There are several common methods for detecting current in electrical circuits without the need to directly connect to electrical conductors. For these common methods of non-intrusive current detecting devices, typically, a single conductor of the electrical circuit must be isolated and routed through the current detection device.
For a magnetically coupled current detecting device, the installation requires separating the supply conductors so that a single conductor can be routed through a magnetic core, which typically needs to be done either at the source of the electrical power or close to the electrical load. This poses a problem for electrical devices that utilize an integral power cord and are connected directly to a power receptacle.
To be able to detect electrical current in a multi-conductor cable that employs both the supply current, as well as the return current, the present methods of current detection are ineffective, as the magnetic fields effectively cancel each other. For this reason and for other reasons stated below, which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an improved and effective system for detecting the electrical current of a device utilizing a multi-conductor cable.
For these and other reasons, a need exists for the present invention.
The above mentioned shortcoming of electrical current sensing methods are addressed by embodiments of the present invention and will be understood by reading and studying the following specification. The following summary is made by way of example and not by way of limitation. It is merely provided to aid the reader in understanding some of the aspects of the invention.
One or more embodiments of the present invention provide a user with a way to detect the electrical current of a device, without the need to make electrical connections or to separate the power conductors in a multi-conductor cable. Therefore, the user can install the electrical current detection device anywhere along the electrical power cable without disturbing the outer insulating jacket.
One or more embodiments and other examples are described in broad terms in the below paragraphs. Further aspects will become apparent from consideration of the drawings and the description of embodiments of the invention. The present disclosure is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated or described. A person skilled in the art will realize that other embodiments of the invention are possible and that the details of the invention can be modified in a number of respects, all without departing from the inventive concept. This, the drawings, and description are to be regarded as illustrative in nature and not restrictive.
In the following Detailed Description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. In this regard, directional terminology, such as “top,” “bottom,” “front,” “back,” “leading,” “trailing,” etc., is used with reference to the orientation of the Figure(s) being described. Because components of embodiments of the present invention can be positioned in a number of different orientations, the directional terminology is used for purposes of illustration and is in no way limiting. It is to be understood that other embodiments may be utilized, and structural or logical changes may be made without departing from the scope of the present invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
A non-intrusive electrical current detector system, device and method is disclosed. In one or more examples, the system and device provide a user with a way to detect the presence of electrical current in a cable feeding an electrical device, without the need to make electrical connections. In one example, a user can install the non-intrusive electrical current detector anywhere along an electrical power cable that feeds the electrical device. This is a very useful aid in tracking run time of an electrical device. In one application, this type of detector system is used to track run time in a water or wastewater pump system.
Due to the cancellation of electrical current induced magnetic fields because of the opposite direction of the feed current and return current paths, a unique way of sensing the opposing magnetic fields is needed. In order to reliably sense these magnetic fields produced by an electrical current in a multi-conductor cable, the present unique design uses a plurality of magnetic field sensing elements or multiple axes on a single sensing element. Due to the small physical offsets of electrical conductors contained within a cable relative to the position of the multiple magnetic field sensing device, at least one or both of the sensing elements will be closer to one of the current carrying conductors resulting in the presence of a magnetic field. The plurality of magnetic field sensing devices are able to sense the uncanceled magnetic field.
The multiple magnetic field sensing device 110 is in a common housing with the controller 112. In other examples, the multiple magnetic field sensing device 110 is in its own housing, separately located from the controller 112.
The multiple magnetic field sensing device is a multiple axis magnetic field sensing device. In one embodiment, the multiple magnetic field sensor comprises multiple single axis magnetic field sensing devices (e.g., 2 or 3 devices). In other embodiments, the multiple magnetic field sensing device is a 2-axis or 3-axis magnetic field sensing device. In other embodiments, the multiple magnetic field sensing device is made of one or more multiple axis magnetic field sensing devices.
The system further includes a controller 312 (e.g., a micro controller or control system), a numeric or visual display 314 and a power source 316. The multiple axis magnetic field sensing device 310 is positioned near or about power conductors of a multi-conductor power cable 320 feeding an electric device or load 324. In one example, electrical device 324 is powered from power source 326 using multi-conductor cable 320, and multiple magnetic field sensing device 310 is made up of two single axis magnetic field sensing devices. The multiple magnetic field sensing device 310 serves to sense a nearby electrical current by sensing the magnetic field created by the current on either or both of the multiple sensing axes. Controller 312, powered by local power source 316, then takes the signal generated by the magnetic field sensor 310 and decides if a threshold for the presence of an electrical current has been met on either or both of the sensing axes. In one example, the status or history of the status of the device being monitored is then output to the numeric or visual display 314 for a user to observe. In one example, the run time of electrical load 324 is logged using sensor 310 and visual display 314.
In one example, the non-intrusive electrical current detector system 300 provides an output signal to a remotely located device 330. The output signal is representative of the on-time or run time of electrical device 324, and corresponds to the output of multiple magnetic field sensing device 310. In one case, the output signal 332 is transmitted to remote device 330 using a wired communication link indicated as output signal 334. In another case, the output signal is transmitted to remote device 330 via a wireless communication link indicated as output signal 336. For example, the wireless communication link could be a WIFi or Bluetooth connection. The output signal 332 can be communicated to a remote device 330 from controller 312.
The system 400 includes a housing 405. In one example, two single axis magnetic field sensors 410, 411 are positioned on a printed circuit board (PCB) within the housing 405. Housing 405 may also include other devices, such as a power source (e.g., a battery) a display (e.g. to indicate the presence of current in the conductors), and a controller.
The housing 405 includes a longitudinally extending notch 408 that aids in positioning and retaining the housing 405 over the multi-conductor cable 402, such that the magnetic field sensors 410, 411 are near or in close proximity to the cable 402.
As illustrated in
In one embodiment, the magnetic field sensing device or magnetic field sensor includes a multiple axis Hall effect sensor. In another example, a multiple axis magneto-resistive device may be used to sense the magnetic field of the electrical current in the cable 402. In other examples, multiple, individual magnetic field sensing devices may be used to sense the presence of electrical current. Other types of magnetometers may also be used to sense the magnetic field of the electrical current.
The display may be an integrally mounted LED display. Alternatively, the non-intrusive electrical current detector may use a remotely located display. Also, a separate device may be used for displaying the monitored and historic data.
The power source provides electrical power to the non-intrusive electrical current detector system. In one or more embodiments, the power source is a battery, solar cell, or energy harvesting device.
A controller is capable of storing and displaying the count of power cycles of the device being monitored. In one embodiment, the controller can send monitored and historic data via a wired connection or wirelessly to a remote location to be displayed and/or manipulated as illustrated in
In one example, the monitored device is an electrical motor driven water pump or wastewater pump, where the non-intrusive electrical current detector displays the totalized volume of water pumped, based on the flow rate of the pump and the amount of time the pump has been running (pump run time).
Stored data can also be manipulated to show the totalized power used by an electrical device based upon the history of the time the device was energized and the power required by the device. The stored data can be used to indicate a critical lifecycle of a device being monitored.
The invention provides a unique and simple way for a person to install the non-intrusive electrical current detector. The non-intrusive electrical current sensor is installed on a cable that supplies power to the device to be monitored, so the electrical current used by the device to be monitored passes through the non-intrusive electrical current sensor. It is no longer necessary to separate the conductors contained in the cable in order to measure the presence of current in the cable conductors. Installers of the non-intrusive electrical current detector, disclosed, simply attach the device to the cable that is used to power the device to be monitored. There is no need to make any kind of mechanical type electrical connection or separate the individual conductors of the power cable.
It is to be understood that the features of the various exemplary embodiments described herein may be combined with each other, unless specifically noted otherwise.
Although specific examples have been illustrated and described herein, a variety of alternate and/or equivalent implementations may be substituted for the specific examples shown and described without departing from the scope of the present disclosure. This application is intended to cover any adaptations or variations of the specific examples discussed herein. Therefore, it is intended that this disclosure be limited only by the claims and the equivalents thereof
The present application is a non-provisional application of U.S. Provisional Patent Application Ser. No. 63/270,774, filed Oct. 22, 2021, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63270774 | Oct 2021 | US |