The present invention relates to eye glasses used to substantially continuously measure characteristics of a user's eye.
Diabetes remains one of the most serious and under-treated diseases facing the worldwide healthcare system. Diabetes is a chronic disease where the body fails to maintain normal levels of glucose in the bloodstream. It is now the fifth leading cause of death from disease in the U.S. today and accounts for about 15% of the entire healthcare budget. People with diabetes are classified into two groups: Type 1 (formerly known as “juvenile onset” or “insulin dependent” diabetes, that are required to take insulin to maintain life) and Type 2 (formerly known as “adult onset” or “non-insulin dependent,” that may require insulin but may sometimes be treated by diet and oral hypoglycemic drugs). In both cases, without dedicated and regular blood glucose measurement, all patients face the possibility of the complications of diabetes that include cardiovascular disease, kidney failure, blindness, amputation of limbs and premature death.
The number of cases of diabetes in the U.S. has jumped 40% in the last decade. This high rate of growth is believed to be due to a combination of genetic and lifestyle origins that appear to be a long-term trend, including obesity and poor diet. The American Diabetes Association (ADA) and others estimate that about 17 million Americans and over 150 million people worldwide have diabetes, and it is estimated that up to 40% of these people are currently undiagnosed [American Diabetes Association, “Facts & Figures”].
Diabetes must be “controlled” in order to delay the onset of the disease complications. Therefore, it is essential for people with diabetes to measure their blood glucose levels several times per day in an attempt to keep their glucose levels within the normal range (80 to 126 mg/dl). These glucose measurements are used to determine the amount of insulin or alternative treatments necessary to bring the glucose level to within target limits. Self-Monitoring of Blood Glucose (SMBG) is an ongoing process repeated multiple times per day for the rest of the patient's lifetime.
All currently FDA approved invasive or “less-invasive” (blood taken from the arm or other non-fingertip site) glucose monitoring products currently on the market require the drawing of blood in order to make a quantitative measurement of blood glucose. The ongoing and frequent measurement requirements (1 to possibly 10 times per day) presents all diabetic patients with pain, skin trauma, inconvenience, and infection risk resulting in a general reluctance to frequently perform the critical measurements necessary for selecting the appropriate insulin dose or other therapy.
These current product drawbacks have led to a poor rate of patient compliance. Among Type 1 diabetics, 39% measure their glucose levels less than once per day and 21% do not monitor their glucose at all. Among Type 2 diabetics who take insulin, only 26% monitor at least once per day and 47% do not monitor at all. Over 75% of non-insulin-taking Type 2 diabetics never monitor their glucose levels [Roper Starch Worldwide Survey]. Of 1,186 diabetics surveyed, 91% showed interest in a non-invasive glucose monitor [www.childrenwithdiabetes.com]. As such, there is both a tremendous interest and clinical need for a non-invasive glucose sensor.
The present invention seeks to replace the currently used blood glucose measurement methods, devices and instruments, including invasive measures and the use of glucose test strips, with an optical non-invasive instrument.
Various methods have been developed related to non-invasive glucose sensing using a dermal testing site such as the finger or earlobe. These methods primarily employ instruments which measure blood glucose concentration by generating and measuring light only in the near-infrared radiation spectrum. For example, U.S. Pat. No. 4,882,492 (the '492 patent), expressly incorporated by reference herein, is directed to an instrument which transmits near-infrared radiation through a sample to be tested on the skin surface of a human. In the '492 patent, the near-infrared radiation that passes through the sample is split into two beams, wherein one beam is directed through a negative correlation filter and the second through a neutral density filter. The differential light intensity measured through the filters of the two light beams is proportional to glucose concentration according to the '492 patent.
U.S. Pat. No. 5,086,229 (the '229 patent), expressly incorporated by reference herein, is directed to an instrument which generates near-infrared radiation within the spectrum of about 600 to about 1100 nanometers. According to the '229 patent, a person places their finger in between the generated near-infrared radiation source and a detector, which correlates the blood glucose concentration based on the detected near-infrared radiation. Similarly, U.S. Pat. No. 5,321,265 (the '265 patent), expressly incorporated by reference herein, also measures the blood glucose level using both near-infrared radiation and the fingertip as a testing site. The detectors disclosed in the '265 patent further comprise silicon photocells and broad bandpass filters.
U.S. Pat. No. 5,361,758 (the '758 patent), expressly incorporated by reference herein, is directed to an instrument which measures near-infrared radiation that is either transmitted through or is reflected from the finger or earlobe of a human. In the '758 patent, the transmitted or reflected light is separated by a grating or prism, and the near-infrared radiation is detected and correlated with blood-glucose concentration. This instrument of the '758 patent also comprises an additional timing and control program wherein the device takes measurements specifically in between heartbeats and can also adjust for temperature.
U.S. Pat. No. 5,910,109 (the '109 patent), expressly incorporated by reference herein, is also directed to an instrument for measuring blood glucose concentration using near-infrared radiation and the earlobe as the testing site. The instrument of the '109 patent comprises four light sources of a very specific near-infrared emission spectrum, and four detectors having specific near-infrared detection spectra corresponding to the wavelength of the light sources. The signals detected by the four distinct detectors are averaged, and these averages are analyzed to determine blood glucose concentration according to the '109 patent.
The technique of using near-infrared radiation, wherein the near-infrared radiation is transmitted through or reflected from a dermal testing site and monitored for measuring glucose in vivo, is known to be inaccurate. The glucose concentration of interest is in the blood or the interstitial fluid, not on the surface of the dermis. Therefore these methods must penetrate down into the layers beneath the top layers of dermis. There are a number of substances in the dermis that can interfere with the near-infrared glucose signal. Additionally, there is a wide variation in the human dermis, both between individuals and within a given individual. Moreover, glucose simply lacks a satisfactory distinguishable “fingerprint” in the near-infrared radiation spectrum. Because near-infrared radiation is not sufficiently adsorbed by glucose and because of the level of tissue interferences found in the dermis, this technique is substantially less desirable for the accurate measurement of blood-glucose concentrations.
U.S. Pat. No. 6,362,144 (the '144 patent), expressly incorporated by reference herein, discloses using the fingertip as a testing site, however, the described instrument uses attenuated total reflection (ATR) infrared spectroscopy. According to the '144 patent, a selected skin surface, preferably the finger, is contacted with an ATR plate while ideally maintaining the pressure of contact. In the '144 patent, the skin is then irradiated with a mid-infrared beam, wherein the infrared radiation is detected and quantified to measure blood glucose levels. This technique is not ideal, however, if the surface of tissue from which the measurement is taken is very dense in the wavelength region of interest or is not amenable to direct contact with the ATR plate, such as an eye, conjunctiva, nose, mouth, or other orifice, cavity or piercing tract.
The minimal depth of peripheral capillaries in epithelial tissues is typically about 40 microns. Again, there are physical characteristics as well as a number of substances present in the skin that can interfere with the desired glucose-specific signal. While useful in the laboratory, both the near-infrared transmission methods and the ATR method mentioned above are not practical, or may not be adequate for use in monitoring blood glucose concentration in patients.
Methods have also been developed related to non-invasive glucose sensing using the eye as a testing site. For example, in both U.S. Pat. Nos. 3,958,560 (the '560 patent) and 4,014,321 (the '321 patent), both expressly incorporated by reference herein, a device utilizing the optical rotation of polarized light is described. In the '560 and the '321 patents, the light source and light detector are incorporated into a contact lens which is placed in contact with the surface of the eye whereby the eye is scanned using a dual source of polarized radiation, each source transmitting in a different absorption spectrum at one side of the cornea or aqueous humor. The optical rotation of the radiation that passes through the cornea correlates with the glucose concentration in the cornea according to the '560 and '321 patents. While this method would be termed, “non-invasive” because the withdrawal of blood is not required, it may still cause significant discomfort or distort vision of the user because of the need to place the sensor directly in contact with the eye.
U.S. Pat. No. 5,009,230 (the '230 patent), expressly incorporated by reference herein, uses a polarized light beam of near-infrared radiation within the range of 940 to 1000 nm. In the '230 patent, the amount of rotation imparted by glucose present in the bloodstream of the eye on the polarized light beam is measured to determine glucose concentration. Again, the accuracy is limited because glucose simply lacks a sufficiently distinguishable “fingerprint” in this near-infrared radiation spectrum.
Both U.S. Pat. No. 5,209,231 (the '231 patent), and International Publication No. WO 92/07511 (the '511 application), both expressly incorporated by reference herein, similarly disclose the use of polarized light, which is initially split by a beam splitter into a reference beam and a detector beam, and then transmitted through a specimen, preferably the aqueous humor of the eye. The amount of phase shift as compared between the transmitted reference and detector beams are correlated to determine glucose concentration in the '231 patent and '511 application. U.S. Pat. No. 5,535,743 (the '743 patent), expressly incorporated by reference herein, measures diffusely reflected light provided by the surface of the iris as opposed to the aqueous humor of the eye. According to the '743 patent, the measurement of optical absorption is possible whereas measurement of the optical rotation through the aqueous humor is not possible. In the '743 patent, the intensity of the diffusely reflected light, however, may be analyzed to obtain useful information on the optical properties of the aqueous humor, including blood-glucose concentration.
U.S. Pat. No. 5,687,721 (the '721 patent), expressly incorporated by reference herein, also discloses a method of measuring blood-glucose concentration by generating both a measurement and reference polarized light beam, and comparing the beams to determine the angle of rotation, which is attributable to the blood-glucose concentration. The preferable testing site disclosed, however, is the finger or other suitable appendage according to the '721 patent. The '721 patent further discloses and requires the use of a monochromatic laser and/or semi-conductor as a light source.
U.S. Pat. No. 5,788,632 (the '632 patent), expressly incorporated by reference herein, discloses a non-invasive instrument for determining blood-glucose concentration by transmitting a first beam of light through a first polarizer and a first retarder, then directing the light through the sample to be measured, transmitting the light through a second polarizer or retarder, and lastly detecting the light from the second detector. The rotation of measured polarized light is correlated to the blood-glucose concentration of the sample measured according to the '632 patent.
U.S. Pat. No. 5,433,197 (the '197 patent), expressly incorporated by reference herein, discloses a non-invasive instrument for determining blood glucose concentration using a broad-band of near-infrared radiation which illuminates the eye in such a manner that the energy passes through the aqueous humor in the anterior chamber of the eye and is then reflected from the iris. The reflected energy then passes back through the aqueous humor and the cornea and is collected for spectral analysis. According to the '197 patent, the electrical signals representative of the reflected energy are analyzed by univariate and/or multivariate signal processing techniques to correct for any errors in the glucose determination. Again, the accuracy of the instrument in the '197 patent is limited because glucose simply lacks a sufficiently distinguishable “fingerprint” in this near-infrared radiation spectrum.
Instruments and methods of using the body's naturally emitted radiation to measure blood-glucose concentration using the human body, and in particular, the tympanic membrane as a testing site have also been disclosed. U.S. Pat. Nos. 4,790,324; 4,797,840; 4,932,789; 5,024,533; 5,167,235; 5,169,235; and 5,178,464, expressly incorporated by reference herein, describe various designs, stabilization techniques and calibration techniques for tympanic non-contact thermometers. In addition, U.S. Pat. No. 5,666,956 (the '956 patent), expressly incorporated by reference herein, discloses an instrument which measures electromagnetic radiation from the tympanic membrane and computes monochromatic emissivity using Plank's law by measuring the radiation intensity, spectral distribution, and blackbody temperature. According to the '956 patent, the resultant monochromatic emissivity is variable depending on the spectral characteristics of the site measured, namely the blood-glucose concentration measured from the tympanic membrane. It should be noted, however, that the '956 patent equates skin surfaces of the body to a “gray-body” rather than a black-body with respect to its monochromatic emissivity. Therefore, according to the '956 patent, the accuracy of such skin surface-based methods utilizing natural black-body emitted radiation is not useful for analyte measurements, as compared to a method of subsurface analysis utilizing natural black-body radiation emitted from the tympanic membrane.
The human body naturally emits from its surfaces infrared radiation whose spectrum, or radiation signature, is modified by the presence, absence or concentration of analytes in the body tissues. The eye is particularly well suited as a testing site to detect this infrared radiation. For example, certain analytes, such as glucose, exhibit a minimal time delay in glucose concentration changes between the eye and the blood, and the eye provides a body surface with few interferences [Cameron et al., (3)2 D
Another major problem that diabetics face is the perceived stigma of being diabetic. Diabetics feel like they are different not just because of their condition, but also because of the additional procedures and equipment (e.g., blood glucose level measurement devices, insulin delivery devices) they use that other non-diabetic individuals do not use. Because diabetics, especially younger diabetics, do not want to feel different, they will avoid glucose monitoring and insulin delivery (to the detriment of their health), or are discouraged about their condition and treatment options. Thus, a need also exists for a non-invasive glucose measurement device that reduces any perceived stigma of being diabetic.
Therefore, what is needed is a system and method that overcomes these significant problems found in the systems and methods described above.
Accordingly, an aspect of the present invention involves non-invasive analyte measurement glasses and method of use that substantially continuously interrogates the eye(s) of a user with an infrared signal and determine the user's glucose level. The glasses look similar to other glasses (i.e., regular optical glasses and/or sunglasses) so observers would not know that the user is monitoring his/her glucose level, eliminating any perceived stigma of being diabetic. The glasses also noninvasively monitor glucose level from the eye, eliminating the need to draw blood, and the associated pain, skin trauma, inconvenience, and infection risk. Because the glasses are donned by the user during waking hours, the user's glucose level is substantially continuously monitored. If the user's glucose level goes outside a normal range (e.g., 80 to 126 mg/dL), the user is immediately notified so that the proper amount of insulin or alternative treatments necessary to bring the glucose level to within target limits is administered. Thus, the non-invasive analyte measurement glasses and method of use are immediately responsive to a user's glucose level going outside a normal range, allowing the user to immediately administer the proper amount of insulin or alternative treatments necessary to bring the glucose level to within target limits, preventing possible complications of high blood sugar levels better than blood glucose monitoring devices of the past.
Another aspect of the invention involves a method of using a non-invasive analyte reading device to substantially continuously measure the presence, absence, or concentration of one or more analytes in a tissue of a subject. The method includes wearing the non-invasive analyte reading device constantly or for at least the duration of the desired measurement period; and using the non-invasive analyte reading device to non-invasively measure the presence, absence, or concentration of one or more analytes in a tissue of a subject substantially continuously.
An additional aspect of the invention involves a non-invasive analyte reading device for non-invasively measuring the presence, absence, or concentration of one or more analytes in a tissue of a subject substantially continuously. The non-invasive analyte reading device includes a wearable device configured to be worn by the subject constantly, or for at least the duration of the desired measurement period, and includes a non-invasive analyte reader to non-invasively measure the presence, absence, or concentration of one or more analytes in a tissue of a subject substantially continuously.
A further aspect of the invention involves a method of screening individuals for diabetes using a non-invasive analyte measurement device. The method includes preparing a user for the diabetes screening; using a non-invasive analyte measurement device for measuring glucose levels from the user's eye by interrogating the eye(s) of the user with an electromagnetic signal and determining the user's glucose level based on a detected reflected infrared signal from the user's eye; determining if the user's glucose level is outside a normal range (e.g., 80 to 126 mg/dL); and, in an implementation of the above aspect of the invention where the diabetes screening process is a preliminary diabetes screening process, referring the user to a diabetes medical professional if the user's glucose level is outside a normal range.
A still further aspect of the invention involves a method of using a non-invasive analyte reading device to screen a subject for the presence, absence, or concentration of one or more analytes in a tissue of the subject. The method involves preparing the subject for screening the subject for the presence, absence, or concentration of one or more analytes in a tissue of the subject; using a non-invasive analyte reading device with the subject to non-invasively measure the presence, absence, or concentration of one or more analytes in the tissue of the subject; determining whether the measured presence, absence, or concentration of one or more analytes conforms with a predetermined standard or reference range for the presence, absence, or concentration of one or more analytes; and performing further action if the measured presence, absence, or concentration of one or more analytes does not conform with a predetermined standard or reference range for the presence, absence, or concentration of one or more analytes.
Other objectives, features and advantages of the present invention will become apparent from the following detailed description. The detailed description and the specific examples, although indicating specific embodiments of the invention, are provided by way of illustration only. Accordingly, the present invention also includes those various changes and modifications within the spirit and scope of the invention that may become apparent to those skilled in the art from this detailed description.
It is understood that the present invention is not limited to the particular methodologies, protocols, instruments, and systems, etc., described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a mid-infrared filter” is a reference to one or more filters and includes equivalents thereof known to those skilled in the art, and so forth. Further, for example, a reference to an instrument/monitor/reader for non-invasively measuring the presence, absence, or concentration of one or more analytes in an ocular element of a subject is a reference to the instrument/monitor/reader and includes devices (i.e., combination devices) that may integrate the instrument/monitor with one or more additional mechanisms. For example, but not by way of limitation, the instrument/monitor/reader may be integrated with a wireless communication device to wirelessly transmit/receive information and/or integrated with a pair of non-invasive analyte measurement glasses for substantially continuously interrogating the eye(s) of a user with an electromagnetic signal to determine the user's analyte (e.g., glucose) level.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, devices, and materials are described, although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention. All references cited herein are incorporated by reference herein in their entirety.
Definitions
Analyte: As used herein describes any particular substance or chemical constituent to be measured. Analyte may also include any substance in the tissue of a subject, in a biological fluid (for example, blood, interstitial fluid, cerebrospinal fluid, lymph fluid or urine), or is present in air that was in contact with or exhaled by a subject, which demonstrates an infrared radiation signature. Analyte may also include any substance which is foreign to or not normally present in the body of the subject. Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the devices and methods described herein is glucose. However, other analytes are contemplated as well, including, but not limited to, metabolic compounds or substances, carbohydrates such as sugars including glucose, proteins, glycated proteins, fructosamine, hemoglobin A1c, peptides, amino acids, fats, fatty acids, triglycerides, polysaccharides, alcohols including ethanol, toxins, hormones, vitamins, bacteria-related substances, fungus-related substances, virus-related substances, parasite-related substances, pharmaceutical or non-pharmaceutical compounds, substances, pro-drugs or drugs, and any precursor, metabolite, degradation product or surrogate marker of any of the foregoing. Other analytes are contemplated as well, including, but not limited, to acarboxyprothrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-reactive protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1-hydroxycholic acid; cortisol; creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d-penicillamine; de-ethylchloroquine; dehydroepiandrosterone sulfate; nucleic acids (deoxyribonucleic acids and ribonucleic acids including native and variant sequences related to acetylator polymorphism, alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, Down's syndrome, Duchenne/Becker muscular dystrophy, glucose-6-phosphate dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic neuropathy, MCAD, PKU, Plasmodium vivax, sexual differentiation, 21-hydroxylase); 21-deoxycortisol; desbutylhalofantrine; dihydropteridine reductase; diptheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free-human chorionic gonadotropin; free erythrocyte porphyrin; free thyroxine (FT4); free tri-iodothyronine (FT3); fumarylacetoacetase; galactose/gal-1-phosphate; galactose-1-phosphate uridyltransferase; gentamicin; glucose-6-phosphate dehydrogenase; glutathione; glutathione perioxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variants; hexosaminidase A; human erythrocyte carbonic anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase; immunoreactive trypsin; lactate; lead; lipoproteins ((a), B/A-1,); lysozyme; mefloquine; netilmicin; phenobarbitone; phenytoin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine nucleoside phosphorylase; quinine; reverse tri-iodothyronine (rT3); selenium; serum pancreatic lipase; sissomicin; somatomedin C; specific antibodies (adenovirus, anti-nuclear antibody, anti-zeta antibody, arbovirus, Aujeszky's disease virus, dengue virus, Dracunculus medinensis, Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter pylori, hepatitis B virus, herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania donovani, leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae, Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, poliovirus, Pseudomonas aeruginosa, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular stomatis virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-1); neurotransmitters (such as glutamate, GABA, dopamine, serotonin), opioid neurotransmitters (such as endorphins, and dynorphins), neurokinins (such as substance P); succinylacetone; sulfadoxine; theophylline; thyrotropin (TSH); thyroxine (T4); thyroxine-binding globulin; trace elements; transferrin; UDP-galactose-4-epimerase; urea; prokaryotic and eukaryotic cell-surface antigens; peptidoglycans; lipopolysaccharide; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. Salts naturally occurring in blood or interstitial fluids can also constitute analytes in certain embodiments. The analyte can be naturally present in the biological fluid, for example, a metabolic product, an antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or pharmaceutical composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants (barbiturates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); tricyclic antidepressants, benzodiazepines, acetaminophen (paracetamol, APAP), aspirin, methadone, hallucinogens (phencyclidine, lysergic acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine, Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of fentanyl, meperidine, amphetamines, methamphetamines, and phencyclidine, for example, Ecstasy); anabolic steroids; and nicotine. The metabolic products of drugs and pharmaceutical compositions are also contemplated analytes. Analytes such as neurochemicals and other chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5HT), and 5-hydroxyindoleacetic acid (5HIAA).
Biological Sample: As used herein refers to blood, urine, saliva, cerebrospinal fluid, lymph, tissue and other substances extractable from or released by the human body that include one or more analytes therein.
Conjunctiva: As used herein describes the membranous tissue that covers the exposed surface of the eye and the inner surface of the eyelids.
Electromagnetic Radiation: As used herein refers to any radiation energy, either generated from any source or naturally emitted, in the electromagnetic spectrum, namely, radiation energy having a frequency within the range of approximately 1023 hertz to 0 hertz and a wavelength within the range of approximately 10−13 centimeter to infinity and including, in order of decreasing frequency, cosmic-ray photons, gamma rays, x-rays, ultraviolet radiation, visible light, infrared radiation, microwaves, and radio waves.
Far-Infrared Radiation: As used herein refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 50.00 to about 1000.00 microns.
Flooding: As used herein refers to broadly applying relatively widely diffused or spread-out rays of light onto a surface.
Focused: As used herein means mostly parallel rays of light that are caused to converge on a specific predetermined point.
Infrared Radiation: As used herein refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 0.78 to about 1000.00 microns.
Mid-Infrared Radiation: As used herein refers to any radiation, either generated from any source or naturally emitted, having wavelengths of about 2.50 microns to about 50.00 microns.
Mid-Infrared Radiation Detector: As used herein refers to any detector or sensor capable of registering infrared radiation. Examples of suitable infrared radiation detectors include, but are not limited to, a thermocouple, a thermistor, a microbolometer, and a liquid nitrogen cooled Mercury Cadmium Telluride (MCT) detector. The combined detected infrared radiation may be correlated with wavelengths corresponding to analyte concentrations using means such as the Fourier transform to produce high resolution spectra.
Near-Infrared Radiation: As used herein refers to any radiation, either generated or naturally emitted, having wavelengths of about 0.78 to about 2.50 microns.
Non-invasive: As used herein refers to a method or instrument that does not break a subject's skin nor any other tissue or surface barriers.
Ocular element: As used herein refers to an element of or relating to the eye such as, but not limited to the eyelid(s), the epithelial cells, the aqueous humor, the vitreous humor, various layers of the cornea, iris, various layers of the sclera, conjunctiva, interstitial fluid in the conjunctiva, tears, the tear layer, and blood vessels.
Surface: As used herein refers to any part of a subject's body that may be exposed to the external environment, including, but not limited to, skin, the eye, ear, mouth, nose or any other orifice, body cavities, piercing tracts or other surface whether naturally occurring or artificial such as a surgically created surface.
Tears: The fluid secreted by the lacrimal gland and diffused between the eye and eyelids to moisten the parts and facilitate their motion.
Tear layer: The layer of fluid on the eye created by the tears.
Tissue: As used herein includes any tissue or component of a subject, including, but not limited to, skin, blood, body fluids, the eye, the tear layer of the eye, interstitial fluid, ocular fluid, bone, muscle, epithelium, fat, hair, fascia, organs, cartilage, tendons, ligaments, and any mucous membrane.
Non-Invasive Glucose Measurement
In one aspect of the present invention, electromagnetic radiation, and more preferably, infrared radiation, and even more preferably, mid-infrared radiation, is flooded onto the conjunctiva using a radiation source. This flooded mid-infrared radiation is reflected from the conjunctiva to a detector. The reflected radiation is detected by a mid-infrared detection instrument placed before the conjunctiva. The radiation signature of the reflected mid-infrared radiation is affected by the presence, absence, or concentration of one or more analytes. This provides a non-invasive method employing an instrument of the present invention to measure the presence, absence, or concentration of one or more analytes, such as, but not limited to, glucose, from a tissue such as, but not limited to, the conjunctiva of a subject (
Although the conjunctiva is described as the ocular element for determining the presence, absence, or concentration of one or more analytes, in alternative embodiments, one or more other and/or additional ocular elements may be evaluated for determining the presence, absence, or concentration of one or more analytes. For example, ocular elements such as, but not by way of limitation, the epithelial cells, the aqueous humor, the vitreous humor, various layers of the cornea, iris, various layers of the sclera, conjunctiva, interstitial fluid in the conjunctiva, tears, the tear layer, and blood vessels may be evaluated by the devices and methods of the present invention.
Although the emitted and reflected electromagnetic radiation is frequently described herein as mid-infrared radiation, in alternative embodiments, other types of electromagnetic radiation are emitted and/or reflected.
There is substantial evidence that fluctuations in blood glucose levels are well correlated with glucose levels in the aqueous humor of the eye [Steffes, 1(2) D
Measuring Infrared Radiation
When electromagnetic radiation is passed through a substance, it can either be absorbed or transmitted, depending upon its frequency and the structure of the molecules it encounters. Electromagnetic radiation is energy and hence when a molecule absorbs radiation it gains energy as it undergoes a quantum transition from one energy state (Einitial) to another (Efinal). The frequency of the absorbed radiation is related to the energy of the transition by Planck's law: Efinal−Einitial=E=hn=hc/l. Thus, if a transition exists which is related to the frequency of the incident radiation by Planck's constant, then the radiation can be absorbed. Conversely, if the frequency does not satisfy the Planck expression, then the radiation will be transmitted. A plot of the frequency of the incident radiation vs. some measure of the percent radiation absorbed by the sample is the radiation signature of the compound. The absorption of some amount of the radiation that is applied to a substance, or body surface containing substances, that absorbs radiation may result in a measurable decrease in the amount of radiation energy that actually passes through, or is affected by, the radiation absorbing substances. Such a decrease in the amount of radiation that passes through, or is affected by, the radiation absorbing substances may provide a measurable signal that may be utilized to measure the presence, absence or the concentration of one or more analytes.
One embodiment of the present invention provides a method for non-invasively measuring the blood-analyte concentration in a subject comprising the steps of generating electromagnetic radiation which is flooded onto the conjunctiva of the subject, detecting the reflected electromagnetic radiation, correlating the spectral characteristics of the detected electromagnetic radiation with a radiation signature that corresponds to the analyte concentration, and analyzing the detected electromagnetic radiation signature to give an analyte concentration measurement. In another embodiment, the method includes a filtering step before detection, by filtering the electromagnetic radiation reflected back from a body surface so that only wavelengths of about 8.00 microns to about 11.00 pass through the filter. In this embodiment, the filtering step may be accomplished using absorption filters, interference filters, monochromators, linear or circular variable filters, prisms or any other functional equivalent known in the art. The detecting step may be accomplished using any electromagnetic radiation sensor such as a thermocouple, thermistor, microbolometer, liquid nitrogen cooled MCT, or any other functional equivalent known in the art. In alternative embodiments, the detector includes specular reflection optics for surface reflective measurements, and diffuse reflection optics for deeper ocular element reflective measurements. Correlating the spectral characteristics of the detected electromagnetic radiation may comprise the use of a microprocessor to correlate the detected electromagnetic radiation signature with a radiation signature of an analyte. If the analyte being measured is glucose, then the radiation signature generated may be within the wavelength range within about 8.0 to about 11.0 microns. The analyzing step further comprises a microprocessor using algorithms based on Plank's law to correlate the absorption spectrum with a glucose concentration. In another embodiment of the present invention, the analyzing step may comprise the use of a transform, such as, but not limited to, Kramers-Kronig transform or other classical transform known in the art, to transform the detected radiation signature to the analyte spectra for correlation.
In another embodiment of the present invention, where glucose is the analyte of interest, an instrument comprising an electromagnetic radiation detector and a display may be held up to the conjunctiva of a subject. The electromagnetic radiation from the conjunctiva may optionally be filtered so that only wavelengths of about 8.0 microns to about 11.0 microns reach the electromagnetic radiation detector. The radiation signature of the electromagnetic radiation detected by the detector may then be correlated with a radiation signature that corresponds to a glucose concentration. The radiation signature may then be analyzed to give an accurate glucose concentration measurement. The measured glucose concentration may be displayed.
In another embodiment of the present invention, an instrument comprising an electromagnetic radiation generator, an electromagnetic radiation detector and a display may be held up to the conjunctiva of a subject. Electromagnetic radiation may be generated by the instrument and used for flooding or alternatively aiming a focused beam onto the conjunctiva of a subject. The electromagnetic radiation generated may be broad band or narrow band radiation, and may also be filtered to allow only desired wavelengths of radiation to reach the body surface. Any analyte, such as glucose, present in any constituent of the conjunctiva may absorb some of the generated radiation. The electromagnetic radiation that is not absorbed may be reflected back to the instrument. The reflected electromagnetic radiation may optionally be filtered so that only wavelengths of about 8.0 microns to about 11.0 microns reach electromagnetic radiation detector. The radiation signature of the electromagnetic radiation detected by the detector may then be correlated with a radiation signature that corresponds to analyte, such as glucose, concentration. The radiation signature may be analyzed to give an analyte, such as glucose, concentration. The measured analyte, such as glucose, concentration may be displayed by the instrument.
Infrared radiation may be generated by the instrument of the present invention. Such infrared radiation may be generated by any suitable generator including, but not limited to, a narrow band wavelength generator or a broadband wavelength generator. In one embodiment of the present invention, an instrument may comprise a mid-infrared radiation generator. In another embodiment of the present invention, the instrument comprises a light source with one or more filters to restrict the wavelengths of the light reaching the conjunctiva. The mid-infrared generator may further comprise a heating element. The heating element of this embodiment may be a Nernst glower (zirconium oxide/yttrium oxides), a NiChrome wire (nickel-chromium wire), and a Globar (silicon-carbon rod), narrow band or broad band light emitting diodes, or any other functional equivalent known in the art. Mid-infrared radiation has wavelengths in the range of about 2.5 microns to about 50.0 microns. Analytes typically have a characteristic “fingerprint” or “signature” or “radiation signature” with respect to their mid-infrared radiation spectrum that results from the analyte's affect on the mid-infrared radiation, such as absorption. Glucose in particular has a distinct spectral “fingerprint” or “signature” in the mid-infrared radiation spectrum, at wavelengths between about 8.0 microns to about 11.0 microns. This radiation signature of glucose may be readily generated for a wide variety of glucose concentrations utilizing a wide variety of body surfaces, such as the conjunctiva, for taking radiation signature data. In one embodiment of the present invention, an instrument may comprise a mid-infrared radiation filter, for filtering out all mid-infrared radiation not within a range of wavelengths from about 8.0 to about 11.0 microns. In other embodiments the filter is selected to filter out all mid-infrared radiation other than other than the wavelengths that provide the radiation signature of the desired analyte, such as glucose. Filtering mid-infrared radiation may be accomplished using absorption filters, interference filters, monochromators, linear or circular variable filters, prisms or any other functional equivalent known in the art.
In one embodiment of the present invention, the instrument may also comprise a mid-infrared radiation detector for detecting mid-infrared radiation. The mid-infrared radiation detector can measure the naturally emitted or reflected mid-infrared radiation in any form, including in the form of heat energy. Detecting the naturally emitted or reflected mid-infrared radiation may be accomplished using thermocouples, thermistors, microbolometers, liquid nitrogen cooled MCT, or any other functional equivalent known in the art. Both thermocouples and thermistors are well known in the art and are commercially available. For example, thermocouples are commonly used temperature sensors because they are relatively inexpensive, interchangeable, have standard connectors and can measure a wide range of temperatures [http://www.picotech.com]. In addition, Thermometrics' product portfolio comprises a wide range of thermistors (thermally sensitive resistors) which have, according to type, a negative (NTC), or positive (PTC) resistance/temperature coefficient [http://www.thermometrics.com].
The instrument of the present invention may also comprise a microprocessor. The microprocessor of this embodiment correlates the detected electromagnetic radiation with a radiation signature whose spectral characteristics provide information to the microprocessor about the analyte concentration being measured. The microprocessor of this embodiment analyzes the resultant radiation signature using suitable algorithms such as those based on Plank's law, to translate the radiation signature into an accurate analyte concentration measurement in the sample being measured.
It is readily apparent to those skilled in the art that a broad band light source may be modulated by an interferometer, such as in Fourier transform spectroscopy, or by an electro-optical or moving mask, as in Hadamard transform spectroscopy, to encode wavelength information in the time domain. A discrete wavelength band may be selected and scanned in center wavelength using, for example, an acousto-optical tuned filter. The instrument of the present invention having a radiation source, comprises one or more electromagnetic radiation sources, which provide radiation at many wavelengths, and also comprises one or more electromagnetic radiation detectors. The instrument may further comprise one or more filter or wavelength selector to remove, distinguish or select radiation of a desired wavelength, before or after detection by the detector.
Clinical Applications
It may be required for diabetes patients and subjects at risk for diabetes to measure their blood glucose levels regularly in an attempt to keep their blood glucose levels within an acceptable range, and to make an accurate recordation of blood-glucose levels for both personal and medical records. In one aspect of the present invention, the instrument may also comprise an alphanumeric display for displaying the measured blood glucose concentration. The alphanumeric display of this embodiment may comprise a visual display and an audio display. The visual display may be a liquid crystal display (LCD), a plasma display panel (PDP), and a field emission display (FED) or any other functional equivalent known in the art. An audio display, capable of transmitting alphanumeric data and converting this alphanumeric data to an audio display, may be provided with an audio source comprising recorded audio clips, speech synthesizers and voice emulation algorithms or any other functional equivalent known in the art.
Self-Monitoring of Blood Glucose (SMBG) is an ongoing process repeated multiple times per day for the rest of the diabetic patient's lifetime. Accurate recordation of these measurements are crucial for diagnostic and monitoring purposes. A facile storage and access system for this data is also contemplated in this invention. In one aspect of the present invention, an instrument for non-invasively measuring blood-glucose concentration further comprises a microprocessor and a memory which is operatively linked to the microprocessor for storing the blood glucose measurements. The instrument of this embodiment further comprises a communications interface adapted to transmit data from the instrument to a computer system. In this embodiment the communications interface selected may include, for example, serial, parallel, universal serial bus (USB), FireWire, Ethernet, fiber optic, co-axial, twisted pair cables, a wireless communication link (e.g., WLAN, WIFI, Bluetooth, infrared) or any other functional equivalent known in the art.
In addition to storing blood-glucose measurement data within an instrument, the present invention includes a computer system for downloading and storing these measurement data to facilitate storage and access to this information. The present invention further contemplates a computer processor, a memory which is operatively linked to the computer processor, a communications interface adapted to receive and send data within the computer processor, and a computer program stored in the memory which executes in the computer processor. The computer program of this embodiment further comprises a database, wherein data received by the database may be sorted into predetermined fields, and the database may be capable of graphical representations of the downloaded analyte concentrations. The graphical representations of this embodiment may include, but are not limited to, column, line, bar, pie, XY scatter, area, radar, and surface representations.
The computer system contemplated by the present invention should be accessible to a remote access user via an analogous communications interface for use as a diagnostic, research, or other medically related tool. Physicians, for example, could logon to the computer system via their analogous communications interface and upload a patient's blood-glucose measurements over any period of time. This information could provide a physician with an accurate record to use as a patient monitoring or diagnostic tool such as, for example, adjusting medication levels or recommending dietary changes. Other remote access users contemplated may include research institutes, clinical trial centers, specialists, nurses, hospice service providers, insurance carriers, and any other health care provider.
The present invention has demonstrated that glucose can be non-invasively measured using a mid-infrared signal from an ocular element. Studies have been performed in a variety of systems, in vitro studies using glucose solutions in a gelatin matrix, and human studies including a diabetic human volunteer with varying blood glucose concentrations.
All studies, including the human studies, clearly demonstrate the dose-response of blood glucose concentrations using mid-infrared measurement techniques compared to standard SMBG monitoring test strips.
The following examples are provided to describe and illustrate the present invention. As such, they should not be construed to limit the scope of the invention. Those in the art will well appreciate that many other embodiments also fall within the scope of the invention, as it is described hereinabove and in the claims.
Instrumentation
The instrument used for the mid-infrared measurements was the SOC 400 portable FTIR. The SOC 400 portable FTIR is based on an interferometer and was originally designed for the U.S. Army to detect battlefield gases. This instrument has been modified to allow measurements on in vitro models using glucose solutions in a gelatin matrix and also on human eyes. These modifications have included the installation of a filter to allow only energy in the 7 to 13 micron region to be measured and also the modification of the faceplate to permit easier placement of the instrument for human studies.
In Vitro Studies
Studies were performed to demonstrate that solutions with varying concentrations of glucose would give a mid-infrared dose-response. Hydrophilic polyethylene membranes from Millipore Corporation were saturated with glucose solutions with concentrations at 2000 mg/dl and lower. The series of curves generated in this experiment are shown in
Ketamine Anesthetized Rabbit Studies
As noted in the scientific literature (Cameron et al., D
The data from the rabbit study measuring glucose concentration from an ocular element yielded the results with a regression coefficient (R squared) of 0.86, shown in
Human Studies
Several studies were performed with non-diabetic and diabetic human volunteers. Prior to performing these studies it was confirmed that the infrared radiation being used poses no health hazard.
Several experiments with a diabetic volunteer were performed. The subject was asked to adjust his food intake and insulin administration in order to have his glucose levels move from approximately 100 to 300 mg/dl over a three to four hour timeframe. During the study, the patient took duplicate fingerstick glucose measurements and was scanned with the SOC 400 approximately every five minutes. Prior to collecting the infrared scan, the instrument operator aligned the SOC 400 with the subjects' eye to attempt to collect the strongest signal being reflected off of the eye.
In one study performed on the patient using the SOC 400 measuring off of the surface of the patient's eyeball, the following correlation was observed, as shown in
Human Study Using the SOC 400
A glucose tracking study was performed using the diffuse detector for the SOC 400. A glucose tracking study was performed with a diabetic volunteer and the results shown in
One aspect of the present invention relates to a method of downloading and storing a subject's measured analyte concentrations (
With reference to
Although the glasses 600 will be described below in conjunction with substantially continuously interrogating the conjunctiva of the eye(s) of a user with an electromagnetic signal to determine the user's glucose level, in one or more alternative embodiments, a device other than glasses are used to substantially continuously interrogate the eye(s) (or other tissue) of a user with an electromagnetic signal to determine the user's analyte level, the analyte is an analyte other than (or in addition to) glucose, the presence, absence, or concentration of an analyte is detected, the electromagnetic radiation is near-infrared, mid-infrared, far-infrared and/or other types of electromagnetic energy, and/or an ocular element other than the conjunctiva is substantially continuously interrogated.
The glasses 600 include optical lenses 610, frame 620, non-invasive analyte reader 630, and one or more input keys 640.
The optical lenses 610 may be any well-known optical glass or plastic lenses. In one or more embodiments of the optical lenses 610, the optical lenses 610 include one or more of prescription lenses, nonprescription lenses, faux lenses, bifocal lenses, sunglass lenses, scratch-resistant coatings, and tints.
The frame 620 carries the optical lenses 610 and the non-invasive analyte reader 630. The frame 620 includes rims 642 surrounding the optical lenses 610, nose pads 644 extending from inner portions of the rims 642 for resting the glasses 600 on the user's nose, and temples 646 extending rearward from the rims and terminating in bends 648, which carry earpieces 649. In use, the glasses 600 are worn by the user in a normal manner, with the frame 620 supported on the user's nose and user's ears, and the glasses 600 retained in position with the bends 648 and earpieces 649 around the user's ears. For continuous interrogation of the eye(s) of a user, the glasses 600 are worn constantly or for at least the duration of the desired measurement period during waking hours (i.e., while the user is awake, not sleeping, not showering, not swimming, etc.) for the user.
The one or more input keys 640 are used to turn on/off the non-invasive analyte reader 630 and/or perform other functions for operating the non-invasive analyte reader 630 or other aspects of the glasses 600. In one implementation, the one or more input keys 640 are actuated by the user to take a single non-invasive analyte reading whenever such a reading is desired by the user. In another implementation, the one or more input keys 640 are actuated by the user to define and set a user-defined range (e.g., 80 to 150 mg/dL, 100 to 200 mg/dL) outside of which results are flagged to the user.
In one or more embodiments of the invention, the non-invasive analyte measurement glasses 600 include a projector that projects analyte concentration and/or other information related to an analyte measurement on, in, or adjacent the optical lenses 610, as shown in
With reference additionally to
With reference additionally to
At step 810, the glasses 600 are donned by the user so that the non-invasive reader 630 is adjacent to, and in front of, the user's eye(s) as shown in
With reference additionally to
In an alternative embodiment, as described above, where naturally emitted electromagnetic radiation from the eye(s) is detected, there is no irradiation step 820.
At step 830, the electromagnetic radiation is measured from the eye(s). As indicated above, in an embodiment of the invention, the reflected electromagnetic radiation is filtered so that only certain, select wavelengths are detected by the electromagnetic radiation detector. The radiation signature of the electromagnetic radiation detected by the detector is then correlated by the non-invasive analyte reader processing unit 690 with a radiation signature (e.g., in memory 700) that corresponds to glucose concentration. The radiation signature is analyzed by the non-invasive analyte reader processing unit 690 to give glucose concentration.
At step 840, the measured glucose concentration is displayed to the user (e.g., via the above-described projection (
At step 850, a determination is made as to whether the user's glucose level is outside a normal range (e.g., 80 to 126 mg/dL) or a user-defined range (e.g., 80 to 150 mg/dL, 100 to 200 mg/dL). If the user's glucose level is outside a normal range or user-defined range, then control passes to step 820, and the user's eye(s) are irradiated with electromagnetic radiation and another measurement is taken. In an alternative embodiment, step 840 occurs after step 850 so that the user is immediately notified or results are flagged if the glucose level moves outside target limits (after one or more measurements are performed) so that the proper amount of insulin or alternative treatments necessary to bring the glucose level to within target limits can be immediately administered. If the user's glucose level is within a normal range or user-defined range, then control passes on to step 860, where a counter or timer is started.
At step 870, a determination is made as to whether the counter/timer is above a predetermined number or interval, for example, 1, 10, 30, and/or 60 seconds. If the counter/timer is not above a predetermined number, then control passes back to step 860, where the counter/timer is continued. If the counter/timer is above a predetermined number, then it is time for another glucose level measurement, so control passes on to step 820, and the user's eye(s) are irradiated with electromagnetic radiation and another measurement is taken. Thus, as used herein, substantially continuously interrogating the eye(s) means an interrogation occurs at any time interval over any time period or duration.
Because the glasses 600 look similar to other eyeglasses (i.e., regular optical eyeglasses and/or sunglasses), observers do not know that the user is monitoring glucose level, eliminating any perceived stigma of being diabetic. The glasses also noninvasively monitor glucose level from the eye, eliminating the need to draw blood, and the associated pain, skin trauma, inconvenience, and infection risk. Because the glasses are worn constantly or for at least the duration of the desired measurement period by the user, the user's glucose level can be substantially continuously monitored. As a result, the user is immediately notified if the glucose level moves outside of target limits so that the proper amount of insulin or alternative treatments necessary to bring the glucose level to within target limits can be immediately administered. Thus, the non-invasive analyte measurement glasses and method of use are immediately responsive to a user's glucose level going outside a normal range or user-defined range. This helps prevent possible complications of high blood sugar levels better than blood glucose monitoring devices of the past.
With reference to
The method 900 of non-invasively screening for diabetes using the non-invasive analyte measurement device will now be described.
At step 910, the candidate for screening prepares for the diabetes screening.
For example, if a fasting plasma glucose screening (FPG) is performed, the candidate prepares for the screening by not consuming food or beverage other than water for at least eight (8) hours prior to the screening.
If an oral glucose tolerance test (OGTT) is performed, the candidate prepares for the screening by not consuming food or beverage other than water for at least eight (8) hours prior to the screening. The glucose level is measured prior to administering a glucose load (e.g., the equivalent of 75-g or 100-g anyhydrous glucose dissolved in water). Then, the candidate's glucose level is measured one or more times at predetermined time intervals after the load is administered (e.g., 1 hour, 2 hours, 3 hours).
If a symptom(s) of diabetes+casual/random plasma glucose concentration (symptoms/random) screening is performed, the candidate does not have to fast (screening occurs at any time of the day without regard to time since last meal). The candidate prepares for the symptoms/random screening by filling out a questionnaire or otherwise providing information on one or more of the following symptoms indicative of diabetes: information on how often the candidate urinates, information on how thirsty and/or hungry the candidate typically is, information on whether the candidate has experienced sudden weight loss, information on whether the candidate is always fatigued and/or drowsy, information on whether the candidate is frequently irritable and has sudden mood changes, information on whether the candidate is frequently nauseous and/or vomits often, information on whether the candidate has blurred vision, information on whether the candidate has tingling or numbness in legs, feet, or fingers, information on whether the candidate has frequent or recurring skin, gum, and/or urinary tract infection, information on whether the candidate has frequent itching of the skin and/or genitals, information on whether the candidate experiences slow healing of cuts and bruises, information on whether the candidate has a family history of diabetes, information on the candidate's age, information on the candidate's weight/obesity level, information on whether the candidate (woman) has a history of gestational diabetes or if the woman has delivered a baby over a certain weight, information on whether the candidate is Asian, Black, Hispanic/Latino, Pacific Islander, Native American, or other ethnic group with extremely high diabetic populations, information on whether the candidate has indications of Acanthosis Nigricans (AN) (a skin condition characterized by darkened, velvety and/or thickened skin patches), and/or information on whether the candidate has indications of Necrobiosis Lipoidica Diabeticorum (NLD) (slightly raised shiny red-brown patches on lower legs).
With reference additionally to
In an alternative embodiment, as described above, where naturally emitted electromagnetic radiation from the eye(s) is detected, there is no irradiation step 920.
At step 930, the electromagnetic radiation is measured from the eye(s). As indicated above, in an embodiment of the invention, the reflected electromagnetic radiation is filtered so that only certain, select wavelengths are detected by the electromagnetic radiation detector. The radiation signature of the electromagnetic radiation detected by the detector is then correlated by a non-invasive analyte reader processing unit with a radiation signature that corresponds to glucose concentration. The radiation signature is analyzed by the non-invasive analyte reader processing unit to give glucose concentration.
At step 940, the measured blood glucose concentration is displayed to the screener and/or the screening candidate. In an alternative embodiment, step 940 occurs after step 950, which is discussed immediately below.
At step 950, a determination is made if the candidate's glucose level is above a predetermined level and/or outside a normal range. For example, in an exemplary embodiment, if a FPG screening is performed, a determination is made as to whether glucose concentration is above 126 mg/dl (7.0 mmol/dl). In another exemplary embodiment, if a OGTT screening is performed, a determination is made as to whether glucose concentration is above 200 mg/dl (11.1 mmol/dl). Alternatively, in the OGTT screening, different determinations are made at different time intervals (e.g., after fasting, 1 hour after the glucose load was administered, 2 hours after the glucose load was administered, 3 hours after the glucose load was administered). For example, after fasting a determination is made as to whether glucose concentration is above 95 mg/dl (5.3 mmol/dl); 1 hour after glucose load was administered a determination is made as to whether glucose concentration is above 180 mg/dl (10.0 mmol/dl); 2 hours after glucose load was administered a determination is made as to whether glucose concentration is above 155 mg/dl (8.6 mmol/dl); and 3 hours after glucose load was administered a determination is made as to whether glucose concentration is above 140 mg/dl (7.8 mmol/dl). Alternatively, in the symptoms/random screening, a determination is made as to whether glucose concentration is above 200 mg/dl (11.1 mmol/dl).
If a determination is made that the candidate's glucose level is below the predetermined level and/or within a normal range, no further action is required because the candidate does not exhibit signs of being diabetic.
If a determination is made that the candidate's glucose level is above a predetermined level and/or outside a normal range, control passes on to step 960, where the candidate is referred to a diabetes medical profession for further evaluation and/or testing (e.g., whole blood screening test confirmed two or more times using plasma from a venous sample). In one or more embodiments, the candidate is referred to a diabetes medical professional for further evaluation and/or testing if the glucose level is above a predetermined level and/or outside a normal range regardless of how out of range the glucose level is, the candidate is referred to a diabetes medical professional for further evaluation and/or testing only if the glucose level is way out of range, or the candidate is not referred to a diabetes medical professional for further evaluation and/or testing until more than one (e.g., two, three) glucose level measurements (step 970) are performed on the candidate with the non-invasive analyte measurement device.
If more than one (e.g., two, three) glucose level measurements are to be performed on the candidate with the non-invasive analyte measurement device, control passes to step 970 and 910, or step 970 and 920, depending on whether additional preparation is required for the additional glucose level measurement. If the candidate has to come back another day to confirm a prior positive test for diabetes, then the preparation described above with respect to step 910 for the FPG screening and the OGTT screening would have to be performed again prior to the subsequent screening. However, if the screening is performed immediately after the prior screening, then control passes to step 920 because additional preparation is not required. If OGTT screening occurs, then the required time period (e.g., 1 hour, 2 hours, 3 hours) must lapse from when the glucose load was administered before proceeding to step 920.
The method 900 of non-invasively screening for diabetes using the non-invasive analyte measurement device is repeated as many times as necessary to confirm that the candidate does or does not exhibit signs of being diabetic.
In an alternative embodiment, in addition to screening candidates to confirm whether the candidate exhibits signs of being diabetic, the method 900 is used to screen candidates to confirm whether the candidate exhibits signs of having impaired fasting glucose (IFG) (e.g., FPG level greater than 110 mg/dl (6.1 mmol/l) and less than 126 mg/dl (7.0 mmol/dl) and/or impaired glucose tolerance (IGT) (e.g., 2 hour OGTT glucose level greater than 140 mg/dl (7.8 mmol/l) and less than 200 mg/dl (11.1 mmol/dl). Both IFG and IGT are risk factors for future diabetes.
The non-invasive nature of the above method 900 increases the probability of candidates undergoing the diabetes screen process compared to diabetes screening processes in the past because drawing blood from the candidate is not required. Because the method 900 is a simple, quick, and non-invasive, the method 900 can be performed in non-medical settings (e.g., store, gymnasium, office, home) in addition to health care facilities (e.g., doctor's office, medical clinic). This increased availability also increases the probability of candidates undergoing the diabetes screening process.
The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles described herein can be applied to other embodiments without departing from the spirit or scope of the invention. Thus, it is to be understood that the description and drawings presented herein represent a presently preferred embodiment of the invention and are therefore representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.
This application is a continuation-in-part application of U.S. patent application Ser. No. 11/122,472, filed May 5, 2005, which is a continuation application of U.S. patent application Ser. No. 10/824,214, filed Apr. 14, 2004, and claims the benefit of prior provisional application 60/513,396, filed on Oct. 21, 2003 under 35 U.S.C. 119(e). This application claims the benefit of these prior applications and these applications are incorporated by reference herein as though set forth in full.
Number | Date | Country | |
---|---|---|---|
Parent | 10824214 | Apr 2004 | US |
Child | 11122472 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11122472 | May 2005 | US |
Child | 11460191 | Jul 2006 | US |