The invention relates generally to non-intrusively coupling to shielded power cables. More specifically, the invention relates to coupling to power cables for the purpose of allowing the power cable to act as a data transmission medium.
Transmitting data to end users has become the main focus of many technologies. Data networks provide the backbone necessary to communicate the data from one point to another. Of course, using existing networks, like the telecommunication networks, provides the benefit of not having to run new cables, which can create a great expense. On the other hand, using existing networks requires that the components that help carry the data conform to the requirements of the existing networks.
One particular existing network that recently has been used to carry data is the electrical power system. This system has the advantage of providing an existing connection to every customer premise. The electrical power distribution network includes many various divisions and subdivisions. Generally, the electric power system has three major components: the generation facilities that produce the electric power, the high-voltage transmission network that carries the electric power from each generation facility to distribution points, and the distribution network that delivers the electric power to the consumer. Generally, substations act as the intermediary between the high-voltage transmission network and the medium and low voltage distribution network. The substations typically provide the medium voltage to one or more distribution transformers that feed the customer premises. Distribution transformers may be pole-top transformers located on a telephone or electric pole for overhead distribution systems, or pad-mounted transformers located on the ground for underground distribution systems. Distribution transformers act as distribution points in the electrical power system and provide a point at which voltages are stepped-down from medium voltage levels (e.g., less than 35 kV) to low voltage levels (e.g., from 120 volts to 480 volts) suitable for use by residential and commercial end users.
The medium and low voltage networks of the electrical power system have been used to establish a data network among the end users. In particular, the medium voltage network acts as an interface between centralized data servers and the low voltage network that connect to the end users. In order to obtain the advantages of using this existing network for transmitting data, however, certain constraints inherent with every power distribution system must be overcome. For example, any connections made between the medium and low voltage networks, outside of the usual and protected transformer interfaces, create concern for the safety of individuals and equipment brought about by the possibility of placing medium voltage levels on the low voltage network. Moreover, the difficulty of providing power to the equipment necessary to network the end user with the medium voltage network must be considered.
Therefore, it would be advantageous to a technique for safely and effectively permitting the power distribution system to transmit data.
The invention describes a method and a device, for transporting a signal over a power line. The inventive method includes inducing an alternating current (AC) voltage from the power line, powering a transceiver device with the induced alternating current (AC) voltage, communicating the signal with the transceiver device via the power line. The method further may include transmitting and/or receiving the signal with an end user via the transceiver device. The transceiver device may be a fiber optic-based device that transmits data to the end user over non-metallic fiber optic links. The method may filter the induced AC voltage, and separately filter the signal.
The invention further includes a device for transporting a signal over a power line. The inventive device includes at least one ferrite core located on an outer insulator of the power line. The ferrite core acts to increase an inductance of the power line. The device further includes a transformer device (e.g., a current transformer) located on an outer insulator of the power line. The transformer device induces an AC voltage from the power line. The device further includes a transceiver that receives power from the transformer device, and that receives the signal from a conductor external to the center conductor. The device may further include an enclosure for housing the ferrite core, the transformer device, and the transceiver device. The enclosure may serve to provide a ground potential by attaching to the power line at a predetermined distance from a gap in the outer insulator of the power line. The transceiver may be a fiber optic transceiver that is coupled to the external conductor via the gap in the outer insulator of the power line. The transceiver also may convert the AC power to a direct current (DC) power. The inventive device may include a low-pass filter for filtering the AC power provided by the transformer device, and a high-pass filter for filtering the signal provided via the external conductor. Both the low-pass and high-pass filter functionality may be incorporated within the transceiver device.
Other features of the invention are further apparent from the following detailed description of the embodiments of the invention taken in conjunction with the accompanying drawings, of which:
Power-Based Communication System Overview
As shown in
As shown in
PLID 210 provides an interface for plain old telephone service (POTS), and data through for example a RS-232 port or Ethernet connection. Therefore, an end user may use PLID 210 to communicate data over power line 202, via internal power wiring 208, using telephone 114, facsimile machine 116 and/or computer 118, for example. Although not shown in
The connection between power company 120 and power transformer 102 carries medium voltage levels. This portion of the power system has the least amount of noise and least amount of reflections, and therefore has the greatest potential bandwidth for communications. Of course, the low voltage portion of the system must be accessed to interface with the end users.
As shown in
Each power transformer 303-306 has an associated Power Line Bridge 307-310 (PLB). PLBs 307-310 provide an interface between the medium voltage on the primary side of the transformer with the low voltage on the secondary side of the transformer. PLBs 307-310 communicate with their respective PLIDs (e.g., PLID 210 and PLB 310) located on the low voltage system. PLBs 307-310 employ MV couplers that prevent the medium voltage from passing to the low voltage side of the system via PLB's 307-310, while still allowing communication signals to be transported between the low voltage and medium voltage systems. The medium voltage couplers therefore provide the necessary isolation traditionally provided by power transformers 303-306. The invention is directed at a novel technique for transporting signals between the medium voltage system and the end users.
Prior Art Coupling Techniques
The prior art technique shown in
Graphical line 501 illustrates a capacitive value of 1 pf and a resistive value of 100 ohms. Graphical line 502 illustrates a capacitive value of 1 pf and a resistive value of 1 kiloohm. Graphical line 503 illustrates a capacitive value of 170 pf and a resistive value of 100 ohms. Graphical line 504 illustrates a capacitive value of 100 pf and a resistive value of 1 kiloohm. As will be discussed in greater detail, graphical line 505 illustrates the attenuation for frequencies passed by the techniques of the invention. Graphical line 505 is depicted in
As shown in
Finally, because lightning arrester 102 and the grounding rod 103 are connected directly to high-voltage cable 315, any surge appearing on high-voltage line 315 (e.g., a fault caused by lightning) likely will damage transceiver 105.
Non-Intrusive Coupling
High-voltage cable 315 is shown in FIG. 7. High-voltage cable may be a commercially available distribution cable, for example a 15 kV underground feeder available from Okonite, model Okoguard URO. High-voltage cable 315 has a center conductor 703. Center conductor 703 typically is a stranded aluminum conductor with a rating capable of carrying current at medium voltage levels. Center conductor 703 has one or more insulative covers (not shown). The insulation on center conductor 703 is surrounded by a concentric conductor 704. Concentric conductor 704 typically is found on underground distribution feeders, but also may be found on certain overhead distribution feeders. Concentric conductor 704 typically does not carry high voltage, but acts as a shield to reduce the inductance caused by center conductor 703. Concentric conductor 704 also may act to carry the neutral current back to the power source. Concentric conductor 704 is surrounded by an outer insulating sleeve (not shown). The outer insulating sleeve provides protection and insulative properties to high-voltage cable 315. High-voltage cable 315 is assumed to be AC-terminated at its ends.
In accordance with the invention, high-voltage cable 315 may be modified to facilitate the use of high-voltage cable 315 in carrying desired data signals. In particular, a shield gap 706 has been cut in concentric conductor 704 around the entire periphery of high-voltage cable 315. Shield gap 706 effectively divides concentric conductor 704 into two parts. In addition, a transceiver 707 is in communication with high-voltage cable 315 by a connection to concentric conductor 704. It should be appreciated that transceiver 707 may be a fiber-optic transceiver (as will be discussed further with reference to FIG. 6), capable of receiving and transmitting any type of data signal (e.g., radio frequency signals).
The terms “subscriber side” and “transformer side” will be used throughout to describe the two sides of high-voltage cable 315 relative to shield gap 706. Subscriber side will be used to describe the portion of high-voltage cable 315 to which transceiver 707 is coupled. This is consistent with the fact that the subscriber (i.e., end user) is in communication with transceiver 707. Transformer side will be used to describe the portion of high-voltage cable 315 to which transceiver 707 is not coupled. This is consistent with the fact that the pole-top or pad-mount transformer is coupled to the transformer side of high-voltage cable 315.
The ground connection 107 (along with other ground connections along the length of high-voltage cable 315 is provided at a distance 1 from the subscribe side of shield gap 706. High-voltage cable 315 has an inductance that depends on the distance 1 from ground, as well as other characteristics of high-voltage cable 315 (e.g., diameter and distance from ground plane). Inductance L performs a function similar to the inductance of grounding rod 103 described with reference to FIG. 1. In particular, in order to decrease the attenuation of low-frequency signals by coupling technique, inductance L may be increased. Increasing inductance L may be accomplished by placing additional ferrite cores 708 along the length of high-voltage cable 10. However, a more complete discussion of the placement of the grounding and inductive means is beyond the scope of the invention.
The length distance 1 should not be significantly longer than a quarter-wavelength at the highest frequency in the transmission band, so as to prevent any resonant behavior that may increase transmission attenuation. Because the input reactance of the high-voltage cable 315 is proportional to its characteristic impedance, increasing the impedance as much as practically possible ensures low attenuation at the low end of the frequency band. This is further ensured by using a relatively high ratio of the outer and inner diameters of high-voltage cable 315, as well as by using ferrite cores 708 with high relative permeance (e.g., 8 maxwell/gilbert).
It may be assumed that the respective impedances of subscriber side and the transformer side (i.e., RS and RT, respectively) are matched (i.e., equal), and therefore may be represented by W, the characteristic impedance of high-voltage cable 315. Because of the impedance matching on the subscriber side and transformer side, each side carries half of the signal power. As discussed with reference to
Optimizing the internal resistance of the source (or the load) also may be considered. One the one hand, to ensure maximum power in the load, it is desirable to match the sources internal resistance with the resistance of the line to which it is connected (i.e., 2W). On the other hand, from the point of view of the subscriber side and/or the transformer side, the internal resistance of the source is in series with the other cable. Therefore, the reflection created in the cable by the “matched” value of R will be ½, as described by the following reflection coefficient:
K=(3W−W)/(W+3W)=½ (1)
Because the two of the couplers are intended to be included between the terminations at the two ends of the line, and if the RF attenuation of the cable in the transmission band is low, it may be desirable to adopt a reasonable trade off. By increasing the voltage amplitude of the source VS and lowering its internal resistance R, the reflections can be brought to a more desirable level. For example, when R=W, the reflection coefficient is reduced to ⅓ as follows:
K=(2W−W)/(W+2W)=⅓ (2)
It should be appreciated that the examples provided by equations (1) and (2) are just one possible configuration, and are not meant to be exclusive. In practice, fore example, a value of K may be chosen with consideration of the attenuation provided by the particular characteristics of high-voltage cable 315 so as to keep reflections at an acceptable level.
As shown in
High-voltage cable 315 also has a series of ferrite cores 708 on the outer side of high-voltage cable 315. Using multiple ferrite cores increases the impedance of subscriber side of high-voltage cable 315 with the length l (as discussed with reference to FIG. 7). Also, ferrite cores may increase the equivalent inductance L of the high-voltage cable 315, which has the same effect as increasing the impedance. Ferrite cores 708 also may provide a current transforming function. As shown in
Transformer 902 is coupled to a fiber optic transceiver 903. Fiber optic transceiver 903 may be a transmitter/receiver pair commercially available from Microwave Photonic Systems, part number MP-2320/TX (for the transmitter) and part number MP-2320/RX (for the receiver). Fiber optic transceiver 903 is connected to transformer 902 over lines 908 and 909.
In operation, transformer 902 acts to induce an AC current from the high voltage carried by center conductor 703. The induced alternating current is provided to fiber optic transceiver 903 via lines 908 and 909. In addition to having the transmitter/receiver pair, fiber optic transceiver 903 may have circuitry capable of rectifying the AC voltage provided by transformer 902 to a DC voltage. The DC voltage may be in a range (e.g., 12 volts) capable of powering the transmitter/receiver pair in fiber optic transceiver 903, so as to transmit and receive data to the end user over fiber links 906. Also, fiber optic transceiver 903 may have a filtering device (not shown) coupled to lines 908 and 909 so as to pass the AC current in a desired frequency range (e.g., 60 Hz using a low-pass filter).
The data provided to and received from the end users is carried back to a central server (not shown) from fiber optic transceiver 903 via data links 904 and 905. Data links 904 and 905 are in communication with concentric conductor 704. Because concentric conductor 704 typically is not used to carry high voltage, but acts as an inductive shield for high-voltage cable 315, data may be carried to and from the end user via concentric conductor 704. Also, fiber optic transceiver 903 may have a filtering device (not shown) coupled to lines 904 and 905, so as to pass data signals in a desired frequency range (e.g., signals well above 60 Hz using a high-pass filter), while preventing other signals from passing onto fiber optic transceiver 903 (e.g., 60 Hz power).
The invention was described using a fiber optic-based transceiver. Using a fiber optic transceiver provides the necessary isolation to the end user from the medium or high voltage on center conductor 703, and therefore ensures the safety of people and equipment. However, it should be appreciated that the invention contemplates the user of other types of transceivers, for example, where such isolation is not required.
It is beneficial to use transmission signals that have very little spectral power density at low frequencies, since the transmission network has a zero at DC. Accordingly,
The invention is directed to a method and a device for transporting a signal over a power line. The invention occasionally was described in the context underground distribution systems, but is not so limited to, regardless of any specific description in the drawing or examples set forth herein. For example, the invention may be applied to overhead networks. Also, the invention was described in the context of medium voltage cables, but also includes high voltage cables. It will be understood that the invention is not limited to use of any of the particular components or devices herein. Indeed, this invention can be used in any application that requires the testing of a communications system. Further, the system disclosed in the invention can be used with the method of the invention or a variety of other applications.
While the invention has been particularly shown and described with reference to the embodiments thereof, it will be understood by those skilled in the art that the invention is not limited to the embodiments specifically disclosed herein. Those skilled in the art will appreciate that various changes and adaptations of the invention may be made in the form and details of these embodiments without departing from the true spirit and scope of the invention as defined by the following claims.
This application claims priority under 35 U.S.C. § 119 (e) from provisional application No. 60/224,031, filed Aug. 9, 2000, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1547242 | Strieby | Jul 1925 | A |
2298435 | Tunick | Oct 1942 | A |
2577731 | Berger | Dec 1951 | A |
3369078 | Stradley | Feb 1968 | A |
3445814 | Spalti | May 1969 | A |
3605009 | Enge | Sep 1971 | A |
3641536 | Prosprich | Feb 1972 | A |
3656112 | Paull | Apr 1972 | A |
3696383 | Oishi et al. | Oct 1972 | A |
3702460 | Blose | Nov 1972 | A |
3810096 | Kabat et al. | May 1974 | A |
3846638 | Wetherell | Nov 1974 | A |
3895370 | Valentini | Jul 1975 | A |
3911415 | Whyte | Oct 1975 | A |
3942168 | Whyte | Mar 1976 | A |
3942170 | Whyte | Mar 1976 | A |
3962547 | Pattantyus-Abraham | Jun 1976 | A |
3964048 | Lusk et al. | Jun 1976 | A |
3967264 | Whyte et al. | Jun 1976 | A |
3973087 | Fong | Aug 1976 | A |
3973240 | Fong | Aug 1976 | A |
4004110 | Whyte | Jan 1977 | A |
4004257 | Geissler | Jan 1977 | A |
4012733 | Whyte | Mar 1977 | A |
4016429 | Vercellotti et al. | Apr 1977 | A |
4053876 | Taylor | Oct 1977 | A |
4057793 | Johnson et al. | Nov 1977 | A |
4060735 | Pascucci et al. | Nov 1977 | A |
4070572 | Summerhayes | Jan 1978 | A |
4119948 | Ward et al. | Oct 1978 | A |
4142178 | Whyte et al. | Feb 1979 | A |
4188619 | Perkins | Feb 1980 | A |
4239940 | Dorfman | Dec 1980 | A |
4250489 | Dudash et al. | Feb 1981 | A |
4254402 | Perkins | Mar 1981 | A |
4263549 | Toppeto | Apr 1981 | A |
4268818 | Davis et al. | May 1981 | A |
4323882 | Gajjer | Apr 1982 | A |
4357598 | Melvin, Jr. | Nov 1982 | A |
4359644 | Foord | Nov 1982 | A |
4367522 | Forstbauer et al. | Jan 1983 | A |
4383243 | Krügel et al. | May 1983 | A |
4386436 | Kocher et al. | May 1983 | A |
4408186 | Howell | Oct 1983 | A |
4409542 | Becker et al. | Oct 1983 | A |
4413250 | Porter et al. | Nov 1983 | A |
4419621 | Becker et al. | Dec 1983 | A |
4433284 | Perkins | Feb 1984 | A |
4442492 | Karlsson et al. | Apr 1984 | A |
4457014 | Bloy | Jun 1984 | A |
4468792 | Baker et al. | Aug 1984 | A |
4471399 | Udren | Sep 1984 | A |
4473816 | Perkins | Sep 1984 | A |
4473817 | Perkins | Sep 1984 | A |
4475209 | Udren | Oct 1984 | A |
4479033 | Brown et al. | Oct 1984 | A |
4481501 | Perkins | Nov 1984 | A |
4495386 | Brown et al. | Jan 1985 | A |
4504705 | Pilloud | Mar 1985 | A |
4517548 | Ise et al. | May 1985 | A |
4569045 | Schieble et al. | Feb 1986 | A |
4599598 | Komoda et al. | Jul 1986 | A |
4636771 | Ochs | Jan 1987 | A |
4638298 | Spiro | Jan 1987 | A |
4642607 | Strom et al. | Feb 1987 | A |
4644321 | Kennon | Feb 1987 | A |
4652855 | Weikel | Mar 1987 | A |
4668934 | Shuey | May 1987 | A |
4675648 | Roth et al. | Jun 1987 | A |
4683450 | Max et al. | Jul 1987 | A |
4686382 | Shuey | Aug 1987 | A |
4686641 | Evans | Aug 1987 | A |
4697166 | Warnagiris et al. | Sep 1987 | A |
4701945 | Pedigo | Oct 1987 | A |
4724381 | Crimmins | Feb 1988 | A |
4745391 | Gajjar | May 1988 | A |
4746897 | Shuey | May 1988 | A |
4749992 | Fitzemeyer et al. | Jun 1988 | A |
4766414 | Shuey | Aug 1988 | A |
4772870 | Reyes | Sep 1988 | A |
4785195 | Rochelle et al. | Nov 1988 | A |
4800363 | Braun et al. | Jan 1989 | A |
4835517 | van der Gracht et al. | May 1989 | A |
4890089 | Shuey | Dec 1989 | A |
4903006 | Boomgaard | Feb 1990 | A |
4904996 | Fernandes | Feb 1990 | A |
4912553 | Pal et al. | Mar 1990 | A |
4962496 | Vercellotti et al. | Oct 1990 | A |
4973940 | Sakai et al. | Nov 1990 | A |
4979183 | Cowart | Dec 1990 | A |
5006846 | Granville et al. | Apr 1991 | A |
5066939 | Mansfield, Jr. | Nov 1991 | A |
5068890 | Nilssen | Nov 1991 | A |
5132992 | Yurt et al. | Jul 1992 | A |
5148144 | Sutterlin et al. | Sep 1992 | A |
5151838 | Dockery | Sep 1992 | A |
5185591 | Shuey | Feb 1993 | A |
5191467 | Kapany et al. | Mar 1993 | A |
5210519 | Moore | May 1993 | A |
5257006 | Graham et al. | Oct 1993 | A |
5264823 | Stevens | Nov 1993 | A |
5272462 | Teyssandier et al. | Dec 1993 | A |
5301208 | Rhodes | Apr 1994 | A |
5319634 | Bartholomew et al. | Jun 1994 | A |
5341265 | Westrom et al. | Aug 1994 | A |
5351272 | Abraham | Sep 1994 | A |
5355109 | Yamazaki | Oct 1994 | A |
5359625 | Vander Mey et al. | Oct 1994 | A |
5369356 | Kinney et al. | Nov 1994 | A |
5375141 | Takahashi | Dec 1994 | A |
5387821 | Steciuk et al. | Feb 1995 | A |
5406249 | Pettus | Apr 1995 | A |
5410720 | Osterman | Apr 1995 | A |
5426360 | Maraio et al. | Jun 1995 | A |
5432841 | Rimer | Jul 1995 | A |
5448229 | Lee, Jr. | Sep 1995 | A |
5461629 | Sutterlin et al. | Oct 1995 | A |
5477091 | Fiorina et al. | Dec 1995 | A |
5481249 | Sato | Jan 1996 | A |
5485040 | Sutterlin | Jan 1996 | A |
5497142 | Chaffanjon | Mar 1996 | A |
5498956 | Kinney et al. | Mar 1996 | A |
4749992 | Fitzmeyer et al. | Jun 1996 | A |
5533054 | DeAndrea et al. | Jul 1996 | A |
5537087 | Naito | Jul 1996 | A |
5559377 | Abraham | Sep 1996 | A |
5568185 | Yoshikazu | Oct 1996 | A |
5579221 | Mun | Nov 1996 | A |
5579335 | Sutterlin et al. | Nov 1996 | A |
5592354 | Nocentino, Jr. et al. | Jan 1997 | A |
5592482 | Abraham | Jan 1997 | A |
5598406 | Albrecht et al. | Jan 1997 | A |
5616969 | Morava | Apr 1997 | A |
5625863 | Abraham | Apr 1997 | A |
5630204 | Hylton et al. | May 1997 | A |
5640416 | Chalmers | Jun 1997 | A |
5664002 | Skinner, Sr. | Sep 1997 | A |
5684450 | Brown | Nov 1997 | A |
5691691 | Merwin et al. | Nov 1997 | A |
5694108 | Shuey | Dec 1997 | A |
5705974 | Patel et al. | Jan 1998 | A |
5712614 | Patel et al. | Jan 1998 | A |
5717685 | Abraham | Feb 1998 | A |
5726980 | Rickard | Mar 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5748671 | Sutterlin et al. | May 1998 | A |
5751803 | Shpater | May 1998 | A |
5770996 | Severson et al. | Jun 1998 | A |
5774526 | Propp et al. | Jun 1998 | A |
5777544 | Vander Mey et al. | Jul 1998 | A |
5777545 | Patel et al. | Jul 1998 | A |
5777769 | Coutinho | Jul 1998 | A |
5778116 | Tomich | Jul 1998 | A |
5796607 | Le Van Suu | Aug 1998 | A |
5798913 | Tiesinga et al. | Aug 1998 | A |
5801643 | Williams et al. | Sep 1998 | A |
5802102 | Davidovici | Sep 1998 | A |
5805053 | Patel et al. | Sep 1998 | A |
5818127 | Abraham | Oct 1998 | A |
5818821 | Schurig | Oct 1998 | A |
5828293 | Rickard | Oct 1998 | A |
5835005 | Furukawa et al. | Nov 1998 | A |
5847447 | Rozin et al. | Dec 1998 | A |
5856776 | Armstrong et al. | Jan 1999 | A |
5864284 | Sanderson et al. | Jan 1999 | A |
5870016 | Shrestha | Feb 1999 | A |
5880677 | Lestician | Mar 1999 | A |
5881098 | Tzou | Mar 1999 | A |
5892430 | Wiesman et al. | Apr 1999 | A |
5892758 | Argyroudis | Apr 1999 | A |
5929750 | Brown | Jul 1999 | A |
5933071 | Brown | Aug 1999 | A |
5933073 | Shuey | Aug 1999 | A |
5937003 | Sutterlin et al. | Aug 1999 | A |
5937342 | Kline | Aug 1999 | A |
5949327 | Brown | Sep 1999 | A |
5963585 | Omura et al. | Oct 1999 | A |
5977650 | Rickard et al. | Nov 1999 | A |
5978371 | Mason, Jr. et al. | Nov 1999 | A |
5982276 | Stewart | Nov 1999 | A |
5994998 | Fisher et al. | Nov 1999 | A |
5994999 | Ebersohl | Nov 1999 | A |
6014386 | Abraham | Jan 2000 | A |
6023106 | Abraham | Feb 2000 | A |
6037678 | Rickard | Mar 2000 | A |
6037857 | Behrens et al. | Mar 2000 | A |
6040759 | Sanderson | Mar 2000 | A |
6091932 | Langlais | Jul 2000 | A |
6104707 | Abraham | Aug 2000 | A |
6121765 | Carlson | Sep 2000 | A |
6130896 | Lueker et al. | Oct 2000 | A |
6140911 | Fisher et al. | Oct 2000 | A |
6141634 | Flint et al. | Oct 2000 | A |
6144292 | Brown | Nov 2000 | A |
6151330 | Liberman | Nov 2000 | A |
6151480 | Fischer et al. | Nov 2000 | A |
6154488 | Hunt | Nov 2000 | A |
6157292 | Piercy et al. | Dec 2000 | A |
6172597 | Brown | Jan 2001 | B1 |
6175860 | Gaucher | Jan 2001 | B1 |
6177849 | Barsellotti et al. | Jan 2001 | B1 |
6212658 | Le Van Suu | Apr 2001 | B1 |
6226166 | Gumley et al. | May 2001 | B1 |
6229434 | Knapp et al. | May 2001 | B1 |
6239722 | Colton et al. | May 2001 | B1 |
6243413 | Beukema | Jun 2001 | B1 |
6243571 | Bullock et al. | Jun 2001 | B1 |
6255805 | Papalia et al. | Jul 2001 | B1 |
6255935 | Lehmann et al. | Jul 2001 | B1 |
6282405 | Brown | Aug 2001 | B1 |
6297729 | Abali et al. | Oct 2001 | B1 |
6297730 | Dickinson | Oct 2001 | B1 |
6317031 | Rickard | Nov 2001 | B1 |
6331814 | Albano et al. | Dec 2001 | B1 |
6335672 | Tumlin et al. | Jan 2002 | B1 |
6373376 | Adams et al. | Apr 2002 | B1 |
6396392 | Abraham | May 2002 | B1 |
6404773 | Williams et al. | Jun 2002 | B1 |
6407987 | Abraham | Jun 2002 | B1 |
6414578 | Jitaru | Jul 2002 | B1 |
6425852 | Epstein | Jul 2002 | B1 |
6441723 | Mansfield, Jr. et al. | Aug 2002 | B1 |
6452482 | Cern | Sep 2002 | B1 |
6486747 | DeCramer et al. | Nov 2002 | B1 |
6496104 | Kline | Dec 2002 | B2 |
6504357 | Hemminger et al. | Jan 2003 | B1 |
Number | Date | Country |
---|---|---|
197 28 270 | Jan 1999 | DE |
100 08 602 | Jun 2001 | DE |
0 141 673 | May 1985 | EP |
0 581 351 | Feb 1994 | EP |
0 632 602 | Jan 1995 | EP |
0 470 185 | Nov 1995 | EP |
0 822 721 | Feb 1998 | EP |
0 913 955 | May 1999 | EP |
0 933 883 | Aug 1999 | EP |
0 948 143 | Oct 1999 | EP |
0 959 569 | Nov 1999 | EP |
1 011 235 | Jun 2000 | EP |
1 014 640 | Jun 2000 | EP |
1 043 866 | Oct 2000 | EP |
1 075 091 | Feb 2001 | EP |
0 916 194 | Sep 2001 | EP |
1 011 235 | May 2002 | EP |
1 014 640 | Jul 2002 | EP |
1 021 866 | Oct 2002 | EP |
2 122 920 | Dec 1998 | ES |
2 326 087 | Jul 1976 | FR |
1 548 652 | Jul 1979 | GB |
2 101 857 | Jan 1983 | GB |
2 293 950 | Apr 1996 | GB |
2 315 937 | Feb 1998 | GB |
2 331 683 | May 1999 | GB |
2 335 335 | Sep 1999 | GB |
2 341 776 | Mar 2000 | GB |
2 342 264 | Apr 2000 | GB |
2 347 601 | Sep 2000 | GB |
1276933 | Nov 1989 | JP |
276741 | Jul 1998 | NZ |
8401481 | Apr 1984 | WO |
9013950 | Nov 1990 | WO |
9216920 | Oct 1992 | WO |
9307693 | Apr 1993 | WO |
9529536 | Nov 1995 | WO |
9801905 | Jan 1998 | WO |
9833258 | Jul 1998 | WO |
9833258 | Jul 1998 | WO |
9840980 | Sep 1998 | WO |
9959261 | Nov 1999 | WO |
0016496 | Mar 2000 | WO |
0059076 | Oct 2000 | WO |
0060701 | Oct 2000 | WO |
0060822 | Oct 2000 | WO |
0108321 | Feb 2001 | WO |
0108321 | Feb 2001 | WO |
0143305 | Jun 2001 | WO |
0150625 | Jul 2001 | WO |
0150628 | Jul 2001 | WO |
0150629 | Jul 2001 | WO |
0182497 | Nov 2001 | WO |
02054605 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
60224031 | Aug 2000 | US |