Non-Immunosuppressive Cyclosporine Analogs for Novel Antifungal Therapies

Information

  • Research Project
  • 8830846
  • ApplicationId
    8830846
  • Core Project Number
    R43AI110099
  • Full Project Number
    1R43AI110099-01A1
  • Serial Number
    110099
  • FOA Number
    PA-14-071
  • Sub Project Id
  • Project Start Date
    12/1/2014 - 10 years ago
  • Project End Date
    5/31/2015 - 9 years ago
  • Program Officer Name
    FRANCESCHI, FRANCOIS J
  • Budget Start Date
    12/1/2014 - 10 years ago
  • Budget End Date
    5/31/2015 - 9 years ago
  • Fiscal Year
    2015
  • Support Year
    01
  • Suffix
    A1
  • Award Notice Date
    12/1/2014 - 10 years ago
Organizations

Non-Immunosuppressive Cyclosporine Analogs for Novel Antifungal Therapies

? DESCRIPTION (provided by applicant): Due to poor outcomes of patients with invasive fungal infections and expensive health care needs of these patients, invasive fungal infections carry exceedingly high human and financial costs. The cost of invasive fungal infections to the healthcare system is conservatively estimated to be $2.6 billion annually in the US alone. Current antifungal agents can have limited clinical efficacy, are occasionally toxic, and are increasingly ineffective due to emerging resistance. Despite this need, no completely novel class of antifungals has been developed in over 10 years. This project seeks to address the need for new therapies by targeting a signal transduction network required for invasive fungi to survive in humans. Calcineurin is a highly conserved protein phosphatase that is important in mediating cell stress responses and necessary for invasive fungal disease. Currently available calcineurin inhibitors cyclosporine A (CsA) and tacrolimus (FK506) are active in vitro against the major invasive fungal pathogens, but they are also immunosuppressive in the host, limiting therapeutic effectiveness. The objective of this Phase I SBIR project is to identify non-immunosuppressive CsA analogs with antifungal activity against clinically relevant fungal species, either active alone or in combination with existing antifungal drugs. The project is enabled by one of the largest known collections of CsA analogs bearing modifications at multiple sites that introduce both chemical and biological diversity. Using that collection, preliminary studies have already defined CsA analogs that have substantially lower or no immunosuppressive action, yet retain effective antifungal activity in vitro against the two most common pathogenic fungi, Candida albicans and Aspergillus fumigatus. This proposal will identify additional CsA analogs with low immunosuppression and high antifungal potency against both species, including clinically-relevant drug resistant strains. Active analogs will be tested against difficult to treat species, such as C. krusei, C. glabrata, and A. terreus, to bette define the spectrum of antifungal activity. Active compounds will also be evaluated for in vitro cytotoxicity and metabolic stability, to identify up to 10 candidates suitable for future testing i animal efficacy models at the outset of Phase II. Additional Phase II studies will include testing against a wider spectrum of clinical isolates, evaluation against biofilms, and chemical optimization for selection of preclinical lead candidate(s) for ultimate clinical evaluation.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R43
  • Administering IC
    AI
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    223992
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:223992\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    SCYNEXIS, INC.
  • Organization Department
  • Organization DUNS
    001073530
  • Organization City
    JERSEY CITY
  • Organization State
    NJ
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    073023978
  • Organization District
    UNITED STATES