illustrate several views of lengthening of the growing rod of FIGS. 1A and 1B.





DETAILED DESCRIPTION

Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “lower” and “upper” designate directions in the drawings to which reference is made. The words “inwardly” or “distally” and “outwardly” or “proximally” refer to directions toward and away from, respectively, the patient's body, or the geometric center of the several implementations of the non-fusion scoliosis expandable spinal rod and related parts thereof. The words, “anterior”, “posterior”, “superior,” “inferior”, “lateral” and related words and/or phrases designate preferred positions, directions and/or orientations in the human body to which reference is made and are not meant to be limiting. The terminology includes the above-listed words, derivatives thereof and words of similar import.


Referring to FIGS. 1-7, a growing rod 100 in accordance with implementations of the present disclosure includes a first rod 102, an outer housing 106, an inner housing 108, and a second rod 104. A magnet assembly 300 and a gear reduction mechanism 124 are disposed within the inner housing 108. As will be described below, rotation of the magnet assembly 300 drives the gear reduction mechanism 124, which drives a threaded driver 214 within the outer housing. The rotation of the threaded driver 214 causes the inner housing to move along a longitudinal axis with respect to the outer housing, thus extending (or retracting the growing rod).


With reference to FIGS. 3A-3B, the magnet assembly 300 includes a magnet cover 302, a magnet 110, a cover lid 304 and a gear wheel 306. The magnet 110 includes a pair of opposing flats 308 that receive the cover lid 304 during assembly. The magnet 110 may be made out of Neodym and may optionally include a protective epoxy layer. The protective layer may also be made from gold or silver and have a copper or nickel under layer. To assemble the magnet assembly 300, the magnet 110 may be press fit within the magnet cover 302 and the cover lid 304 may be press fit to be received by the flats 308 to enclose the magnet cover 302. Once the cover lid 304 is positioned, it may be welded to the magnet cover 302 to seal the magnet assembly 300. The magnet assembly 300 may be sealed in such a manner in order to prevent any materials or liquid from contacting the magnet 110 and to provide for bio-compatibility. As shown, the cover lid 304 forms a keyed slot 310 into which complementary-shaped shaft portion 312 of the gear wheel 306 is received to form the complete magnet assembly 300.


The magnet 110 can be in any shape (e.g. round, square, hexagonal, octagonal etc.) so long as it fits within the magnet cover 302. As shown in FIGS. 4A-4I, the magnet 110 can be formed having a hollowed center with diametric poles, can be massive with diametric poles, can have multiple diametrical poles, etc. As shown, by applying a magnetic field from an external magnet, the magnet 110 will be urged to rotate in a predetermined direction.


As shown in FIGS. 1, 2, 5 and 6, the gear reduction mechanism 124 is provided within the inner housing 108. The gear reduction mechanism 124 includes at least a two stage assembly of planetary gearsets. It is noted that other gear arrangements may be used, and planetary gearsets are shown as an exemplary implementation. A first stage 204A/204B is shown in FIGS. 2B, 5A and 5B. The first stage 204A/204B includes a carrier 504 that receives, e.g., four (or other number) planet gears 502 that each rotate on a mount 500 that is press fit into the carrier 504. A sun gear 506, having a slotted shaft 510, is received within a complementary slotted recess 508 formed in face the carrier. The first stage 204A/204B may be used as an input to the gear reduction mechanism 124.


In some implementations, such as shown in FIG. 2B, more than one first stage 204A/204B may be included in the gear reduction mechanism 124 to achieve a desire reduction. In some implementations, the first stage is designed such that a plurality of first stages may be connected in series. In such an arrangement, as shown in FIG. 7B, the planet gears of a subsequent first stage is driven by the sun gear of a preceding first stage.


As shown in FIGS. 2B, 6A and 6B, a second stage 206 includes a carrier 604 that receives, e.g., four (or other number) planet 602 gears that each rotate on a mount 600 that is press fit into the carrier 604. The number of gears in the second stage 206 is the same as the number provided in the first stage 204A/204B. The face of the carrier 604 in the second stage 206 includes a catch 612. The catch 612 has a round base 606, a midsection 608 having hexagonal cross-section and a circular upper section 610 separated from the midsection 608 by an annular recess 614. The second stage 206 may be used as an output of the gear reduction mechanism 124.


Thus, the assembled gear reduction mechanism 124 may include, e.g., three stages. However, any number of sections may be provided in order to achieve a desired input reduction. For example, each stage may provide a 4× gear reduction. As such, the total reduction may be determined in accordance with the number of stages provided in the gear reduction mechanism 124. The gear ratios may be changed according to the following relationship in Table 1:













TABLE 1





Gear ratio
Modulus
Gear ratio total
Thread pitch
Turns for 1 mm


i
m
i3
P
x


[—]
[—]
[—]
[mm]
[—]







3.0
0.15
64.0
0.5
128.0










In accordance with the above, the gear reduction mechanism 124 may be configured such that 128 turns of gear reduction mechanism 124 extends or retracts the growing rod 100 by 1 mm. Other ratios may be used to control the rate at which the gear reduction mechanism 124 drives the growing rod 100. Optionally or additionally, sizes of the gears within the stages may be different. For example, the stages closer to the input may be smaller, where the gears near the output are relatively larger.


To assemble the inner housing 108, an inner bearing 201 is placed within the interior space of the inner housing 108. The magnet assembly 300 is then pressed into the inner housing 108 such that a far end of the magnet assembly 300 is received within the inner bearing 201. An outer bearing 202 is then placed in the inner housing 108 such that it is received by the cover lid 304 of the magnet assembly 300. Next the first stage(s) 204A/204B are inserted such that an inner first stage receives the gear wheel 306 of the magnet assembly 300. The gear wheel 306 of the magnet assembly 300 is a rotational input to drive the gear reduction mechanism 124. As noted above, one or more first stages may be placed into the inner housing 108 as part of the gear reduction mechanism 124, followed by a second stage 206 as an output. The assembly of the inner housing 108 is completed by placing a bearing shoulder 208 into the inner housing 108 that is, e.g., secured to the drive housing by pins 210. As shown, four pins may be used to secure the bearing shoulder 208 to the inner housing 108, but other numbers of pins may be used. The catch 612 of the second stage 206 protrudes through the bearing shoulder 208. As a result, the magnet assembly 300 and gear reduction mechanism 124 are able to rotate freely within the inner housing 108.


With reference to FIGS. 1B and 2A, to engage the inner housing 108 with the outer housing 106, a bearing 212 is slide fit around the outer circumference of the inner housing 108 at a far end. An inner surface of bearing 212 mates with a ribbed outer surface of the inner housing 108 to prevent rotation of the bearing 212 around the circumference of the inner housing 108. A threaded driver 214 having a hexagonally-shaped center hole is received and mounted to the catch 612 and secured thereto by a snap-fit locking clip 216. An insert 218 is placed within the outer housing 106 to act as a stop.


To assemble the growing rod 100, the outer housing 106 is placed over the inner housing 108 and rotated to threadedly retract the inner housing 108 into the outer housing 106 by cooperation of an inner threaded surface of the outer housing 108 and the threaded driver 214. The inner housing 108 is retracted into the outer housing 106 until reaching the insert 218. As the inner housing 108 is retracted, flats 213 provided in the bearing 212 snap fit to an inner surface of the outer housing 106 to complete the assembly. Four flats may be provided with the bearing 212. The flats serve to secure the far end of the outer housing 106 to the inner housing 108 and to counteract the moment produced by the inner housing 108 as it rotates. Thus, the flats 213 prevent the inner housing 108 from spinning freely within the outer housing 106.


Referring now to FIGS. 1B and 2A, the first rod 102 is secured to the inner housing 108 by the threaded pins 222A/222B that engage a circumferential recess 116. A rounded end 118 of the first rod 102 has at least one flat surface that is received by a complementary flat surface within the inner housing 108 to prevent rotation of the first rod 102 with respect to the inner housing 108. In some implementations, the threaded pins 222A/222B are inserted into threaded holes 220 of the inner housing 108 from the inside of the inner housing 108. Each threaded pin 222A or 222B includes a locking surface that engages a ledge of a respective threaded hole 220 to prevent the threaded pin from falling out of the inner housing 108. The threaded pins 222A/222B may be screwed from the outside using an appropriate tool to secure the first rod 102 within the inner housing 108.


The second rod 104 is secured to the outer housing 106 by the threaded pins 226A/226B that engage a circumferential recess 120. A rounded end 122 of the second rod 104 has at least one flat surface that is received by a complementary flat surface within the outer housing 106 to prevent rotation of the second rod 104 with respect to the outer housing 106. Similar to the inner housing, the threaded pins 226A/226B used in the outer housing 106 may be inserted into the threaded 224 holes from the inside. Each threaded pin 226A or 226B may include a locking surface that engages a ledge of a respective threaded hole to prevent the threaded pin from falling out of the outer housing 106. The treaded pins 226A/226B may be screwed from the outside using an appropriate tool to secure the second rod 104 within the outer housing 106.


Thus, in view of the assembly noted above the completed, assembled growing rod 100 may be exemplified by that illustrated in FIGS. 1A and 1B. The growing rod and its components may be constructed of titanium or titanium alloys but are not so limited and may be constructed of cobalt chromium material, polymeric materials or nearly any bio-compatible material. Such materials should be relatively strong and stiff, able to take on the general size of the growing rod and its components and able to withstand normal operating conditions of the growing rod. The bearings and the insert may be constructed of a Polyether ether ketone (PEEK) material that is biocompatible and has a relatively low coefficient friction. The bearings are not limited to constructions utilizing PEEK materials and may be constructed of nearly any material that permits the associated parts to rotate (e.g., ball bearings). The outer housing 106 and the inner housing 108 may be made from any material that does not exhibit magnetic properties, in order to allow the magnetic field of the external magnet to pass there through to affect the magnet 110 within the growing rod.


In some implementations, the outer surface of the growing rod 100 may be polished to substantially remove any rough surfaces to reduce the likelihood that the body will attach to the growing rod. A coating may be placed on the growing rod for a similar purpose. In yet other implementations, the magnet assembly 300 may be replaced by an electric motor that rotationally drives the gear reduction mechanism 124.


To actuate the growing rod 100 to expand within, e.g., a patient undergoing treatment, an external magnet may be used as a source of a magnetic field to cause rotation of the magnet 110. As show in FIG. 8, the growing rod initially have a contracted length. Upon excitation by the external magnetic field, the magnet assembly 300 drives the gear reduction mechanism 124 to rotate the threaded driver 214. As the threaded driver 214 rotates, the inner housing is driven outwardly by cooperation of the threaded driver 214 and the inner threaded surface of the outer housing 106 to laterally drive the inner housing 108 with respect to the outer housing 106.


It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this disclosure is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present disclosure as defined by the present description.

Claims
  • 1. A drive mechanism for a growing rod, the drive mechanism comprising: an inner housing;a magnet assembly rotatably mounted within the inner housing including a magnet;a gear reduction mechanism coupled to the magnet assembly, the gear reduction mechanism comprising: a first stage comprising a first planetary gearset, anda second stage comprising a second planetary gearset that receives the first stage, the second stage being an output of the gear reduction mechanism,wherein the first stage includes a first carrier that receives each of the planet gears of the first planetary gear set,wherein the second stage includes a second carrier that receives each of the planet gears of the second planetary gear set and an output catch that extends from a face of the carrier for rotating a driver,wherein the first stage and second stage are coaxial,wherein the gear reduction mechanism reduces an output rotation of the magnet assembly; andan outer housing coupled to the inner housing by an engagement of the driver with the outer housing and a bearing that engages the outer housing and the inner housing to prevent the inner housing from spinning freely within the outer housing,wherein rotation of the magnet assembly causes the gear reduction mechanism to rotate the driver to cause the inner housing to move along a longitudinal axis substantially without rotation relative to the outer housing.
  • 2. The drive mechanism of claim 1, wherein the planetary gearset of each of the first and second stages includes a sun gear and corresponding planet gears, wherein the sun gears of the first and second stages are coaxial.
  • 3. The drive mechanism of claim 2, the magnet assembly further comprising a gear wheel, wherein the gear wheel is received by the first stage to drive the gear reduction mechanism upon rotation of the magnet assembly, wherein the gear wheel is coaxial with the sun gear of the first planetary gearset.
  • 4. The drive mechanism of claim 1, the magnet assembly further comprising a cover lid and a gear wheel, wherein the magnet includes at least one flat that receives the cover lid,wherein the cover lid defines a keyed slot that receives a complimentary-shaped shaft portion of the gear wheel,wherein rotation of the magnet assembly by an external magnetic field causes magnet assembly to drive the gear reduction mechanism.
  • 5. The drive mechanism of claim 4, wherein the outer housing and the inner housing are a non-magnetizable material.
  • 6. The drive mechanism of claim 4, the inner housing further comprising: an inner bearing that is disposed within an interior space of the inner housing, the inner bearing receiving the magnet;an outer bearing that it is received by the cover lid of the magnet assembly;wherein the outer bearing is disposed between the cover lid and the first stage of the gear reduction mechanism.
  • 7. The drive mechanism of claim 1, further including a bearing shoulder secured to the inner housing by a plurality of pins passing therethrough, wherein the bearing shoulder retains the magnet assembly and the gear reduction mechanism within the inner housing,wherein the bearing shoulder, having been secured to the inner housing by the pins, is rotatably fixed with respect to the inner housing,wherein the bearing shoulder is received by a round base of the catch of the gear reduction mechanism such that the catch is free to rotate within the bearing shoulder such that the magnet assembly and gear reduction mechanism rotate freely within the inner housing.
  • 8. The drive mechanism of claim 7, wherein the bearing shoulder is secured to the inner housing by a pin, the bearing shoulder including a ledge extending around a perimeter of the bearing shoulder sized and configured to contact an end of the inner housing.
  • 9. The drive mechanism of claim 7, wherein the output catch extends through the bearing shoulder such that the magnet assembly and gear reduction mechanism are able to rotate freely within the inner housing.
  • 10. The drive mechanism of claim 1, wherein the output catch includes a keyed outer surface having a shape corresponding to a shape of a central opening in the driver such that engagement between the keyed outer surface and the central opening of the driver directs rotational movement of the driver.
  • 11. The drive mechanism of claim 10, wherein the keyed outer surface is provided at a midsection of the output catch and extends between a cylindrically-shaped base and a cylindrically-shaped upper section.
  • 12. The drive mechanism of claim 11, the cylindrically-shaped upper section separated from the midsection by an annular recess, wherein the driver is secured to the output catch by a locking clip coupled to the output catch at the annular recess.
  • 13. The drive mechanism of claim 10, wherein the keyed outer surface of the output catch and the central opening of the driver each define corresponding a rectilinear shape in cross-section.
  • 14. The drive mechanism of claim 13, wherein the rectilinear shape comprises a hexagonal shape.
  • 15. The drive mechanism of claim 1, wherein the driver is secured to the output catch by a locking clip coupled to the output catch.
  • 16. The drive mechanism of claim 1, wherein the outer housing is coupled to the inner housing by engagement between the driver with an inner surface of the outer housing.
  • 17. The drive mechanism of claim 1, wherein the driver is a threaded driver and an inner surface of the outer housing includes a corresponding thread for engaging the threaded driver.
CROSS-REFERENCE TO RELATED APPLICATION

The present disclosure is a continuation of U.S. patent application Ser. No. 15/864,163, filed Jan. 8, 2018, which is a continuation of U.S. patent application Ser. No. 14/628,720, filed Feb. 23, 2015 (now U.S. Pat. No. 9,861,390), entitled “Non-Fusion Scoliosis Expandable Spinal Rod,” which is a continuation of Ser. No. 13/302,187, filed Nov. 22, 2011 (now U.S. Pat. No. 8,961,567), entitled “Non-Fusion Scoliosis Expandable Spinal Rod,” which claims priority to U.S. Provisional Patent Application No. 61/416,266, filed Nov. 22, 2010, entitled “Non-Fusion Scoliosis Expandable Spinal Rod,” all of which are incorporated herein by reference in their entirety.

US Referenced Citations (141)
Number Name Date Kind
3270792 Nenschotz et al. Sep 1966 A
3810259 Summers May 1974 A
3976060 Hildebrandt et al. Aug 1976 A
4312336 Danieletto et al. Jan 1982 A
4453539 Raftopoulos et al. Jun 1984 A
4665736 Yokoyama et al. May 1987 A
4850821 Sakai Jul 1989 A
4921499 Hoffman et al. May 1990 A
4926708 Dietrich et al. May 1990 A
4946459 Bradshaw et al. Aug 1990 A
4979672 AbuJudom, II et al. Dec 1990 A
5013949 Mabe, Jr. May 1991 A
5035712 Hoffman Jul 1991 A
5074882 Grammont et al. Dec 1991 A
5120135 Ullman Jun 1992 A
5150770 Secci Sep 1992 A
5263955 Baumgart et al. Nov 1993 A
5356411 Spievack Oct 1994 A
5364396 Robinson et al. Nov 1994 A
5415660 Campbell et al. May 1995 A
5505733 Justin et al. Apr 1996 A
5536269 Spievack Jul 1996 A
5551871 Besselink et al. Sep 1996 A
5569967 Rode Oct 1996 A
5575790 Chen et al. Nov 1996 A
5626579 Muschler et al. May 1997 A
5626581 Staehlin et al. May 1997 A
5672177 Seldin Sep 1997 A
5700263 Schendel Dec 1997 A
5704939 Justin Jan 1998 A
5720746 Soubeiran Feb 1998 A
5762599 Sohn Jun 1998 A
5766004 Besselink et al. Jun 1998 A
5827286 Incavo et al. Oct 1998 A
5961553 Coty et al. Oct 1999 A
6033412 Losken et al. Mar 2000 A
6036690 De La Plaza Fernandez Mar 2000 A
6187004 Fearon Feb 2001 B1
6245075 Betz et al. Jun 2001 B1
6277124 Haag Aug 2001 B1
6326707 Gummin et al. Dec 2001 B1
6336929 Justin Jan 2002 B1
6358255 Testa Mar 2002 B1
6375638 Nason et al. Apr 2002 B2
6383185 Baumgart May 2002 B1
6417750 Sohn Jul 2002 B1
6565576 Stauch et al. May 2003 B1
6616672 Essiger Sep 2003 B1
6673079 Kane Jan 2004 B1
6684724 Narasimhiah et al. Feb 2004 B2
6684904 Ito Feb 2004 B2
6706042 Taylor Mar 2004 B2
6716218 Holmes et al. Apr 2004 B2
6730087 Butsch May 2004 B1
6769830 Nygren Aug 2004 B1
6783530 Levy Aug 2004 B1
6796984 Soubeiran Sep 2004 B2
6832477 Gummin et al. Dec 2004 B2
6835207 Zacouto et al. Dec 2004 B2
6849076 Blunn et al. Feb 2005 B2
6852113 Nathanson et al. Feb 2005 B2
6860691 Unsworth et al. Mar 2005 B2
6918910 Smith et al. Jul 2005 B2
6918980 Grabarz Jul 2005 B2
7021055 Gummin et al. Apr 2006 B2
7063706 Wittenstein Jun 2006 B2
7135022 Kosahvili et al. Nov 2006 B2
7240677 Fox Jul 2007 B2
7282052 Mullaney Oct 2007 B2
7297146 Braun et al. Nov 2007 B2
7666184 Stauch Feb 2010 B2
7753915 Eksler et al. Jul 2010 B1
7763053 Gordon Jul 2010 B2
7862502 Pool et al. Jan 2011 B2
7955357 Kiester Jun 2011 B2
8043290 Harrison et al. Oct 2011 B2
8043299 Conway Oct 2011 B2
8057472 Walker et al. Nov 2011 B2
8137349 Soubeiran Mar 2012 B2
8142454 Harrison et al. Mar 2012 B2
8197490 Pool et al. Jun 2012 B2
8343192 Kiester Jan 2013 B2
8419734 Walker et al. Apr 2013 B2
8439915 Harrison et al. May 2013 B2
8525063 Yamazaki Sep 2013 B2
8568457 Hunziker Oct 2013 B2
8632548 Soubeiran Jan 2014 B2
9282997 Hunziker Mar 2016 B2
9931138 Lynch Apr 2018 B2
20030032958 Soubeiran Feb 2003 A1
20040030395 Blunn et al. Feb 2004 A1
20040059331 Mullaney Mar 2004 A1
20040193266 Meyer Sep 2004 A1
20050234448 McCarthy Oct 2005 A1
20050246034 Soubeiran Nov 2005 A1
20050251109 Soubeiran Nov 2005 A1
20050261779 Meyer Nov 2005 A1
20060009767 Kiester Jan 2006 A1
20060047282 Gordon Mar 2006 A1
20060074448 Harrison et al. Apr 2006 A1
20060079897 Harrison et al. Apr 2006 A1
20060271107 Harrison et al. Nov 2006 A1
20070010814 Stauch Jan 2007 A1
20070015622 Stauch Jan 2007 A1
20070073098 Lenker et al. Mar 2007 A1
20070185374 Kick et al. Aug 2007 A1
20070265646 McCoy et al. Nov 2007 A1
20070270803 Giger et al. Nov 2007 A1
20070276378 Harrison et al. Nov 2007 A1
20070282338 Mullaney Dec 2007 A1
20080097188 Pool et al. Apr 2008 A1
20080097249 Pool et al. Apr 2008 A1
20080097487 Pool et al. Apr 2008 A1
20080097496 Chang et al. Apr 2008 A1
20080108995 Conway et al. May 2008 A1
20080172072 Pool et al. Jul 2008 A1
20090062825 Pool et al. Mar 2009 A1
20090112207 Walker et al. Apr 2009 A1
20090112262 Pool et al. Apr 2009 A1
20090112263 Pool et al. Apr 2009 A1
20090204154 Kiester Aug 2009 A1
20090254088 Soubeiran Oct 2009 A1
20100049204 Soubeiran Feb 2010 A1
20100094302 Pool et al. Apr 2010 A1
20100094303 Chang et al. Apr 2010 A1
20100094304 Pool Apr 2010 A1
20100094305 Chang et al. Apr 2010 A1
20100094306 Chang et al. Apr 2010 A1
20100114103 Harrison May 2010 A1
20100121323 Pool et al. May 2010 A1
20100217271 Pool et al. Aug 2010 A1
20100280519 Soubeiran Nov 2010 A1
20100280551 Pool et al. Nov 2010 A1
20110060336 Pool et al. Mar 2011 A1
20110238126 Soubeiran Sep 2011 A1
20120004494 Payne et al. Jan 2012 A1
20120035656 Pool et al. Feb 2012 A1
20120035661 Pool et al. Feb 2012 A1
20120157996 Walker et al. Jun 2012 A1
20120179215 Soubeiran Jul 2012 A1
20130296859 Walker et al. Nov 2013 A1
Foreign Referenced Citations (9)
Number Date Country
1433286 Jul 2003 CN
2906453 Apr 2008 FR
1999034746 Jul 1999 WO
1999051160 Oct 1999 WO
2000033752 Jun 2000 WO
2008109300 Sep 2008 WO
2009058546 May 2009 WO
2009115645 Sep 2009 WO
2010052465 May 2010 WO
Non-Patent Literature Citations (24)
Entry
Campbell et al., “Expansion Thoracoplasty: The Surgical Technique of Opening-Wedge Thoracostomy,” JBJS, vol. 85-A, pp. 409-420, Mar. 2003.
Campbell et al., “Growth of the Thoracic Spine in Congenital Scoliosis After Expansion Thoracoplasty,” JBJS, vol. 85-A, pp. 409-420, Mar. 2003.
Campbell et al., “The Effect of Opening Wedge Thoracostomy on Thoracic Insufficiency Syndrome Syndrome Associated with Fused Ribs and Congenital Scoliosis,” JBJS, vol. 86-A, pp. 1659-1674, Aug. 2004.
Campbell et al., “Thoracic Insufficiency Syndrome and Exotic Scoliosis,” JBJS, vol. 89-A, Supp. 1, pp. 108-122, 2007.
Cunningham et al., “Fusionless Scoliosis Surgery,” CurrOpin Pediatr, Lippincott Williams & Wilkins, vol. 17, pp. 48-53, 2005.
Deacon et al., “Idiopathic Scoliosis in Three Dimensions: A Radiographic and Morphometric Analysis,” The Journal of Bone and Joint Surgery, British Editorial Society of Bone and Joint Surgery, vol. 66-B, pp. 509-512, Aug. 1984.
Edeland et al., “Instrumentation for Distraction by Limited Surgery in Scoliosis Treatment,” Journal of Biomedical Engineering, vol. 3, pp. 143-146, Apr. 1981.
Emans et al., “The Treatment of Spine and Chest Wall Deformities with Fused Ribs by Expansion Thoracostomy and Insertion of Vertical Expandable Prosthetic Titanium Rib,” Spine, Lippincott Williams & Wilkins, Inc., vol. 30, No. 17S, pp. 558-568, 2005.
Grass et al., “Intermittent Distracting Rod for Correction of High Neurologic Risk Congenital Scoliosis,” Spine, vol. 22, No. 16, pp. 1922-1927, 1997.
Hefti, “Idiopathic Scoliosis,” Pediatric Orthopedics In Practice, Springer Berlin Heidelberg, pp. 72-94, 2007.
Keynan et al., “Radiographic Measurement Parameters in Thoracolumbar Fractures: A Systematic Review and Consensus Statement of the Spine Trauma Study Group,” Spine, Lippincott Williams & Wilkins, Inc., vol. 31, No. 5, pp. E156-E163, 2006.
Klemme et al., “Spinal Instrumentation Without Fusion for Progressive Scoliosis in Young Children,” Journal of Pediatric Orthopaedics, Lippincott-Raven Publisher, vol. 17, pp. 734-742, 1997.
Stokes et al., “Three-Dimensional Spinal Curvature in Idiopathic Scoliosis,” Journal of Orthopaedic Research, Orthopeadic Research Society, Raven Press, NY, vol. 5, pp. 102-113, 1987.
Takaso et al., “New Remote-Controlled-Growing-Rod Spinal Instrumentation Possibly Applicable for Scoliosis in Young Children,” Journal of Orthopedic Science, vol. 3, pp. 336-340, 1998.
Wenger, “Spine Jack Operation in the Correction of Scoliotic Deformity,” Archives of Surgery, vol. 83, pp. 901-910, 1961.
International Preliminary Report on Patentability and Written Opinion, dated Jun. 5, 2012, received in connection with corresponding International Patent Application No. PCT/US2010/058528.
International Search Report, dated Feb. 17, 2011, received in connection with corresponding International Patent Application No. PCT/US2010/058528.
International Preliminary Report on Patentability and Written Opinion, dated May 22, 2013, received in connection with International Patent Application No. PCT/US2011/061767.
International Search Report and Written Opinion, dated Mar. 1, 2012, received in connection with International Patent Application No. PCT/US2011/061767.
Co-Pending U.S. Appl. No. 14/628,720 (parent application), filed Feb. 23, 2015 (U.S. Pat. No. 9,861,390, issued Jan. 9, 2018.
Co-Pending U.S. Appl. No. 13/302,187, filed Nov. 22, 2011 (U.S. Pat. No. 8,961,567, issued Feb. 24, 2015).
U.S. Appl. No. 15/068,836, filed Mar. 14, 2016.
U.S. Appl. No. 14/056,441, filed Oct. 17, 2013 (U.S. Pat. No. 9,282,997, issued Mar. 15, 2016).
U.S. Appl. No. 12/957,447, filed Dec. 1, 2010 (U.S. Pat. No. 8,568,457, issued Oct. 29, 2013).
Related Publications (1)
Number Date Country
20200187989 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
61416266 Nov 2010 US
Continuations (3)
Number Date Country
Parent 15864163 Jan 2018 US
Child 16705667 US
Parent 14628720 Feb 2015 US
Child 15864163 US
Parent 13302187 Nov 2011 US
Child 14628720 US