Non-homogeneous objects magnification and reduction

Information

  • Patent Grant
  • 9189129
  • Patent Number
    9,189,129
  • Date Filed
    Sunday, September 25, 2011
    13 years ago
  • Date Issued
    Tuesday, November 17, 2015
    9 years ago
Abstract
Is provided herein a method of non-homogeneously magnifying objects comprising providing an information element adapted to be displayed on a display and surrounded by a margin thereof; displaying the information element and its margin on a display; defining a standardized object adapted to respectively include therein the information element and at least a portion of the margin; magnifying the standardized object; defining a size of the magnified information element by removing an unmagnified size of the at least a portion of the margin to the size of the magnified standardized object; and displaying the magnified information element with its surrounding margin.
Description
FIELD OF THE INVENTION

This invention relates generally to computer systems and more specifically to a method, a system and an interface that facilitates the magnification and the reduction of objects on a display. More precisely, the present invention relates to a method of non-homogenously magnifying and reducing layouts of elements, objects and/or documents.


BACKGROUND OF THE INVENTION

Computers can come with a variety of display sizes. Desktop computers are adapted to be connected to large screen while mobile computers are required to deal with much smaller displays.


Magnifying information elements on a display generally requires magnification and reduction of the subject object displayed to maximize the use of the display area. Magnifying and reducing objects on a display equally magnifies intervening between-objects portions that do not need to be magnified because they do not add more meaning to the subject objects. Magnifying intervening between-objects portions use more display area that could be used more usefully by other objects.


Layout of objects can vary in accordance with a variety of possible uses. A problem arises with webpages, especially when seen on small screens like PDA's or mobile phones, which need to be magnified. Magnification of a webpage can be required for, for instance, becoming readable. Under some circumstances the magnification of the text is required for readability although the magnification of the margins around the text or enclosures in the text, like publicity or even images, might no be desirable considering the small size of the display area.


For instance, objects on a web page can include text and images that bring meaning to a reader. The text and the images are generally separated with margins thereof. Magnifying, for instance, a virtual newspaper to read it with, illustratively, a mobile phone, is going to also magnify the margins that are of no help for the reader since their smaller size, when they are not magnified, is sufficient to clearly distinguish the text from the images. In other words, their magnification is a non-optimal use of the display area that is available.


Similar principles can be applied to menu items using, for example, icons or the like in a predetermined graphical arrangements. Intervening margins between the menu items are magnified with the menu items and space is lost on the display area of the display while their enlargement (the margins) is of little help for the user since their smaller size was already sufficient to allow proper use of the menu items.


Today's information management systems are dealing with tremendous amounts of documents and other files. Files management systems are evolving toward a more graphical environment to facilitate document navigation and management. United States Patent Application Publication No.: US 2007/0214169 A1, published on Sep. 13, 2007 discloses a Multi-dimensional locating system and method (title). The patent application discloses ways for managing and displaying axes of documents and other computer-readable files. An axis of documents that groups a plurality of documents along a predetermined order, inter alia, is taught.


The use of only a small number of documents on a display might result in a poor use of the usable display area. A larger number of documents on an axis might be desirable. Similarly, a plurality of axes of documents might also be desirable to provide more information to a viewer. A number of challenges need to be addressed in order to provide some functions performed on a significant quantity of documents and/or a plurality of axes.


One of these challenges is to maximize the use of a display area when a number of documents on a single axis, or disposed on many axes displaying documents thereon, are simultaneously displayed. Magnifying (or reducing) the documents and/or the axes equally magnifies (or reduces) the margins around the documents and the axes. The magnification of the margins with the same magnification level for the documents and the axes might not be desirable. A small margin can be sufficient even with a strong magnification. The magnification of margins proportionally increases the non-useful area on the display.


In view of the prior art it appears that improvements over the prior art is desirable to improve the user experience and usability either with innovative graphical, structural or functional improvements.


SUMMARY OF THE INVENTION

The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.


This invention generally refers to juxtaposed objects and intervening spaces thereof that do not require a similar magnification and/or reduction when they their size is changed. This invention also refers to user-selectable elements that might represent computer-readable files like documents and multimedia assets. Information elements can alternatively be referred to as, user-selectable elements, menu elements, icons or thumbnails that are associated to an attribute, a category or a tag and arranged as explained below. In order to lighten the reading of the present specification, the term “document” is generally used without intending to limit the scope of the present patent application only to documents, unless expressly specified.


Also, the invention is generally described using an assembly of documents called an axis of documents. The axis of documents generally refers to, but is not limited to, a comprehensive graphical layout of documents. Hereinbelow referred to as an axis that is embodied as a substantially rectilinear arrangement of documents. The axis might not necessarily be straight but preferably has a consistent shape providing a viewer an indication of continuity therebetween documents disposed thereon. In other words, the axis of documents can be defined by a single axis, a double axis of documents, or more adjacent axes of documents. The axis can be completely straight, slightly curved, substantially curved, angled, following a particular shape or having a consistent shape over which documents are disposed in a reasonably consistent fashion adapted to allow a viewer to infer a comprehensive suite of documents. The axes presented in the embodiments below are illustrated in the horizontal position while they could be disposed vertically without departing from the scope of the present disclosure.


An embodiment referred to below provides one or more groups of axes comprising documents thereon. Each axis of documents is preferably rectilinear to easily be located adjacent with other axes of documents to efficiently use the useful display area of the display. A system adapted to carry on the embodiments, a user graphical interface adapted to display the embodiments, a method adapted to provides the steps required to enable the embodiments and a medium storing instructions enabling the method once read by a machine are all considered within the scope of the present invention.


The present patent specification refers most of the time to a magnification function and a reduction function to lighten readability of the text. Whenever the function magnification is referred to alone, it also implicitly refers to its opposite and complementary function: the reduction.


An embodiment referred to below provides a means for magnifying and/or reducing meaningful objects on a display without magnifying and/or reducing intervening spaces and unmeaningful objects on a display to maximize the use of the useful viewing area of the display in at least an embodiment of the present invention.


An embodiment referred to below provides at least a mechanism, a method, an apparatus, a system and/or a graphical user interface adapted to non-homogeneously magnify and/or reduce a visible area of a display in at least an embodiment of the present invention.


An embodiment referred to below provides a mechanism configured to magnify and/or reduce some displayed objects while not magnify and/or reduce some other simultaneously displayed objects in at least an embodiment of the present invention.


An embodiment referred to below provides a method of determining which objects on a display are adapted to be magnified and/or reduced and which objects, intervening spaces and/or margins are not adapted to be magnified and/or reduced in at least an embodiment of the present invention.


An embodiment referred to below provides a method of grouping objects adapted to be displayed on a display that are adapted to be magnified and/or reduced and objects, intervening spaces and/or margins are not adapted to be magnified and/or reduced, to be used by a computer system to batch manage magnification and/or reduction of objects in at least an embodiment of the present invention.


An embodiment referred to below provides a mechanism configured to magnify and/or reduce some displayed objects at a defined rate while not magnify and/or reduce some other simultaneously displayed objects at the same rate; the magnify and/or reduce rates being linear or non-linear in at least an embodiment of the present invention.


An embodiment referred to below provides a method, a system and a graphical user interface configured to magnify and/or reduce only specific objects among a larger group of objects in at least an embodiment of the present invention.


An embodiment referred to below provides a magnification and/or reduction of one of many objects without magnification and/or reducing environment structures in at least an embodiment of the present invention.


An embodiment referred to below provides a method of magnification and/or reducing a layout of objects by magnifying the objects at a first magnifying rate and the surrounding environment at a second magnifying rate in at least an embodiment of the present invention.


An embodiment referred to below provides a first object magnification and/or reduction rate between a first size and a second size, and a second object magnification and/or reduction rate between the second size and a third size and also a first margin magnification and/or reduction rate between a first size and a second size and a second magnification and/or reduction rate between the second size and a third size in at least an embodiment of the present invention.


An embodiment referred to below provides a magnification and/or reduction anchor adapted to set the position of a layout of objects that is going to remain at the same place on a display during magnification and/or reduction in at least an embodiment of the present invention.


An embodiment referred to below provides a method of magnifying and or reducing documents in a layout of documents defining borders and margins by magnifying and/or reducing the documents and not magnifying and/or reducing the surrounding environment, the borders and/or the margins in at least an embodiment of the present invention.


An embodiment referred to below provides a method of magnifying documents in a layout of documents defining borders and margins by magnifying the documents and not magnifying the borders and the margins in at least an embodiment of the present invention.


An embodiment referred to below provides a product comprising a machine-readable medium; and machine-executable instructions for causing a computer to perform a method comprising providing a first object and a second object at least partially graphically circumventing the first object, the first object and the second object being adapted to be simultaneously displayed on a display area of a display; non-homogeneously changing a size of the two objects.


An embodiment referred to below provides a method of magnifying an array of information elements on a display, the method comprising displaying a plurality of information elements on the display with a size thereof, at least some of the plurality of information elements being surrounded by a margin thereof, and modifying the size of the plurality of displayed information elements on a basis of a first magnitude, at least a portion of the margins being adapted to change size on a basis of a second magnitude thereof.


An embodiment referred to below provides a method of non-homogeneously magnifying objects on a display, the method comprising providing an information element adapted to be displayed on a display and surrounded by a margin thereof; displaying the information element and its margin on a display; defining a standardized object adapted to respectively include therein the information element and at least a portion of the margin; magnifying the standardized object; defining a size of the magnified information element by removing an unmagnified size of the at least a portion of the margin to the size of the magnified standardized object; and displaying the magnified information element with its surrounding margin.


Other advantages might become apparent to the skilled reader of this patent specification in light of the text and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of an exemplary computerized network;



FIG. 2 is a schematic illustration of an exemplary multi-devices network layout;



FIG. 3 is a schematic illustration of a typical exemplary computer system;



FIG. 4 is a schematic illustration of a prior art axis of documents in a longitudinal arrangements of documents;



FIG. 5 is a schematic illustration of a magnified portion of the axis of documents of FIG. 4;



FIG. 6 is a schematic illustration of an axis of documents in a zoomed out configuration with fixed intervening portions in accordance with an embodiment of the present invention;



FIG. 7 is a schematic illustration of an axis of documents in a zoomed in configuration with fixed intervening portions in accordance with an embodiment of the present invention;



FIG. 8 is a schematic illustration of an axis of documents in a strong zoomed in configuration with fixed intervening portions in accordance with an embodiment of the present invention;



FIG. 9 is an illustrative schematic view of the relative position of schematic layout of documents in accordance with an embodiment of the present invention;



FIG. 10 is an illustrative schematic view of the relative position of a magnified schematic layout of documents in accordance with an embodiment of the present invention;



FIG. 11 is an illustrative schematic view of the relative position of schematic layout of documents in accordance with an embodiment of the present invention;



FIG. 12 is an illustrative schematic view of the relative position of a magnified schematic layout of documents in accordance with an embodiment of the present invention;



FIG. 13 is an illustrative schematic view of an axis of documents in accordance with an embodiment of the present invention;



FIG. 14 is an illustrative schematic view of the intervening portions around each document in accordance with an embodiment of the present invention;



FIG. 15 is an illustrative schematic view of the axis of document and their intervening portions considered as a single object in accordance with an embodiment of the present invention;



FIG. 16 is an illustrative schematic view of multiple axes of objects without intervening portions in accordance with an embodiment of the present invention;



FIG. 17 is an illustrative schematic view of the magnification of multiple axes of objects without intervening portions in accordance with an embodiment of the present invention;



FIG. 18 is an illustrative schematic view of the magnification of multiple axes of objects without intervening portions in accordance with an embodiment of the present invention;



FIG. 19 is an illustrative schematic view of the representation of the different components of a document and its intervening portions as a object in accordance with the embodiment of the present invention;



FIG. 20 is an illustrative schematic view of a group of axes of documents with intervening portions, margins and headers in accordance with an embodiment of the present invention;



FIG. 21 is an illustrative schematic view of a magnified group of axes of documents with fixed intervening portions, margins and headers in accordance with an embodiment of the present invention;



FIG. 22 is an illustrative schematic view of a magnified group of axes of documents with fixed intervening portions, margins and headers axis names in accordance with an embodiment of the present invention;



FIG. 23 is an illustrative schematic view of a group of axes of documents with a fixed size intervening portions and/or header in accordance with an embodiment of the present invention.



FIG. 24 is an illustrative schematic view of a magnified group of axes of documents with a fixed size intervening portions and/or header in accordance with an embodiment of the present invention.



FIG. 25 is an illustrative schematic view of a magnified group of axes of documents with a fixed size intervening portions and/or header in accordance with an embodiment of the present invention.



FIG. 26 is an illustrative schematic view of a group of axes of documents with a magnifiable size intervening portions and/or header and visual distinctive features applied to some document in accordance with an embodiment of the present invention;



FIG. 27 is an illustrative schematic view of a group of axes of documents with a magnifiable size intervening portions and/or header and visual distinctive features applied to some document in accordance with an embodiment of the present invention;



FIG. 28 is an illustrative schematic view of a group of axes of documents with a magnifiable size intervening portions and/or header and visual distinctive features applied to some document in accordance with an embodiment of the present invention;



FIG. 29 is an illustrative schematic view of plurality of axes of documents with two marking axes in accordance with an embodiment of the present invention;



FIG. 30 is an illustrative schematic view of plurality of magnified axes of documents with two marking axes in accordance with an embodiment of the present invention;



FIG. 31 is an illustrative schematic view of plurality of magnified axes of documents in a display area with two marking axes in accordance with an embodiment of the present invention;



FIG. 32 is an illustrative schematic view of a group of axes of square documents in accordance with an embodiment of the present invention;



FIG. 33 is an illustrative schematic view of a group of axes of rectangular documents in accordance with an embodiment of the present invention;



FIG. 34 is an illustrative schematic view of a group of axes of rectangular documents in accordance with an embodiment of the present invention;



FIG. 35 is an illustrative schematic view of a group of axes of square documents in accordance with an embodiment of the present invention;



FIG. 36 is an schematic illustration of several shapes adapted to be maximized in document containers in accordance with an embodiment of the present invention;



FIG. 37 is an schematic illustration of several shapes maximized in magnified document containers in accordance with an embodiment of the present invention;



FIG. 38 is an illustrative schematic view of a group of axes of documents of equals dimension in accordance with an embodiment of the present invention;



FIG. 39 is an illustrative schematic view of a group of a plurality of axes of documents in which one axis of documents is being reduced in accordance with an embodiment of the present invention;



FIG. 40 is an illustrative schematic view of a plurality of axes of documents and a non-parallel axis of documents over one element of an axis of documents in accordance with an embodiment of the present invention;



FIG. 41 is an illustrative schematic view of a plurality of magnified axes of documents and a non-parallel axis of documents over one document of another axis of documents in accordance with an embodiment of the present invention;



FIG. 42 is a schematic illustration of a web document with fixed intervening portions in accordance with an embodiment of the present invention; and



FIG. 43 is a schematic illustration of a magnified web page with fixed intervening portions in accordance with an embodiment of the present invention.





DESCRIPTION OF EMBODIMENT(S) OF THE INVENTION

The present invention is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It may be evident, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the present invention.


The description is separated with subtitles to facilitate its readability. The subtitles include descriptions of portions of invention that might be interrelated despite they might appear under different subtitles. In other words, subtitles are not intended to separate part of the same invention or different inventions described therein but are rather intended to structure the text.


The features provided in this specification mainly relates to basic principles for managing axes of documents. These code/instructions are preferably stored on a machine-readable medium adapted to be read and acted upon to with a computer or a machine having corresponding code/instructions reading capability.


Exemplary Network



FIG. 1 illustrates an exemplary network 10 in which a system and method, consistent with the present invention, may be implemented. The network 10 may include multiple client devices 12 connected to multiple servers 14, 16, 18 via a network 20. The network 20 may include a local area network (LAN), a wide area network (WAN), a telephone network, such as the Public Switched Telephone Network (PSTN), an intranet, the Internet, Wi-Fi, WiMAX or a combination of networks. Two client devices 12 and three servers 14, 16, 18 have been illustrated as connected to network 20 for simplicity. In practice, there may be more or less client devices and servers. Also, in some instances, a client device may perform the functions of a server and a server may perform the functions of a client device.


The client devices 12 may include devices, such as mainframes, minicomputers, personal computers, laptops, personal digital assistants, telephones, or the like, capable of connecting to the network 20. The client devices 12 may transmit data over the network 20 or receive data from the network 20 via a wired, wireless, or optical connection.


The servers 14, 16, 18 may include one or more types of computer systems, such as a mainframe, minicomputer, or personal computer, capable of connecting to the network 20 to enable servers 14, 16, 18 to communicate with the client devices 12. In alternative implementations, the servers 14, 16, 18 may include mechanisms for directly connecting to one or more client devices 12. The servers 14, 16, 18 may transmit data over network 14 or receive data from the network 20 via a wired, wireless, or optical connection.


In an implementation consistent with the present invention, the server 14 may include a search engine 22 usable by the client devices 12. The servers 14 may store documents, such as web pages, accessible by the client devices 12.


With reference to FIG. 2, a network 20 includes the content cloud 30, a content database 32, content devices 34-38, and devices 40-48. The network mediator 28 enables the network devices 32-38 to communicate with each other without pre-configuring each device.


The content cloud 30 represent a content source such as the Internet, where content exists at various locations across the globe. The content includes multimedia content such as audio and video. The mediator 28 allows the content cloud to provide content to devices 40-48.


The content database 32 is a storage device that maintains content. The content database 32 may be a stand-alone device on an external communication network. The mediator 28 communicates with the content database 32 to access and retrieve content.


The content devices 34-38 include intelligent devices, such as, for example, personal computers, laptops, cell phones and personal digital assistants. The content devices 32-38 are capable or storing content information.


The devices 40-48 are intelligent devices that receive content from a content source 30-38. However, the devices 30-38 can also operate as servers to distribute content to other client devices.


Exemplary Client Architecture



FIG. 3 and the following discussion provide a brief, general description of an exemplary apparatus in which at least some aspects of the present invention may be implemented. The present invention will be described in the general context of computer-executable instructions, such as program modules, being executed by a personal computer. However, the methods of the present invention may be effected by other apparatus. Program modules may include routines, programs, objects, components, data structures, applets, WEB 2.0 type of evolved networked centered applications, etc. that perform a task(s) or implement particular abstract data types. Moreover, those skilled in the art will appreciate that at least some aspects of the present invention may be practiced with other configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network computers, minicomputers, set top boxes, mainframe computers, gaming console and the like. At least some aspects of the present invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices linked through a communications network. In a distributed computing environment, program modules may be located in local and/or remote memory storage devices.


Now, with reference to FIG. 3, an exemplary apparatus 100 for implementing at least some aspects of the present invention includes a general purpose computing device in the form of a conventional personal computer 120. The personal computer 120 may include a processing unit 121, a system memory 122, and a system bus 123 that couples various system components, including the system memory 122, to the processing unit 121. The system bus 123 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory may include read only memory (ROM) 124 and/or random access memory (RAM) 125. A basic input/output system 126 (BIOS), containing basic routines that help to transfer information between elements within the personal computer 120, such as during start-up, may be stored in ROM 124. The personal computer 120 may also include a hard disk drive 127 for reading from and writing to a hard disk, (not shown), a magnetic disk drive 128 for reading from or writing to a (e.g., removable) magnetic disk 129, and an optical disk drive 130 for reading from or writing to a removable (magneto) optical disk 131 such as a compact disk or other (magneto) optical media. The hard disk drive 127, magnetic disk drive 128, and (magneto) optical disk drive 130 may be coupled with the system bus 123 by a hard disk drive interface 132, a magnetic disk drive interface 133, and a (magneto) optical drive interface 134, respectively. The drives and their associated storage media provide nonvolatile (or persistent) storage of machine-readable instructions, data structures, program modules and other data for the personal computer 120. Although the exemplary environment described herein employs a hard disk, a removable magnetic disk 129 and a removable optical disk 131, those skilled in the art will appreciate that other types of storage media, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read only memories (ROM), and the like, may be used instead of, or in addition to, the storage devices introduced above.


A number of program modules may be stored on the hard disk 127, magnetic disk 129, (magneto) optical disk 131, ROM 124 or RAM 125, such as an operating system 135 (for example, Windows® NT® 4.0, sold by Microsoft® Corporation of Redmond, Wash.), one or more application programs 136, other program modules 137 (such as “Alice”, which is a research system developed by the User Interface Group at Carnegie Mellon University available at www.Alice.org, OpenGL from Silicon Graphics Inc. of Mountain View Calif., or Direct 3D from Microsoft Corp. of Bellevue Wash.), and/or program data 138 for example.


A user may enter commands and information into the personal computer 120 through input devices, such as a keyboard 140, a camera 141 and pointing device 142 for example. Other input devices (not shown) such as a microphone, joystick, game pad, satellite dish, scanner, a touch sensitive screen, accelerometers adapted to sense movements of the user or movements of a device, or the like may also be included. These and other input devices are often connected to the processing unit 121 through a serial port interface 146 coupled to the system bus. However, input devices may be connected by other interfaces, such as a parallel port, a game port, blue tooth connection or a universal serial bus (USB). For example, since the bandwidth of the camera 141 may be too great for the serial port, the video camera 141 may be coupled with the system bus 123 via a video capture card (not shown). The video monitor 147 or other type of display device may also be connected to the system bus 123 via an interface, such as a video adapter 148 for example. The video adapter 148 may include a graphics accelerator. One or more speaker 162 may be connected to the system bus 123 via a sound card 161 (e.g., a wave table synthesizer such as product number AWE64 Gold Card from Creative® Labs of Milpitas, Calif.). In addition to the monitor 147 and speaker(s) 162, the personal computer 120 may include other peripheral output devices (not shown), such as a printer for example. As an alternative or an addition to the video monitor 147, a stereo video output device, such as a head mounted display or LCD shutter glasses for example, could be used.


The personal computer 120 may operate in a networked environment that defines logical connections to one or more remote computers, such as a remote computer 149. The remote computer 149 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and may include many or all of the elements described above relative to the personal computer 120, although only a memory storage device has been illustrated in FIG. 1. The logical connections depicted in FIG. 2 include a local area network (LAN) 14 and a wide area network (WAN) 152, an intranet and the Internet.


When used in a LAN, the personal computer 120 may be connected to the LAN 14 through a network interface adapter (or “NIC”) 153. When used in a WAN, such as the Internet, the personal computer 120 may include a modem 154 or other means for establishing communications over the wide area network 152 (e.g. Wi-Fi, WiMax . . . ). The modem 154, which may be internal or external, may be connected to the system bus 123 via the serial port interface 146. In a networked environment, at least some of the program modules depicted relative to the personal computer 120 may be stored in the remote memory storage device. The network connections shown are exemplary and other means of establishing a communications link between the computers may be used.


The Interface


An interface program providing an interface for managing documents in accordance with an embodiment of the invention is installed on a machine e.g. a computer system. The interface can be programmed using various programming languages e.g. C++, Java or other suitable programming languages. Programming of these languages is well known in the art and is adapted to be readable to provide executable instructions to a hardware system and will not be further described therein. The interface might run through the operating system and the hardware of the computer system or, alternatively, through a network based system e.g. client-server, and/cloud computing system. The interface is adapted to manage documents, computer files, pictures, multimedia content, applications (i.e. computer programs), menu elements, sets of icons and other user-selectable elements in a comprehensive fashion.


Several embodiments follows: Documents are stored on a machine-readable medium and can be retrieved on demand when needed with the interface program. Documents are disposed in an axis-like layout providing a visually comprehensive display arrangement of the documents. The axis can, illustratively, among other possibilities, be based on a selection of attribute(s), tag(s), category(ies), owner of documents, a chronological order, a statistical order or an order representing an increasing file size. Combinations of the above-listed possible choices, inter alia, are possible if desired to build a query adapted to reduce the number of documents to be displayed on the axis. The axis thus helps the viewer to infer additional meaning from the comprehensive layout, consistent display and distribution of the documents thereon.


An axis is adapted to accommodate a single type of documents or, if desired, more than one type of documents, and/or a mix of documents, computer files, multimedia contents and/or user-selectable menu elements. Documents might overlap to squeeze more documents on the space available on the display. Magnification of selected documents on an axis can be made to increase the level of details of the selected documents.


Using an axis of documents helps to meaningfully and intuitively display a group of documents. An axis of documents can be embodied as being a substantially linear distribution of documents adapted to dispose each document to be displayed on a line or on a curved line. A curved or a circular axis of documents is also contemplated to be within the scope of the present disclosure. The exact shape of the axis is secondary, what matters, inter alia, is that the layout structure of an axis provides a comprehensive suite of documents from which a viewer can infer an order, a sequence or a relationship between documents. The display of the axis of documents might be made in accordance with a predetermined order (e.g. chronologically), or not. A chronological distribution of documents can sort documents on a timeline. The chronological order can either be linear or non-linear; meaning that a unit of time has always the same graphical length on the display in the linear configuration. The non-linear configuration might non-evenly display similar units of time because the distribution of documents along the timeline prevails over the linearity of time. Another illustrative embodiment is a group of juxtaposed axes of documents grouped together to form an axis of documents referring to a matrix of documents.


The display of documents on an axis of documents allows to contextually manage documents as a flow, or an ongoing suite, of documents instead of dealing with each document independently. By getting away from managing each document independently it becomes possible to efficiently deal with a significantly higher number of documents and still keep the documents in a structured order.


Each axis of documents groups documents in accordance with, for example, a selected tag, a category, keywords, or an attribute that is commonly shared among the documents displayed on the axis of documents. The term “attribute” will consistently be used throughout the instant specification to lighten the reading of the text and will include the other commonality between documents described therein unless otherwise specified. The selection of one or more attribute (using Boolean logic for instant) determines which documents will be displayed on the axis of documents. If no specific attribute is selected, then, the axis of documents displays all documents. Thus, all documents on the same axis of documents are normally associated with the selected set or combination of attributes (trivial data, like publicity or specific related information, could be added to an axis as long as the outcome remains a presentation of documents resulting from a query without departing from the scope of the present invention). In addition, a timeline can be used to determine the order of the suite of documents on the axis of documents. Chronological ordering is a very intuitive ordering to humans and is one of the preferred ways to present documents on an axis of documents. In the case of a matrix of documents, then, one axis (e.g. horizontal direction) of the matrix can represent a timeline while the other axis (e.g. vertical direction, orthogonal, . . . ) represents another criterion like, for example, the type of computer files each document relates to. The other axis can also use a timeline if desirable.


The attributes of a document can be selected to create another axis of documents. The attribute of a document from the newly created axis of documents can be selected to create an additional axis of documents and so on so forth. This is what could be called “relational navigation” and is well described in the United States patent application publication referred to at the beginning of the present patent specification. Hence, the user can “navigate” along axes of documents in accordance with their categorization to visualize the documents. Navigation tools are provided with the interface to allow navigation through various axes of documents, when a plurality of axes is enabled, and through the documents of a single axis of documents. In the context of the present invention, a single suite of documents forming an axis along a timeline is one of the preferred embodiments because it is easy to sequentially navigate throughout the documents disposed along the axis. Other graphical layouts of documents might become obvious for a skilled reader in light of the present application and would be considered within the scope of this application.


When only a portion of the axis is visible, a play of zoom, pan and movements along the axis allows a viewer to navigate on the axis and change the document(s) that is(are) displayed on the display. A small display area could display only one document from the axis of documents while the remaining documents from the axis of documents are not displayed but remain nonetheless at their respective “virtual” position on the axis and ready to be displayed if the axis is scrolled to show other documents. In other words, if we consider a mobile platform like a mobile phone having a small display, the small display area might allow to efficiently display only one document at the time. However, the displayed document being part of an axis of documents, the other documents on the axis of documents remain displayable in accordance with their respective position on the axis of documents when the axis is scrolled/navigated/gestured.


Referring now to FIG. 4, it is possible to appreciate a plurality of documents 200 disposed on an axis of documents 210. Each document 200 is located on axis of documents 210 that is illustratively defined by borders or rails 215. The documents 200 are vertically located between rails 215 with a margin 220 above and another margin below. The documents 200 are separated apart from adjacent documents 200 with an intervening margin 225.


A magnification of the axis of documents 210 of FIG. 4 leads to a proportional magnification of all components (or objects). As illustrated in magnified FIG. 5, the documents 200 and the margins 220, 225 are bigger but all proportions have been kept unchanged from the original size illustrated in FIG. 4. One can appreciate that the documents 200 are larger and easier to read but the margins 220, 225 are also substantially larger and do not necessarily provide additional advantages to the viewer. In fact, in the case that the axis of documents 210 is displayed on a small display like a mobile phone, the expansion of the margins 220, 225 take some valuable viewing area from the display, which is mostly undesirable.


An embodiment of the present invention provides an improved way to magnify/reduce a layout of documents 200 (on an axis 215 or not) by setting the size of the margins 220, 225 such that they do not change in size with the documents 200 (or other objects).


An alternate embodiment suggests that the margins 220, 225 do not magnify and/or reduce proportionally with the magnification and/or reduction of the documents 200. For instance, the margins 220, 225 can remain fixed for a change in size of the documents when the documents are of significant sizes. However, when the documents are rather small and are further magnified, the impact of the magnified margins 220, 225 is more significant on the viewing area of the display. This is why one embodiment of the invention provides a non-linear relation between the magnification of the documents and the change in size of the margins 220, 225. The margins 220, 225 can remain fixed over a portion of the possible documents size variation while it changes over a different portion of the documents size variation. Preferably, as mentioned above, it might be desirable to change the proportions of the margins 220, 225 when the documents are very small.


Referring to FIGS. 6 through 8, an axis of documents 210 is shown in three different sizes. However, this time, the margins 220, 225 remain fixed and are not magnified with the documents 200. It can be appreciated from FIGS. 6 through 8 the emphasis is put on the documents 200 while the margins 220, 225 remains as proper separations to help distinguish and graphically distance the documents 200 from one another. In this embodiment, the fact that the margins 220, 225 are not magnified does not harm the perception of separation between the documents 200 and the margins 220, 225 do not take unnecessary space on the useful viewing area of a display (the display is not illustrated on the Figures, it is assumed that a skilled reader in the art of document management systems and interfaces thereof is going to understand that the embodiments depicted in the Figures are intended to represent displayed objects on a display or a portion thereof without being confused).



FIG. 9 and FIG. 10 illustrate two adjacent schematic axes of documents 210.1 and 210.2. Their respective relative positions are material for a user to obtain a consistent and comprehensive graphical representation thereof to ensure that a viewer would not be confused when they are both magnified. Now, lets take document 200.6 in axis of documents 210.1 in relation with document 200.4 in axis of documents 210.2 illustrated by line 230. It is clear that line 230 falls between document 200.4 and 200.5 of axis of documents 210.2 in FIG. 9. After a magnification doubling the sizes of documents from FIG. 9 to FIG. 10, while keeping margins thereof unmagnified, the same line 230, now identified as line 230.2 is drawn on document 200.4 from axis of documents 210.2. The difference between the position of line 230 before magnification, illustrated with dotted line 230.1 in FIG. 10, and the position of line 230, from FIG. 9, after magnification, now line 230.2, is illustrated with arrows 235.


This means that there is a relative longitudinal displacement between documents 200 disposed along two (or more) axes of documents 210 if the margins are not magnified linearly with the documents. In other words, if the complete image is not magnified as a whole, a misalignment is created between juxtaposed axes of documents 210 as it is exemplified in FIG. 9 and FIG. 10. A mathematical proof of this misalignment reads as follow in Equation 1: The two axes of documents 210.1, 210.2 are disposed next to each other with an intervening space of an arbitrary size. The first axis of documents 210.1 has five documents 200, when taken from the left, to line 230. A document 200 has, for example, a size of one (1) unit and intervening margins of a size of one (1) unit, the sum is 10, as seen in equation 1a). The second axis of document have four documents of a size of two (2) units and intervening margins of a size of one (1) unit, the sum is 10 as seen in equation 1b). These two axes of documents are well aligned. After magnification of the axes of documents 210 by a factor of two (2), as it is illustrated in FIG. 10, the sum of the first axis of documents 210.1 is 15, as depicted in equation 1c), and the second axis of documents has a sum of 16, as identified in equation 1d). The sums of the two magnified axes of documents 210.1 and 210.2 illustrated in FIG. 10 are not equal anymore as it was with the Equations 1a) and 1b) referring to FIG. 9. The difference in the sum is the discrepancy generated by the magnification. The two equations 1c) and 1d) should be equals if the magnification of juxtaposed axes of documents 210 could keep the same alignment.

a) 5·1+5=10
b) 4·1.5+4=10
c) 5·2+5=15
d) 4·3+4=16  Equation 1


A similar example of misalignment is illustrated in FIG. 11 and FIG. 12 using axes of documents 210 and documents 200. Again, the difference between the position of line 230 before magnification, illustrated with dotted line 230.1, and the position of line 230 after a factor two (2) magnification with fixed margins, now line 230.2, is illustrated with arrow 235. One can appreciate that the difference is substantial. Another line 240 associated to document 200.2 from axis of documents 210.1 is illustrated in FIG. 11 and FIG. 12 to show that even after a short length on an axis of documents 210 (in the present situation after only two documents) there is a substantial difference between two juxtaposed axes of documents 210.1 and 210.2.


Moving now to FIG. 13 that is virtually similar to FIG. 4 where the width 250 and the height 255 of each document 200 are magnified while the margins 220, 225 are kept constant, or fixed, and therefore not magnified. In contrast, as illustrated in FIG. 14, an embodiment of the present invention assembles the margins 220, 225 with their respective width 250 and the height 255 of the document 200 prior to magnification. It has to be noted that the horizontal margin 225 between two adjacent documents 200 is divided in two (2) and equally shared on both sides to form the margins on the adjacent sides of the two (2) adjacent documents 200. This way, both the document 200 and its surrounding margins 220, 225 are magnified together. The magnification and/or reduction therefore considers each document 200 and its surrounding margins 220, 225 as being a single object 260 as illustrated in FIG. 15. All the juxtaposed objects 260 on a plurality of axes of documents can be magnified/reduced without creating a difference as previously explained in respect with FIG. 11 and FIG. 12.



FIG. 16 illustrates two juxtaposed axes of documents 210.1 and 210.2 having a plurality of objects thereon. All the margins (visible in FIG. 13 with reference numbers 220, 225) are comprised in each object 260 with their respective document 200 (visible in FIG. 13). A magnification of the collection of objects 260 from FIG. 16 by a factor of two (2) gives the rendering of FIG. 17 where no discrepancies in object 260 respective positions have been created. Again, a magnification of the collection of objects 260 from FIG. 16 by a factor of four (4) gives the rendering of FIG. 18 where no differences in object 260 positions have occurred.


Once the magnification of the objects 260 has been made, the margins 220, 225 are extracted from the magnified object 260 as it is explained below. The general equation exemplified in Equation 2 stipulates that c is the total document size, m1 is the size of one of the two margins and m2 is the size of the other margin. Therefore, the size, in one direction, of an object is defined by Equation 2 that can also take into consideration intentional variation in margins sizes.

f(c)=c−m1−m2  Equation 2


The illustrative object 260 used in the present embodiment illustrated in FIG. 19 has a square or a rectangular shape. The general equation exemplified in Equation 2 can be adapted to calculate the size of the space within the margins in a magnified and/or reduced document—or any graphical object—260, by a factor α, in the x direction and in the y direction, as exemplified in Equation 3. The space within the margin, delimited by arrows sx and sy in FIG. 19, is going to be referred as an internal space. The total document size, delimited by arrows cx and cy, is going to be referred as an object container.

sx=f(αcx)=αcx−mx1−mx2
sy=fcy)=αcy−my1−my2  Equation 3



FIG. 19 shows a document that has a different aspect ratio than the object container 260 discussed above. Let us consider the magnified and/or reduced document dimension o′x and o′y we are trying to calculate. For maximum use of the internal space, the object 200 is magnified vertically. The same magnification ratio is used horizontally to keep the image aspect ratio. The next equations could be reversed to accommodate a portrait-oriented document. The calculation of the final width of the magnified/reduced document is then calculated by keeping the ratio from the original dimension of the document ox and oy.












o
x



o
y



=


o
x


o
y










o
x


=



o
x



o
y




o
y







Equation





4







In Equation 5, A “padding” area, px1 and px2, is used to accommodate document 200 shape variations without effecting a “general” transformation process into an object 260. The formulas used to consider the padding area are expressed in Equation 4 that follows.

sy=o′y=αcy−my1−my2
sx=o′x+px1+px2=αcx−mx1−mx2
px1+px2=αcx−mx1−mx2−o′x  Equation 4


We are trying to extract the new size of the padding px1 and px2. We first need to eliminate o′x by using the result of Equation 3, we get:

















p

x





1


+

p

x





2



=


α






c
x


-

m

x





1


-

m

x





2


-



o
x



o
y




o
y












p

x





1


+

p

x





2



=


α






c
x


-

m

x





1


-

m

x





2


-



o
x



(


α






c
y


-

m

y





1


-

m

y





2



)



o
y









Equation





5







In the preferred embodiment of this invention, we center the document in the object space. To do that, we define the two padding as equals in Equation 6.











p
x

=


p

x





1


=

p

x





2











2






p
x


=


α






c
x


-

m

x





1


-

m

x





2


-



o
x



(


α






c
y


-

m

y





1


-

m

y





2



)



o
y











p
x

=


1
2



(


α






c
x


-

m

x





1


-

m

x





2


-



o
x



(


α






c
y


-

m

y





1


-

m

y





2



)



o
y



)







Equation





6







An alternate embodiment is that the left padding has a share β and the right padding has share 1−β, where 0≦β≦1. This gives the result shown in Equation 7. This will keep proportions between left and right padding during magnification.
















p

x





1


=

β


(


α






c
x


-

m

x





1


-

m

x





2


-



o
x



(


α






c
y


-

m

y





1


-

m

y





2



)



o
y



)










p

x





2


=


(

1
-
β

)



(


α






c
x


-

m

x





1


-

m

x





2


-



o
x



(


α






c
y


-

m

y





1


-

m

y





2



)



o
y



)








Equation





7








FIG. 19 and Equations 4-7 show how to calculate the width and height of a document that is maximized vertically in its space. This depends on image aspect ratio and the space available for content in the container ratio so these formulas can easily be changed to fit horizontally a document image. As a consequence of having arbitrary size of borders in the object container, one should be aware that after magnification or reduction, the available space within the container image aspect ratio may not be the same and the document image may prefer to fits on the opposite axis to maximise its display surface.


Equations 4-7 could be easily reproduced in order to maximize an object horizontally, as seen in Equation 8.
















o
y


=



o
y



o
x




o
x














s
x

=


o
x


=


α






c
x


-

m

x





1


-

m

x





2
















p

y





1


=

β


(


α






c
y


-

m

y





1


-

m

y





2


-



o
y



(


α






c
x


-

m

x





1


-

m

x





2



)



o
x



)










p

y





2


=


(

1
-
β

)



(


α






c
y


-

m

y





1


-

m

y





2


-



o
y



(


α






c
x


-

m

x





1


-

m

x





2



)



o
x



)








Equation





8








FIG. 20 illustrates two axes of objects 210.1 and 210.2 with appended header 265. FIG. 21 illustrates objects that are a magnification of objects from FIG. 20 by a factor of two (2) and FIG. 22 illustrates objects that are a magnification of objects from FIG. 20 by a factor of four (4). It can be appreciated that there is no longitudinal relative discrepancy between axis of objects 210.1 and axis of objects 210.2 despite the magnification. However, in the present embodiment illustrated in FIGS. 20-22, the header 265, intervening space 270 between the header 265 and its adjacent axis of objects 210.1 and inter-axis space 275 have respective fixed thicknesses.


Moving now to FIG. 23 through FIG. 25 illustrating an alternate embodiment to the embodiment illustrated in FIG. 20 through FIG. 22. In the embodiment of FIG. 25 through FIG. 25, the intervening space 270 between the header 265 and its adjacent axis of objects 210.1 and the inter-axis space 275 are absent to maximize the useful display area and also to simplify the rendering of the axes of objects 210.


The linear expansion 280 an axis of objects 210.1, 210.2 or a group of axes of objects as shown in FIG. 26 is a resultant of the magnification process. The visual rendering of the linear expansion of the axes of objects 210 can be directed by applying expansion anchors 290 to the group of axes of objects 210. The expansion anchors 290 of the present embodiment draw a vertical axis 295 at which the expansion of the axes of objects 210 remains fix and from which they can expands from both sides 300, 305. In the present situation the expansion anchors 290 are disposed on the extreme left side of the axes of objects 210 and expansion 280 only happens toward the right side 300. The effect of expansion toward the right 300 where the axes of objects 210 remain fixed along the vertical axis 295 defined between the two expansion anchors 290 can be appreciated from FIG. 26 and FIG. 27 illustrating a magnification by a factor of two (2) and FIG. 28 that illustrates a magnification of objects in FIG. 26 by a factor of four (4).


Still on FIG. 26 through FIG. 28 one can appreciate that a document border 310, or an object border in the present example, can either remain with a fixed width 315 or be magnified with the object 320. The fixed width object border can be considered as a part of the margin in the object container illustrated in FIG. 19.



FIG. 29 shows that the expansion anchors 290 and its related vertical axis 295 can be horizontally movable to locate the vertical axis 295 at the desired position. The vertical expansion anchors 290 (now 290.1) and its related vertical axis 295 (now 295.1) are paired with a complementary horizontal expansion anchors 290.2 and a related horizontal axis 295.2 that can be vertically moved to locate the horizontal axis 295.2 at a desired location. The intersection of the vertical axis 290.1 and the horizontal axis 290.2 creates an expansion point 310 bout which expansion/reduction in all directions will occur.


The vertical expansion anchors 290.1 of the embodiment depicted in FIG. 30 can be used without the vertical axis 295.2 (not shown on FIG. 30). Similarly, the horizontal expansion anchors 290.2 can be used without the horizontal axis 295.2 (also not shown on FIG. 30). The vertical expansion anchors 290.1 can discretely be positioned between two objects 260.3 and 260.4 on axis of objects 210.1 (could be made in respect of any other axis). Likewise, the horizontal expansion anchors 290.2 can discretely be positioned between two axes of objects 210.1 and 210.2.


The expansion anchors 290 can alternatively be disposed adjacent to their respective edges 225, 230 of a display 320. This precise location for the expansion anchors 290 is convenient and intuitive for a user. A user could understand that the expansion anchor can be slided along the edge 225, 230 of the display 320 while not taking much space toward the center of the display 320. The vertical axis 290.1, the horizontal axis 290.2 and the expansion point 310. Can selectively be displayed only when the expansion anchors are moved and disappear from the display 320 after a period of time.


Additional embodiments for determining the expansion point 320 are illustrated in FIG. 31. Firstly, an object 260, 335 can be selected to serve as the expansion point from which the expansion will occur. The selected object 335 is illustrated as being selected with a distinctive frame 340. Secondly, the position of a pointer 345 can alternatively be used to serve as the expansion point from which the expansion will occur.



FIG. 32 through FIG. 35 illustrate that the magnification and/or the reduction can be non-isometric (anisometric). That is to say that the magnification can be made only horizontally as depicted in FIG. 33 or be made only vertically as depicted in FIG. 34. The border 310 can remain of a fixed width 315 as illustrated in FIG. 32 through FIG. 35 to remain consistent with the portion of the object 260 that remains unmagnified. Consider αx and αy as magnification factor horizontally and vertically. Equation 9 shows how to calculate the internal space sx and sy, the object dimension ox and oy, and the padding px1 and px2 adapted from Equation 3 through 8. Note that like in Equations 4-8, the document image aspect ratio and the available space within the container image aspect ratio should be considered to determine if the image should be maximized horizontally or vertically.
















s
x

=



α
x



t
x


-

m

x





1


-

m

x





2















s
y

=



α
y



t
y


-

m

y





1


-

m

y





2















o
x


=



o
x



o
y




o
y














s
y

=


o
y


=



α
y







c
y


-

m

y





1


-

m

y





2
















p

x





1


=

β


(



α
x







c
x


-

m

x





1


-

m

x





2


-



o
x



(



α
y







c
y


-

m

y





1


-

m

y





2



)



o
y



)










p

x





2


=


(

1
-
β

)



(




α





x



c
x


-

m

x





1


-

m

x





2


-



o
x



(



α
y







c
y


-

m

y





1


-

m

y





2



)



o
y



)








Equation





9








FIG. 36 depicts various different shapes of objects 200 using in a variety of ways the padding area p within the margins 220, 225.



FIG. 37 shows the same shapes of FIG. 36 magnified. One can appreciate the way margins remains fixed while the shape of object grows to the maximum size within these margins.


As in FIGS. 36-37, the object container and the margin may also use a variety of shapes. The particular formulas are not described here since all shape should be defined differently. Formulas referred above can be adapted by defining a padding margin around the subject shape.


Moving now to FIG. 38 illustrating another embodiment. Two groups of axes of documents 210 are shown. In this case, all documents 260 of each axis 210 have equal sizes. FIG. 39 shows the same two groups, now with the axis of document 210.1.2 reduced. This kind of magnification or reduction may not keep alignment between documents. Somehow, on a display, the position of the view may be kept centered on the magnified or reduced axis of document so the user does not lost its focus on the axis that is being magnified or reduced.


Non-parallel axes of documents may be used in a way described in the United States patent application publication referred to at the beginning of the present patent specification that is incorporated herein by reference. On FIG. 40, the space between the two groups 220 and the height of the headers 265 may be fixed or subject to resizing after magnification or reduction. A readjustment may be made on the space between the two groups 220 in other to prevent post magnification misalignment like shown after a magnification of a factor of two in FIG. 41. This readjustment may be made to keep the original positional aspect on documents 260.1, 260.2 and 260.3.


Another application of the method described in this patent application publication concerns document display systems like word processors, document viewer like a PDF viewer and webpage browsers. FIG. 42 depicts a layout used in a webpage 300. There may be a page margin of size px and py that encapsulate the webpage content 310. The webpage may content different part of text 320 and objects 350 such as images, chart, applet, internal frame, etc. that are presented. The webpage browser may keep margins px and py fixed and maximize space for the content 310. After magnification shown in FIG. 43, the size of the text 320 may be scaled at the same factor than the magnification of webpage content 310. This ratio may also be applied to the space reserved to the object 350. Consider qx and qy, the right and bottom margin of the object 350. These margins can also be considered as fixed and the object 350 could be maximized in the space reserved within the margins by applying the formula described in Equation 3 recursively. One can appreciate in FIGS. 42 and 43 the way the right side of the object 350 is aligned with the text 325 and 326 after magnification. This shows how the object size is magnified to save more space after magnification and gives more to the content that is being shown.


The description and the drawings that are presented above are meant to be illustrative of the present invention. They are not meant to be limiting of the scope of the present invention. Modifications to the embodiments described may be made without departing from the present invention, the scope of which is defined by the following claims:

Claims
  • 1. A method of magnifying an array of information elements having a plurality of sizes on a display, the method comprising: displaying a first plurality of information elements on the display with a first original size thereof, at least some of the plurality of information elements being surrounded by a margin thereof, the first plurality of information elements being juxtaposed in a substantially rectilinear arrangement along a first axis thereof, the information elements being disposed on the first axis on a basis of a common attribute,displaying a second plurality of information elements on the display with a second original size thereof, at least some of the plurality of information elements being surrounded by a margin thereof, the second plurality of information elements being juxtaposed in a substantially rectilinear arrangement along a second axis thereof, the information elements being disposed on the second axis on a basis of a common attribute;modifying the first original size of the first plurality of information elements and the second original size of the second plurality of information elements,modification of the first plurality of information elements and the second original size of the second plurality of information elements comprisingassembling at least a portion of the margin with respective information elements to characterize standardized objects;applying a ratio to modify sizes of the standardized objects; andextracting the margin from the modified standardized object to determine a first modified size of the first plurality of information elements and a second modified size of the second plurality of information elements,wherein the first plurality of information elements and the second plurality of information elements are adapted to remain at a substantially constant relative rectilinear arrangement thereof before modifying the first original size of the first plurality of information elements and the second original size of the second plurality of information elements and after modifying the first original size of the first plurality of information elements and the second original size of the second plurality of information elements,whereby the relative rectilinear arrangement of the first plurality of information elements along the first axis thereof and the rectilinear arrangement of the second plurality of information elements along the second axis thereof remain substantially the same to prevent confusion of the user in regard to the respective axial locations of the displayed information elements.
  • 2. The method of claim 1, wherein the first axis of information elements and the second axis of information elements are disposed parallel to one another.
  • 3. The method of claim 1, wherein the first axis of information elements includes a timeline with time units and time separations thereof, and the second axis of information elements includes a timeline with time units and time separations thereof, the first axis and the second axis share time separations and wherein the time separations remain substantially at same respective locations thereof when collectively modifying the original size of the first plurality of information elements and the original size of the second plurality of information elements.
  • 4. A method for collectively resizing objects having different sizes on a display area of a display, the method comprising: displaying on the display area a first plurality of objects having a common attribute thereof, with intervening margins thereof, in a substantially rectilinear axial arrangement thereof, the first plurality of objects being of a first original size thereof;displaying on the display area a second plurality of objects having a common attribute thereof, with intervening margins thereof, in a substantially rectilinear axial arrangement thereof, the second plurality of objects being of a second original size thereof, the first original size being different than the second original size and the first plurality of objects being concurrently displayed with the second plurality of objects at relative axial positions thereof; anddirectly resizing the first plurality of objects and the second plurality of objects, the resizing of the objects being independent of a size of the display area,wherein a thickness of the margins between two adjacent objects remains substantially constant when the first plurality of objects and the second plurality of objects are resized,wherein the relative axial positions between the axial arrangement of the first plurality of objects and the axial arrangement of the second plurality of objects remains substantially constant when resizing the first plurality of objects and the second plurality of objects,whereby the axial arrangement of the first plurality of objects and the second plurality of objects, before the modification of the original sizes, is substantially similar to the axial arrangement of the first plurality of objects and the second plurality of objects after the modification of the first original size and the second original size to prevent confusion of the user in regard to the respective axial locations of the displayed objects.
  • 5. The method of claim 4, wherein at least some of the objects are user-selectable.
  • 6. The method of claim 4, wherein the first plurality of objects and the second plurality of objects are parallelly displayed.
  • 7. The method of claim 6, wherein the first plurality of objects and the second plurality of objects are juxtaposed to one another.
  • 8. The method of claim 4, wherein the first plurality of objects is arranged along a first axis equidistantly distributing the objects thereof and the second plurality of objects is arranged along a second axis equidistantly distributing the objects thereof.
  • 9. The method of claim 8, wherein at least some of the objects are documents.
  • 10. The method of claim 4, wherein first plurality of objects and the second plurality of objects are disposed along a timeline.
  • 11. The method of claim 4, wherein at least a portion of the margins is being associated with its respective object in a unified object for resizing thereof.
  • 12. The method of claim 4, wherein the margin being disassociated from its respective object after the resizing for determining the modified size of the objects.
  • 13. The method of claim 4, wherein the resizing of the objects is made in respect with an expansion anchor adapted to identify a position about which the objects remain fixed on the display area when resizing the objects and from where expansion and contraction of the objects on the display area are made.
  • 14. The method of claim 13, wherein the expansion anchor is one of a vertical expansion anchor and an horizontal expansion anchor.
  • 15. A non-transitory computer-readable medium having stored thereon computer-readable instructions that, when executed by a processor of a computer system, cause the computer system to perform operations for collectively resizing objects on a display area of a display, the operations comprising: displaying on the display area a first plurality of objects having a common attribute thereof, with intervening margins thereof, in a substantially rectilinear axial arrangement thereof, the first plurality of objects being of a first original size thereof;displaying on the display area a second plurality of objects having a common attribute thereof, with intervening margins thereof, in a substantially rectilinear axial arrangement thereof, the second plurality of objects being of a second original size thereof, the first original size being different than the second original size and the first plurality of objects being concurrently displayed with the second plurality of objects at relative axial positions thereof; anddirectly resizing the first plurality of objects and the second plurality of objects, the resizing of the objects being independent of a size of the display area,wherein a thickness of the margins between two adjacent objects remains substantially constant when the first plurality of objects and the second plurality of objects are resized,wherein the relative axial positions between the axial arrangement of the first plurality of objects and the axial arrangement of the second plurality of objects remains substantially constant when resizing the first plurality of objects and the second plurality of objects,whereby the axial arrangement of the first plurality of objects and the second plurality of objects, before the modification of the original sizes, is substantially similar to the axial arrangement of the first plurality of objects and the second plurality of objects after the modification of the first original size and the second original size to prevent confusion of the user in regard to the respective axial locations of the displayed objects.
  • 16. The non-transitory computer-readable medium of claim 15, wherein at least some of the objects are user-selectable.
  • 17. The non-transitory computer-readable medium of claim 15, wherein the first plurality of objects and the second plurality of objects are juxtaposed to one another.
  • 18. The non-transitory computer-readable medium of claim 15, wherein the first plurality of objects is arranged along a first axis equidistantly distributing the objects thereof and the second plurality of objects is arranged along a second axis equidistantly distributing the objects thereof.
  • 19. The non-transitory computer-readable medium of claim 16, wherein at least some of the objects are documents.
CROSS-REFERENCES

The present invention relates to and claims priority from U.S. Provisional patent application No. 61/438,609, filed on Feb. 1, 2011, entitled ACTIVE AND SELECTED DOCUMENTS ON AXES THEREOF; EXPANDABLE AND COLLAPSIBLE AXES OF DOCUMENTS; NON-HOMOGENEOUS OBJECTS MAGNIFICATION AND REDUCTION, which is incorporated herein by reference.

US Referenced Citations (421)
Number Name Date Kind
4616336 Robertson Oct 1986 A
4653021 Takagi Mar 1987 A
4817036 Millet et al. Mar 1989 A
5115504 Belove May 1992 A
5148154 MacKay Sep 1992 A
5241624 Torres Aug 1993 A
5261087 Mukaino Nov 1993 A
5398074 Duffield Mar 1995 A
5414811 Parulski et al. May 1995 A
5499330 Lucas et al. Mar 1996 A
5524195 Clanton Jun 1996 A
5535063 Lamming Jul 1996 A
5546528 Johnston Aug 1996 A
5581752 Inoue Dec 1996 A
5598519 Narayanan Jan 1997 A
5602596 Claussen Feb 1997 A
5606374 Bertram Feb 1997 A
5621456 Florin Apr 1997 A
5621874 Lucas Apr 1997 A
5623613 Rowe Apr 1997 A
5634064 Warnock May 1997 A
5649182 Reitz Jul 1997 A
5659742 Beattie Aug 1997 A
5663757 Morales Sep 1997 A
5671381 Strasnick Sep 1997 A
5673401 Volk Sep 1997 A
5677708 Mattews Oct 1997 A
5680605 Torres Oct 1997 A
5682511 Sposato Oct 1997 A
5701500 Ikeo Dec 1997 A
5713031 Saito Jan 1998 A
5740815 Alpins Apr 1998 A
5760772 Austin Jun 1998 A
5781188 Amiot Jul 1998 A
5781785 Rowe Jul 1998 A
5794178 Caid Aug 1998 A
5798766 Hayashi et al. Aug 1998 A
5812124 Eick Sep 1998 A
5822751 Gray Oct 1998 A
5832504 Tripathi Nov 1998 A
5838317 Bolnick Nov 1998 A
5838326 Card Nov 1998 A
5847707 Hayashida Dec 1998 A
5850218 Lajoie Dec 1998 A
5878410 Zbikowski Mar 1999 A
5900879 Berry May 1999 A
5903271 Bardon May 1999 A
5905992 Lucas May 1999 A
5920859 Li Jul 1999 A
5926824 Hashimoto Jul 1999 A
5933843 Takai Aug 1999 A
5974391 Hongawa et al. Oct 1999 A
5977974 Hatori et al. Nov 1999 A
5980096 Thalhammer-Reyero Nov 1999 A
5982369 Sciammarella Nov 1999 A
6003034 Thli Dec 1999 A
6005601 Ohkura Dec 1999 A
6006227 Freeman Dec 1999 A
6009442 Chen Dec 1999 A
6012072 Lucas Jan 2000 A
6020930 Legrand Feb 2000 A
6023703 Hill Feb 2000 A
6028600 Rosin Feb 2000 A
6029164 Birrell Feb 2000 A
6037933 Blonstein Mar 2000 A
6038522 Manson et al. Mar 2000 A
6064384 Ho May 2000 A
6067554 Hohensee May 2000 A
6081817 Taguchi Jun 2000 A
6088032 Mackinlay Jul 2000 A
6100887 Bormann et al. Aug 2000 A
6108657 Shoup Aug 2000 A
6111578 Tesler Aug 2000 A
6119120 Miller Sep 2000 A
6149519 Osaki Nov 2000 A
6151059 Schein Nov 2000 A
6151604 Wlaschin Nov 2000 A
6151702 Overturf Nov 2000 A
6163345 Noguchi Dec 2000 A
6175362 Harms Jan 2001 B1
6175845 Smith Jan 2001 B1
6185551 Birrell Feb 2001 B1
6188406 Fong Feb 2001 B1
6189012 Mital Feb 2001 B1
6202068 Kraay Mar 2001 B1
6211873 Moyer Apr 2001 B1
6236994 Swartz May 2001 B1
6237004 Dodson May 2001 B1
6240421 Stolarz May 2001 B1
6243093 Czerwinski Jun 2001 B1
6243724 Mander Jun 2001 B1
6253218 Aoki Jun 2001 B1
6262722 Allison Jul 2001 B1
6266059 Mattews Jul 2001 B1
6266098 Cove Jul 2001 B1
6281898 Nikolovska Aug 2001 B1
6281940 Sciammarella Aug 2001 B1
6289362 Van Der Meer Sep 2001 B1
6295639 Van Der Meer Sep 2001 B1
6308187 Destefano Oct 2001 B1
6310622 Asente Oct 2001 B1
6313851 Matthews Nov 2001 B1
6317761 Landsman et al. Nov 2001 B1
6335742 Takemoto Jan 2002 B1
6337698 Keely Jan 2002 B1
6338044 Cook et al. Jan 2002 B1
6344880 Takahashi Feb 2002 B1
6353831 Gustman Mar 2002 B1
6366299 Lanning Apr 2002 B1
6381362 Deshpande et al. Apr 2002 B1
6388665 Linnett May 2002 B1
6392651 Stradley May 2002 B1
6418556 Bennington Jul 2002 B1
6425129 Sciammarella Jul 2002 B1
6434545 MacLeod et al. Aug 2002 B1
6434598 Gish Aug 2002 B1
6456938 Barnard Sep 2002 B1
6457006 Gruenwald Sep 2002 B1
6457017 Watkins Sep 2002 B2
6463431 Schmitt Oct 2002 B1
6466237 Miyao et al. Oct 2002 B1
6487557 Nagatomo et al. Nov 2002 B1
6491585 Miyamoto Dec 2002 B1
6501469 MacPhail Dec 2002 B1
6507858 Kanerva Jan 2003 B1
6538672 Dobbelaar Mar 2003 B1
6542896 Gruenwald Apr 2003 B1
6553310 Lopke Apr 2003 B1
6556225 MacPhail Apr 2003 B1
6577350 Proehl Jun 2003 B1
6581068 Bensoussan et al. Jun 2003 B1
6587106 Suzuki et al. Jul 2003 B1
6594673 Smith Jul 2003 B1
6598043 Baclawski Jul 2003 B1
6600501 Israel Jul 2003 B1
D478090 Nguyen Aug 2003 S
6604144 Anders Aug 2003 B1
6613100 Miller Sep 2003 B2
6636246 Gallo Oct 2003 B1
6638313 Freeman Oct 2003 B1
6642939 Vallone Nov 2003 B1
6650343 Fujita Nov 2003 B1
6662357 Bowman-Amuah Dec 2003 B1
6668102 Chiba Dec 2003 B2
6671692 Marpe Dec 2003 B1
6671693 Marpe Dec 2003 B1
6671694 Baskins et al. Dec 2003 B2
6675158 Rising Jan 2004 B1
6678671 Petrovic Jan 2004 B1
6678694 Zimmermann Jan 2004 B1
6678891 Wilcox Jan 2004 B1
6684249 Frerichs et al. Jan 2004 B1
6690391 Proehl Feb 2004 B1
6691127 Bauer Feb 2004 B1
6694326 Mayhew Feb 2004 B2
6694335 Hopmann Feb 2004 B1
6694486 Frank Feb 2004 B2
6701318 Fox Mar 2004 B2
6704727 Kravets Mar 2004 B1
6704744 Williamson Mar 2004 B1
6721760 Ono et al. Apr 2004 B1
6725232 Bradley Apr 2004 B2
6725427 Freeman Apr 2004 B2
6735591 Khan May 2004 B2
6738787 Stead May 2004 B2
6744447 Estrada et al. Jun 2004 B2
6744967 Kaminski et al. Jun 2004 B2
6754660 MacPhail Jun 2004 B1
6768999 Prager Jul 2004 B2
6772148 Baclawski Aug 2004 B2
6859803 Dagtas Feb 2005 B2
6862027 Andrews Mar 2005 B2
6865717 Wright et al. Mar 2005 B2
6879946 Rong Apr 2005 B2
6889220 Wolff May 2005 B2
6900807 Liongosari et al. May 2005 B1
6901558 Andreas et al. May 2005 B1
6915254 Heinze Jul 2005 B1
6915489 Gargi Jul 2005 B2
6922699 Schuetze Jul 2005 B2
6925611 SanGiovanni Aug 2005 B2
6927770 Ording et al. Aug 2005 B2
6934916 Webb et al. Aug 2005 B1
6948124 Combs Sep 2005 B2
6961900 Sprague et al. Nov 2005 B1
6965380 Kumata et al. Nov 2005 B1
6973628 Asami Dec 2005 B2
6983227 Thalhammer-Reyero et al. Jan 2006 B1
6985948 Taguchi et al. Jan 2006 B2
6987220 Holcombe Jan 2006 B2
7007034 Hartman Feb 2006 B1
7010744 Torgerson Mar 2006 B1
7019741 Kelly et al. Mar 2006 B2
7020848 Rosenzweig Mar 2006 B2
7055104 Billmaier May 2006 B1
7080394 Istvan Jul 2006 B2
7088859 Yamaguchi Aug 2006 B1
7107531 Billmaier Sep 2006 B2
7107532 Billmaier Sep 2006 B1
7113975 Nakayama Sep 2006 B2
7117199 Frank Oct 2006 B2
7137067 Yanase Nov 2006 B2
7139006 Wittenburg Nov 2006 B2
7149983 Robertson Dec 2006 B1
7155675 Billmaier Dec 2006 B2
7159177 Billmaier Jan 2007 B2
7199809 Lacy Apr 2007 B1
7234114 Kurtz Jun 2007 B2
7266768 Ferlitsch Sep 2007 B2
7289981 Chang Oct 2007 B2
7290698 Poslinski et al. Nov 2007 B2
7293228 Lessing et al. Nov 2007 B1
7302649 Ohnishi Nov 2007 B2
7318196 Crow et al. Jan 2008 B2
7334191 Sivan Feb 2008 B1
7346600 Nakao Mar 2008 B2
7346850 Swartz Mar 2008 B2
7350157 Billmaier Mar 2008 B1
7353461 Davidsson Apr 2008 B2
7380260 Billmaier May 2008 B1
7418674 Robbins Aug 2008 B2
7444598 Horvitz Oct 2008 B2
7447713 Berkheimer Nov 2008 B1
7448950 Matsumoto Nov 2008 B2
7458033 Bacigalupi et al. Nov 2008 B2
7502819 Alonso Mar 2009 B2
D589972 Casagrande et al. Apr 2009 S
7594246 Billmaier Sep 2009 B1
7606819 Audet Oct 2009 B2
7607104 Maeda Oct 2009 B2
7629527 Hiner Dec 2009 B2
7650569 Allen Jan 2010 B1
7661075 Lahdesmaki Feb 2010 B2
7680817 Audet Mar 2010 B2
7681128 Yamamoto Mar 2010 B2
7681149 Lahdesmaki Mar 2010 B2
D614197 Casagrande Apr 2010 S
7703040 Cutrell Apr 2010 B2
7710423 Drucker et al. May 2010 B2
7735102 Billmaier Jun 2010 B1
7757253 Rappaport Jul 2010 B2
7761471 Lee Jul 2010 B1
7765184 Makela Jul 2010 B2
7765195 Miller Jul 2010 B2
7770117 Uy Aug 2010 B1
7788247 Wang Aug 2010 B2
7788592 William Aug 2010 B2
7792328 Albertson et al. Sep 2010 B2
7818378 Buchheit et al. Oct 2010 B2
7822735 Suda Oct 2010 B2
7844074 Moskowitz et al. Nov 2010 B2
7870489 Serita Jan 2011 B2
7899818 Stonehocker Mar 2011 B2
7902741 Iwanaga Mar 2011 B2
7991720 Mander Aug 2011 B2
8001481 Chakra et al. Aug 2011 B2
8010508 Audet Aug 2011 B2
8010892 Audet Aug 2011 B2
8069404 Audet Nov 2011 B2
8078966 Audet Dec 2011 B2
8099680 Kolde Jan 2012 B1
8136030 Audet Mar 2012 B2
8151185 Audet Apr 2012 B2
20010025288 Yanase Sep 2001 A1
20010034766 Morimoto Oct 2001 A1
20010055017 Ording Dec 2001 A1
20020033848 Sclammarello Mar 2002 A1
20020035563 Suda Mar 2002 A1
20020056129 Blackketter May 2002 A1
20020059215 Kotani et al. May 2002 A1
20020070958 Yeo Jun 2002 A1
20020078440 Feinberg Jun 2002 A1
20020087530 Smith Jul 2002 A1
20020096831 Nakayama Jul 2002 A1
20020101458 SanGiovanni Aug 2002 A1
20020152474 Dudkiewicz Oct 2002 A1
20020180795 Wright et al. Dec 2002 A1
20030001898 Bernhardson Jan 2003 A1
20030001901 Crinon et al. Jan 2003 A1
20030037051 Gruenwald Feb 2003 A1
20030046693 Billmaier Mar 2003 A1
20030046694 Istvan Mar 2003 A1
20030046695 Billmaier Mar 2003 A1
20030052900 Card Mar 2003 A1
20030090524 Segerberg May 2003 A1
20030093260 Dagtas May 2003 A1
20030093792 Labeeb May 2003 A1
20030120681 Baclawski Jun 2003 A1
20030120737 Lytle Jun 2003 A1
20030121055 Kaminski et al. Jun 2003 A1
20030128228 Crow et al. Jul 2003 A1
20030132971 Billmaier Jul 2003 A1
20030149939 Hubel Aug 2003 A1
20030163468 Freeman Aug 2003 A1
20030167902 Hiner Sep 2003 A1
20030190950 Matsumoto Oct 2003 A1
20030237047 Borson Dec 2003 A1
20040003398 Donian et al. Jan 2004 A1
20040024738 Yamane Feb 2004 A1
20040054968 Savage Mar 2004 A1
20040064473 Thomas Apr 2004 A1
20040090439 Dillner May 2004 A1
20040111401 Chang Jun 2004 A1
20040125143 Deaton Jul 2004 A1
20040128277 Mander Jul 2004 A1
20040128377 Sadaghiany Jul 2004 A1
20040139143 Canakapalli Jul 2004 A1
20040150657 Wittenburg Aug 2004 A1
20040233238 Lahdesmaki Nov 2004 A1
20040233239 Lahdesmaki Nov 2004 A1
20040263519 Andrews Dec 2004 A1
20050060667 Robins Mar 2005 A1
20050119936 Buchanan et al. Jun 2005 A1
20060013554 Poslinski et al. Jan 2006 A1
20060013555 Poslinski et al. Jan 2006 A1
20060013556 Poslinski et al. Jan 2006 A1
20060013557 Poslinski et al. Jan 2006 A1
20060020966 Poslinski et al. Jan 2006 A1
20060020971 Poslinski et al. Jan 2006 A1
20060045470 Poslinski et al. Mar 2006 A1
20060136466 Weiner Jun 2006 A1
20060209069 Bacigalupi et al. Sep 2006 A1
20060242178 Butterfield Oct 2006 A1
20060248129 Carnes Nov 2006 A1
20060259511 Boerries Nov 2006 A1
20070005576 Cutrell Jan 2007 A1
20070007884 Iwanaga Jan 2007 A1
20070061855 Serita Mar 2007 A1
20070067290 Makela Mar 2007 A1
20070083527 Wadler et al. Apr 2007 A1
20070143803 Lim et al. Jun 2007 A1
20070156654 Ravinarayanan Jul 2007 A1
20070168877 Jain et al. Jul 2007 A1
20070171224 MacPherson Jul 2007 A1
20070204218 Weber Aug 2007 A1
20070214169 Audet Sep 2007 A1
20070216694 Audet Sep 2007 A1
20070220209 Maeda et al. Sep 2007 A1
20070239676 Stonehocker Oct 2007 A1
20070271508 Audet Nov 2007 A1
20080000126 Teza Jan 2008 A1
20080016142 Schneider Jan 2008 A1
20080019371 Anschutz Jan 2008 A1
20080022199 Sako Jan 2008 A1
20080058106 Audet Mar 2008 A1
20080071822 Audet Mar 2008 A1
20080072169 Audet Mar 2008 A1
20080092038 Audet Apr 2008 A1
20080098323 Vallone et al. Apr 2008 A1
20080104534 Park et al. May 2008 A1
20080118219 Chang et al. May 2008 A1
20080133579 Lim Jun 2008 A1
20080134013 Audet Jun 2008 A1
20080134022 Audet Jun 2008 A1
20080141115 Audet Jun 2008 A1
20080243778 Behnen Oct 2008 A1
20080244437 Fischer et al. Oct 2008 A1
20080256473 Chakra et al. Oct 2008 A1
20080256474 Chakra et al. Oct 2008 A1
20080270361 Meyer Oct 2008 A1
20080270928 Chakra et al. Oct 2008 A1
20080295016 Audet Nov 2008 A1
20080299989 King Dec 2008 A1
20080307348 Jones et al. Dec 2008 A1
20090019371 Audet Jan 2009 A1
20090048981 Millan Feb 2009 A1
20090055413 Audet Feb 2009 A1
20090055726 Audet Feb 2009 A1
20090055729 Audet Feb 2009 A1
20090055763 Audet Feb 2009 A1
20090055776 Audet Feb 2009 A1
20090063552 Jones Mar 2009 A1
20090064143 Bhogal et al. Mar 2009 A1
20090070662 Audet Mar 2009 A1
20090070699 Birkill et al. Mar 2009 A1
20090083260 Artom Mar 2009 A1
20090083859 Roth et al. Mar 2009 A1
20090106684 Chakra et al. Apr 2009 A1
20090106685 Care et al. Apr 2009 A1
20090113334 Chakra et al. Apr 2009 A1
20090116817 Kim et al. May 2009 A1
20090150832 Keller et al. Jun 2009 A1
20090164933 Pederson et al. Jun 2009 A1
20090199119 Park et al. Aug 2009 A1
20090228788 Audet Sep 2009 A1
20090235194 Arndt et al. Sep 2009 A1
20090254850 Almeida Oct 2009 A1
20090284658 Cho Nov 2009 A1
20090287693 Audet Nov 2009 A1
20090288006 Audet Nov 2009 A1
20090319933 Zaika et al. Dec 2009 A1
20100057576 Brodersen et al. Mar 2010 A1
20100082427 Burgener Apr 2010 A1
20100082653 Nair Apr 2010 A1
20100083159 Mountain et al. Apr 2010 A1
20100094890 Bokor Apr 2010 A1
20100145976 Higgins Jun 2010 A1
20100150522 Schmehl et al. Jun 2010 A1
20100169823 Audet Jul 2010 A1
20100171861 Ota et al. Jul 2010 A1
20100185509 Higgins Jul 2010 A1
20100313158 Lee et al. Dec 2010 A1
20100313159 Decker et al. Dec 2010 A1
20100318200 Foslien et al. Dec 2010 A1
20100325132 Liu Dec 2010 A1
20100325134 Galfond Dec 2010 A1
20100332512 Shpits Dec 2010 A1
20100333031 Castelli Dec 2010 A1
20110061082 Heo et al. Mar 2011 A1
20110078166 Oliver Mar 2011 A1
20110145745 Hyeon et al. Jun 2011 A1
20110154213 Wheatley et al. Jun 2011 A1
20110246926 Newton Oct 2011 A1
20110307814 Audet Dec 2011 A1
20120159320 Audet Jun 2012 A1
20120198385 Audet Aug 2012 A1
20120198389 Audet Aug 2012 A1
20120249581 Cassistat Oct 2012 A1
20120260204 Audet Oct 2012 A1
20130080880 Cassistat Mar 2013 A1
20130080888 Audet Mar 2013 A1
Foreign Referenced Citations (36)
Number Date Country
07-013971 Jan 1995 JP
07-085080 Mar 1995 JP
08-016612 Jan 1996 JP
09-016809 Jan 1997 JP
09-265480 Oct 1997 JP
09-288659 Nov 1997 JP
10-143414 May 1998 JP
10-149432 Jun 1998 JP
10-275222 Oct 1998 JP
11-120180 Apr 1999 JP
11-195028 Jul 1999 JP
11-212988 Aug 1999 JP
2000-099540 Apr 2000 JP
2000-250942 Sep 2000 JP
2000-293281 Oct 2000 JP
2000-348040 Dec 2000 JP
2001-005822 Jan 2001 JP
2001-092737 Apr 2001 JP
2001-101227 Apr 2001 JP
2001-167288 Jun 2001 JP
2001-243244 Sep 2001 JP
2001-282816 Oct 2001 JP
2001-331514 Nov 2001 JP
2001-337762 Dec 2001 JP
2001-337953 Dec 2001 JP
2002-056411 Feb 2002 JP
WO 0065429 Nov 2000 WO
WO 0122194 Mar 2001 WO
WO 0163378 Aug 2001 WO
WO 0198881 Dec 2001 WO
WO 03001345 Jan 2003 WO
WO 03032199 Apr 2003 WO
WO 2005045756 May 2005 WO
WO 2005083595 Sep 2005 WO
WO 2007095997 Aug 2007 WO
WO 2008030779 Mar 2008 WO
Non-Patent Literature Citations (1)
Entry
The lifestream approach to reorganizing the information world; Nicolas Carriero, Scott Fertig; Eric Freeman and David Gelernter; Apr. 1995; Yale University.
Related Publications (1)
Number Date Country
20120249581 A1 Oct 2012 US
Provisional Applications (1)
Number Date Country
61438609 Feb 2011 US