Technical Field
The present invention generally relates to non-invasive and minimally invasive denervation methods and systems and apparatuses for performing those methods.
Description of the Related Art
Pulmonary diseases may cause a wide range of problems that adversely affect performance of the lungs. Pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (“COPD”), may lead to increased airflow resistance in the lungs. Mortality, health-related costs, and the size of the population having adverse effects due to pulmonary diseases are all substantial. These diseases often adversely affect quality of life. Symptoms are varied and often include cough, breathlessness, and wheeze. In COPD, for example, breathlessness may be noticed when performing somewhat strenuous activities, such as running, jogging, brisk walking, etc. As the disease progresses, breathlessness may be noticed when performing non-strenuous activities, such as walking. Over time, symptoms of COPD may occur with less and less effort until they are present all of the time, thereby severely limiting a person's ability to accomplish normal tasks.
Pulmonary diseases are often characterized by airway obstruction associated with blockage of an airway lumen, thickening of an airway wall, alteration of structures within or around the airway wall, or combinations thereof. Airway obstruction can significantly decrease the amount of gas exchanged in the lungs resulting in breathlessness. Blockage of an airway lumen can be caused by excessive intraluminal mucus or edema fluid, or both. Thickening of the airway wall may be attributable to excessive contraction of the airway smooth muscle, airway smooth muscle hypertrophy, mucous glands hypertrophy, inflammation, edema, or combinations thereof. Alteration of structures around the airway, such as destruction of the lung tissue itself, can lead to a loss of radial traction on the airway wall and subsequent narrowing of the airway.
Asthma can be characterized by contraction of airway smooth muscle, smooth muscle hypertrophy, excessive mucus production, mucous gland hypertrophy, and/or inflammation and swelling of airways. These abnormalities are the result of a complex interplay of local inflammatory cytokines (chemicals released locally by immune cells located in or near the airway wall), inhaled irritants (e.g., cold air, smoke, allergens, or other chemicals), systemic hormones (chemicals in the blood such as the anti-inflammatory cortisol and the stimulant epinephrine), local nervous system input (nerve cells contained completely within the airway wall that can produce local reflex stimulation of smooth muscle cells and mucous glands and can contribute to inflammation and edema), and the central nervous system input (nervous system signals from the brain to smooth muscle cells, mucous glands and inflammatory cells carried through the vagus nerve). These conditions often cause widespread temporary tissue alterations and initially reversible airflow obstruction that may ultimately lead to permanent tissue alteration and permanent airflow obstruction that make it difficult for the asthma sufferer to breathe. Asthma can further include acute episodes or attacks of additional airway narrowing via contraction of hyper-responsive airway smooth muscle that significantly increases airflow resistance. Asthma symptoms include recurrent episodes of breathlessness (e.g., shortness of breath or dyspnea), wheezing, chest tightness, and cough.
Emphysema is a type of COPD often characterized by the alteration of lung tissue surrounding or adjacent to the airways in the lungs. Emphysema can involve destruction of lung tissue (e.g., alveoli tissue such as the alveolar sacs) that leads to reduced gas exchange and reduced radial traction applied to the airway wall by the surrounding lung tissue. The destruction of alveoli tissue leaves areas of emphysematous lung with overly large airspaces that are devoid of alveolar walls and alveolar capillaries and are thereby ineffective at gas exchange. Air becomes “trapped” in these larger airspaces. This “trapped” air may cause over-inflation of the lung, and in the confines of the chest restricts the in-flow of oxygen rich air and the proper function of healthier tissue. This results in significant breathlessness and may lead to low oxygen levels and high carbon dioxide levels in the blood. This type of lung tissue destruction occurs as part of the normal aging process, even in healthy individuals. Unfortunately, exposure to chemicals or other substances (e.g., tobacco smoke) may significantly accelerate the rate of tissue damage or destruction. Breathlessness may be further increased by airway obstruction. The reduction of radial traction may cause the airway walls to become “floppy” such that the airway walls partially or fully collapse during exhalation. An individual with emphysema may be unable to deliver air out of their lungs due to this airway collapse and airway obstructions during exhalation.
Chronic bronchitis is a type of COPD that can be characterized by contraction of the airway smooth muscle, smooth muscle hypertrophy, excessive mucus production, mucous gland hypertrophy, and inflammation of airway walls. Like asthma, these abnormalities are the result of a complex interplay of local inflammatory cytokines, inhaled irritants, systemic hormones, local nervous system, and the central nervous system. Unlike asthma where respiratory obstruction may be largely reversible, the airway obstruction in chronic bronchitis is primarily chronic and permanent. It is often difficult for a chronic bronchitis sufferer to breathe because of chronic symptoms of shortness of breath, wheezing, and chest tightness, as well as a mucus producing cough.
Different techniques can be used to assess the severity and progression of pulmonary diseases. For example, pulmonary function tests, exercise capacity, and quality of life questionnaires are often used to evaluate subjects. Pulmonary function tests involve objective and reproducible measures of basic physiologic lung parameters, such as total airflow, lung volume, and gas exchange. Indices of pulmonary function tests used for the assessment of obstructive pulmonary diseases include the forced expiratory volume in 1 second (FEV1), the forced vital capacity (FVC), the ratio of the FEV1 to FVC, the total lung capacity (TLC), airway resistance and the testing of arterial blood gases. The FEV1 is the volume of air a patient can exhale during the first second of a forceful exhalation which starts with the lungs completely filled with air. The FEV1 is also the average flow that occurs during the first second of a forceful exhalation. This parameter may be used to evaluate and determine the presence and impact of any airway obstruction. The FVC is the total volume of air a patient can exhale during a forceful exhalation that starts with the lungs completely filled with air. The FEV1/FVC is the fraction of all the air that can be exhaled during a forceful exhalation during the first second. A FEV1/FVC ratio less than 0.7 after the administration of at least one bronchodilator defines the presence of COPD. The TLC is the total amount of air within the lungs when the lungs are completely filled and may increase when air becomes trapped within the lungs of patients with obstructive lung disease. Airway resistance is defined as the pressure gradient between the alveoli and the mouth to the rate of air flow between the alveoli and the mouth. Similarly, resistance of a given airway is defined as the ratio of the pressure gradient across the given airway to the flow of air through the airway. Arterial blood gases tests measure the amount of oxygen and the amount of carbon dioxide in the blood and are the most direct method for assessing the ability of the lungs and respiratory system to bring oxygen from the air into the blood and to get carbon dioxide from the blood out of the body.
Exercise capacity tests are objective and reproducible measures of a patient's ability to perform activities. A six minute walk test (6 MWT) is an exercise capacity test in which a patient walks as far as possible over a flat surface in 6 minutes. Another exercise capacity test involves measuring the maximum exercise capacity of a patient. For example, a physician can measure the amount of power the patient can produce while on a cycle ergometer. The patient can breathe 30 percent oxygen and the work load can increase by 5-10 watts every 3 minutes.
Quality of life questionnaires assess a patient's overall health and well being. The St. George's Respiratory Questionnaire is a quality of life questionnaire that includes 75 questions designed to measure the impact of obstructive lung disease on overall health, daily life, and perceived well-being. The efficacy of a treatment for pulmonary diseases can be evaluated using pulmonary function tests, exercise capacity tests, and/or questionnaires. A treatment program can be modified based on the results from these tests and/or questionnaires.
Treatments, such as bronchial thermoplasty, involve destroying smooth muscle tone by ablating the airway wall in a multitude of bronchial branches within the lung thereby eliminating both smooth muscles and nerves in the airway walls of the lung. The treated airways are unable to respond favorably to inhaled irritants, systemic hormones, and both local and central nervous system input. Unfortunately, this destruction of smooth muscle tone and nerves in the airway wall may therefore adversely affect lung performance. For example, inhaled irritants, such as smoke or other noxious substances, normally stimulate lung irritant receptors to produce coughing and contracting of airway smooth muscle. Elimination of nerves in the airway walls removes both local nerve function and central nervous input, thereby eliminating the lung's ability to expel noxious substances with a forceful cough. Elimination of airway smooth muscle tone may eliminate the airway's ability to constrict, thereby allowing deeper penetration of unwanted substances, such as noxious substances, into the lung.
Both asthma and COPD are serious diseases with growing numbers of sufferers. Current management techniques, which include prescription drugs, are neither completely successful nor free from side effects. Additionally, many patients do not comply with their drug prescription dosage regiment. Accordingly, it would be desirable to provide a treatment which improves resistance to airflow without the need for patient compliance.
Some embodiments are directed to non-invasive or minimally invasive denervation procedures. The denervation procedures can be performed without causing trauma that results in significant recovery periods. Non-invasive denervation methods can involve delivering energy from energy sources positioned external to the subject. The energy is aimed at targeted tissue to minimize, limit, or substantially eliminate appreciable damage to non-targeted tissue. Minimally invasive denervation procedures can involve percutaneously delivering an instrument.
Denervation of hollow organs, such as the lung bronchus, can be due to the creation of lesions with radiofrequency ablation that are of a sufficient depth when generated on the outside of the organ to penetrate the adventitial tissue layers where nerve trunks are anatomically located. In the example of lung denervation, ablating nerve trunks along the outside of both the right and left main bronchi effectively disconnects airway smooth muscle which lines the inside of the lung airways and mucus producing glands located with the airways from the vagus nerve. When this occurs, airway smooth muscle relaxes and mucus production is decreased. Nervous system mediated inflammation and edema will decrease as well. These changes reduce airway obstruction for subjects with COPD, asthma, or the like. Reduced airway obstruction makes breathing easier which improves the subject's quality of life and health status. Tests and questionnaires can be used to evaluate and monitor the subject's health.
Some embodiments are directed to a percutaneously deliverable apparatus capable of performing a denervation procedure. The apparatus can ablate targeted nerve tissue to denervate at least a portion of a lung. A minimally invasive access device can be used to percutaneously deliver the apparatus and can be a needle, a trocar, a robotic catheter, a mediastinoscope, a port, or a thoracoscope. Direct or remote visualization techniques (e.g., ultrasound guidance, endoscopy, radiologic guidance, etc.) can be used to position the apparatus.
The apparatus can be an instrument insertable directly into a hollow organ (e.g., through the mouth and into the esophagus or stomach) or inserted through the instrument channel of an endoscope (e.g., gastroscope, esophagoscope, or the like). The instrument has a flexible elongate shaft that carries one or more ablation elements. The ablation elements can be energy emitters, such as electrodes. The apparatus can be delivered through an opening in the subject's chest. The instrument can be brought into direct contact with the outer surface of the bronchial tree or lung while extending through the hollow organ.
The apparatus can be an instrument insertable directly into a large peripheral artery (e.g., femoral artery, brachial artery, or the like) and advanced through the arterial tree, into the aorta, and then into one or more bronchial arteries traveling along the main stem bronchi. The instrument has a flexible elongate shaft that carries one or more ablation elements. The ablation elements can be energy emitters, such as electrodes. The bronchial arteries are often located in close proximity to the vagus nerve trunks traveling along the outside of the bronchial tree. Placement of the instrument in one or more bronchial arteries brings the instrument with its ablation elements into close proximity to the vagus nerve trunks traveling along the outside of the bronchial tree. Advancement of the instrument and placement in the bronchial arteries can be guided by a variety of imaging modalities (e.g., fluoroscopy, ultrasound, CT scans, or the like).
In some embodiments, an instrument has an activatable section capable of intimately contacting a surface of an airway (either an outer surface or an inner surface). The activatable section can include one or more selectively activatable energy emitters, ablation elements, or the like. The activatable section can preferentially treat the posterior portion of the main lung airways or other targeted region(s) of airways.
A system for treating a subject includes an extraluminal elongate assembly dimensioned to move around the outside of the airway of a bronchial tree and an access device. The elongate assembly is adapted to attenuate signals transmitted by nerve tissue, such as nerve tissue of nerve trunks, while not irreversibly damaging adjacent anatomical structures. The elongate assembly can include at least one ablation element, which includes one or more electrodes operable to output radiofrequency energy.
Some methods involve minimally invasive denervation of at least a portion of a lung. The method comprises damaging nerve tissue of a first main bronchus to substantially prevent nervous system signals from traveling to most or substantially all distal bronchial branches connected to the first main bronchus. The nerve tissue, in certain embodiments, is positioned between a trachea and a lung through which the bronchial branches extend. The airway can remain intact while the nerve tissue is damaged.
The method, in some embodiments, further includes damaging nerve tissue of a second main bronchus to substantially prevent nervous system signals from traveling to most or substantially all distal bronchial branches connected to the second main bronchus. An apparatus used to damage the nerve tissue can be percutaneously delivered with the assistance of sonographic guidance, radiologic guidance, robotic guidance, mediastinoscopic guidance, thoracoscopic guidance, or other minimally invasive surgery visualization techniques.
In some embodiments, a method for treating a subject includes moving a tip of an instrument through at least a portion of a subject's skin to position the instrument next to nerve tissue. A desired amount of nerve tissue can then be damaged using the instrument. Some methods include damaging nerve tissue along a right main bronchus and ablating nerve tissue along the left main bronchus to denervate a significant portion of the bronchial tree. In other embodiments, denervating a portion of the bronchial tree comprises destroying at least one nerve trunk at a position that is within at least one of the left and right lung. The denervation process, in some embodiments, is performed without permanently damaging other tissue structures. In some denervation procedures, substantially all of the nerve trunks extending along a tubular section of an airway are damaged to prevent substantially all nervous system signals transmitted along the airway from traveling past the denervated portion without destroying the airway.
In yet other embodiments, a method for denervating a bronchial tree of a subject includes moving an energy emitter of an instrument through the subject's skin. The energy emitter is positioned proximate to an airway. Nerve tissue of the bronchial tree is damaged using the energy emitter while the energy emitter is positioned outside of the airway. The energy emitter can output a sufficient amount of at least one of radiofrequency energy, microwave energy, radiation energy, high intensity focused ultrasound energy (HIFU), thermal energy, or combinations thereof to damage the nerve tissue. In radiofrequency ablation, the instrument may cool and protect nontargeted tissue. High intensity focused ultrasound energy can be delivered to specific targeted tissue to mitigate damage of nontargeted tissue. The instrument is removed from the subject, leaving the airway intact.
Non-invasive denervation methods can be used to denervate a subject's lungs. An external energy source can deliver energy to targeted tissue to form lesions. The lesions can be formed at a depth of 1 mm to 2 mm along an airway to insure that a nerve trunk is destroyed without destroying the entire airway wall.
A method in some embodiments comprises moving a distal section of an instrument through a subject's skin. Most of a bronchial tree is denervated using the instrument to substantially prevent nervous system signals from traveling to substantially all branches of the bronchial tree. The distal section can be percutaneously delivered to minimize trauma and reduce recovery time. The method can be performed without severing airways, removing airways, or otherwise damaging the entire circumference of the denervated airway. In some embodiments, the entire procedure is performed without severing the entire airway. The airway can continue to function after the procedure.
A denervation method includes moving an energy emitter of an instrument through the subject's skin. Nerve tissue is altered (e.g., damaged, ablated, etc.) using energy from the energy emitter while the energy emitter is positioned outside of an airway or organ. The instrument is removed from the subject without destroying the airway or organ. In certain embodiments, the airway remains intact through the entire denervation process such that the airway maintains the health of distal portions of the lung. The denervation method can be used to denervate one or both lungs.
In some embodiments, a distal section of an instrument is wrapped around an airway to position at least one energy emitter with respect to nerve tissue. The energy emitter can output energy to damage the nerve tissue. Visualization can be used to view the airway. In certain embodiments, the outside of the airway is visualized while performing an ablation procedure or positioning the energy emitter. Visualization can be achieved using at least one of a thoracoscope, an ultrasonic device, and a fluoroscopy system.
A wide range of different types of body structures can be treated using energy. Non-limiting exemplary body structures include airways, the trachea, esophagus, vessels (e.g., blood vessels), the urethra, or other targeted structures. In certain embodiments, an instrument is endovascularly positioned in a blood vessel to position a distal portion of the instrument proximate to an airway nerve or other target region. Energy is delivered from the instrument to damage the airway nerve such that nerve signals to the airway are attenuated.
In some embodiments, a method for denervating a bronchial tree or other body structure of a subject includes moving an energy emitter of an instrument through the subject's skin. Nerve tissue is damaged using energy from the energy emitter while the energy emitter is positioned outside of the airway or body structure. In certain procedures, the instrument is removed from the subject without severing the entire airway. The procedure can be performed without puncturing the wall of the airway or body structure.
In yet other embodiments, a method for treating a subject comprises delivering emitting energy from an external energy source positioned outside of the subject's body through the subject's skin towards targeted nerve tissue of a bronchial tree. The nerve tissue is damaged using the energy while the external energy source is outside the subject's body. The external energy source can be placed against or spaced apart from the subject's skin.
In further embodiments, a method comprises percutaneously delivering a distal section of an instrument through a subject's skin such that the distal section is positioned to damage nerve tissue of a bronchial tree, blood vessel, or other body structure. In bronchial tree procedures, at least a portion of a bronchial tree in a subject's lung is denervated using the instrument to substantially prevent nervous system signals from traveling to a portion of the bronchial tree. In vascular procedures, a catheter is endovascularly positioned a in a blood vessel to position a distal portion of the catheter proximate to an airway nerve. The catheter is used to ablate nerve tissue.
In certain embodiments, an instrument is endovascularly positioned in a blood vessel (e.g., a bronchial artery or other vessel) to position a distal portion of the instrument proximate to an airway structure, such as a nerve. Energy is delivered from the instrument to damage the airway nerve such that nerve signals to the airway are attenuated. Other tissues can also be targeted.
One or more electrodes carried by the distal portion of the catheter can output radiofrequency energy or ultrasound energy. The electrode can be coupled to an outside surface of the distal portion or positioned within the distal portion. By delivering the energy, nerve signals can be attenuated so as to reduce constriction of the airway. In some embodiments, the constriction is permanently eliminated. In yet other procedures, nerve signals are attenuated so as to inhibit constriction of smooth muscle in the airway.
In other procedures, an instrument is passed through a subject's mouth and into the esophagus. The distal section of the instrument can be manipulated to position the distal section of the instrument proximate to the bronchial tree. In certain embodiments, the distal section can push against the wall of the esophagus to position an ablation assembly proximate to the left main bronchus or the right main bronchus. Without puncturing the esophagus wall, the ablation assembly can deliver energy to the nerve tissue with or without employing differential cooling. The ablation assembly can remain within the lumen of the esophagus throughout the ablation process.
The instruments can be passed through openings in the esophagus, the trachea, the left main bronchus and/or the right main bronchus. To pass an instrument out of the trachea, an opening can be formed in the wall of the trachea. The instrument can be moved through the opening and proximate to nerve tissue of an airway. The nerve tissue can be ablated while the instrument extends through the trachea wall and alongside the airway. In other procedures, a puncture can be formed along the left and/or right main bronchus. The instrument can be delivered through the opening and can wrap around the bronchus to destroy or ablate tissue.
In the Figures, identical reference numbers identify similar elements or acts.
The left and right vagus nerves 41, 42 originate in the brainstem, pass through the neck, and descend through the chest on either side of the trachea 20. The vagus nerves 41, 42 spread out into nerve trunks 45 that include the anterior and posterior pulmonary plexuses that wrap around the trachea 20, the left main bronchus 21, and the right main bronchus 22. The nerve trunks 45 also extend along and outside of the branching airways of the bronchial tree 27. Nerve trunks 45 are the main stem of a nerve, comprising a bundle of nerve fibers bound together by a tough sheath of connective tissue.
The primary function of the lungs 10 is to exchange oxygen from air into the blood and to exchange carbon dioxide from the blood to the air. The process of gas exchange begins when oxygen rich air is pulled into the lungs 10. Contraction of the diaphragm and intercostal chest wall muscles cooperate to decrease the pressure within the chest to cause the oxygen rich air to flow through the airways of the lungs 10. For example, air passes through the mouth and nose, the trachea 20, then through the bronchial tree 27. The air is ultimately delivered to the alveolar air sacs for the gas exchange process.
Oxygen poor blood is pumped from the right side of the heart through the pulmonary artery 30 and is ultimately delivered to alveolar capillaries. This oxygen poor blood is rich in carbon dioxide waste. Thin semi-permeable membranes separate the oxygen poor blood in capillaries from the oxygen rich air in the alveoli. These capillaries wrap around and extend between the alveoli. Oxygen from the air diffuses through the membranes into the blood, and carbon dioxide from the blood diffuses through the membranes to the air in the alveoli. The newly oxygen enriched blood then flows from the alveolar capillaries through the branching blood vessels of the pulmonary venous system to the heart. The heart pumps the oxygen rich blood throughout the body. The oxygen spent air in the lung is exhaled when the diaphragm and intercostal muscles relax and the lungs and chest wall elastically return to the normal relaxed states. In this manner, air can flow through the branching bronchioles, the bronchi 21, 22, and the trachea 20 and is ultimately expelled through the mouth and nose.
A network of nerve tissue of the autonomic nervous system senses and regulates activity of the respiratory system and the vasculature system. Nerve tissue includes fibers that use chemical and electrical signals to transmit sensory and motor information from one body part to another. For example, the nerve tissue can transmit motor information in the form of nervous system input, such as a signal that causes contraction of muscles or other responses. The fibers can be made up of neurons. The nerve tissue can be surrounded by connective tissue, i.e., epineurium. The autonomic nervous system includes a sympathetic system and a parasympathetic system. The sympathetic nervous system is largely involved in “excitatory” functions during periods of stress. The parasympathetic nervous system is largely involved in “vegetative” functions during periods of energy conservation. The sympathetic and parasympathetic nervous systems are simultaneously active and generally have reciprocal effects on organ systems. While innervation of the blood vessels originates from both systems, innervation of the airways is largely parasympathetic in nature and travels between the lung and the brain in the right vagus nerve 42 and the left vagus nerve 41.
The instrument 204 can be used to attenuate the transmission of signals traveling along the vagus nerves 41, 42 that cause or mediate muscle contractions, mucus 150 production, inflammation, edema, and the like. Attenuation can include, without limitation, hindering, limiting, blocking, and/or interrupting the transmission of signals. For example, the attenuation can include decreasing signal amplitude of nerve signals or weakening the transmission of nerve signals. Decreasing or stopping nervous system input to distal airways can alter airway smooth muscle tone, airway mucus production, airway inflammation, and the like, thereby controlling airflow into and out of the lungs 10. Decreasing or stopping sensory input from the airways and lungs to local effector cells or to the central nervous system can also decrease reflex bronchoconstriction, reflex mucous production, release of inflammatory mediators, and nervous system input to other cells in the lungs or organs in the body that may cause airway wall edema. In some embodiments, the nervous system input can be decreased to correspondingly decrease airway smooth muscle tone. In some embodiments, the airway mucus production can be decreased a sufficient amount to cause a substantial decrease in coughing and/or in airflow resistance. In some embodiments, the airway inflammation can be decreased a sufficient amount to cause a substantial decrease in airflow resistance and ongoing inflammatory injury to the airway wall. Signal attenuation may allow the smooth muscles to relax, prevent, limit, or substantially eliminate mucus production by mucous producing cells, and decrease inflammation. In this manner, healthy and/or diseased airways can be altered to adjust lung function. After treatment, various types of questionnaires or tests can be used to assess the subject's response to the treatment. If needed or desired, additional procedures can be performed to reduce the frequency of coughing, decrease breathlessness, decrease wheezing, and the like.
Main bronchi 21, 22 (i.e., airway generation 1) of
Nerve tissue distal to the main bronchi can also be treated, such as nerve tissue positioned outside the lung which run along the right or left main bronchi, the lobar bronchii, and bronchus intermedius. The intermediate bronchus is formed by a portion of the right main bronchus and includes origin of the middle and lower lobar bronchii. The distal section 214 can be positioned alongside higher generation airways (e.g., airway generations >2) to affect remote distal portions of the bronchial tree 27. Different procedures can be performed to denervate a portion of a lobe, an entire lobe, multiple lobes, or one lung or both lungs. In some embodiments, the lobar bronchi are treated to denervate lung lobes. For example, one or more treatment sites along a lobar bronchus may be targeted to denervate an entire lobe connected to that lobar bronchus. Left lobar bronchi can be treated to affect the left superior lobe and/or the left inferior lobe. Right lobar bronchi can be treated to affect the right superior lobe, the right middle lobe, and/or the right inferior lobe. Lobes can be treated concurrently or sequentially. In some embodiments, a physician can treat one lobe. Based on the effectiveness of the treatment, the physician can concurrently or sequentially treat additional lobe(s). In this manner, different isolated regions of the bronchial tree can be treated.
Each segmental bronchus may be treated by delivering energy to a single treatment site along each segmental bronchus. Nerve tissue of each segmental bronchus of the right lung can be destroyed. In some procedures, one to ten applications of energy can treat most of or substantially all of the right lung. Depending on the anatomical structure of the bronchial tree, segmental bronchi can often be denervated using one or two applications of energy.
Function of other tissue or anatomical features, such as the mucous glands, cilia, smooth muscle, body vessels (e.g., blood vessels), and the like can be maintained when nerve tissue is ablated. Nerve tissue includes nerve cells, nerve fibers, dendrites, and supporting tissue, such as neuroglia. Nerve cells transmit electrical impulses, and nerve fibers are prolonged axons that conduct the impulses. The electrical impulses are converted to chemical signals to communicate with effector cells or other nerve cells. By way of example, a portion of an airway of the bronchial tree 27 can be denervated to attenuate one or more nervous system signals transmitted by nerve tissue. Denervating can include damaging all of the nerve tissue of a section of a nerve trunk along an airway to stop substantially all the signals from traveling through the damaged section of the nerve trunk to more distal locations along the bronchial tree or from the bronchial tree more proximally to the central nervous system. Additionally, signals that travel along nerve fibers that go directly from sensory receptors (e.g., cough and irritant receptors) in the airway to nearby effector cells (e.g., postganglionic nerve cells, smooth muscle cells, mucous cells, inflammatory cells, and vascular cells) will also be stopped. If a plurality of nerve trunks extends along the airway, each nerve trunk can be damaged. As such, the nerve supply along a section of the bronchial tree can be cut off. When the signals are cut off, the distal airway smooth muscle can relax leading to airway dilation, mucous cells decrease mucous production, or inflammatory cells stop producing airway wall swelling and edema. These changes reduce airflow resistance so as to increase gas exchange in the lungs 10, thereby reducing, limiting, or substantially eliminating one or more symptoms, such as breathlessness, wheezing, chest tightness, and the like. Tissue surrounding or adjacent to the targeted nerve tissue may be affected but not permanently damaged. In some embodiments, for example, the bronchial blood vessels along the treated airway can deliver a similar amount of blood to bronchial wall tissues and the pulmonary blood vessels along the treated airway can deliver a similar amount of blood to the alveolar sacs at the distal regions of the bronchial tree 27 before and after treatment. These blood vessels can continue to transport blood to maintain sufficient gas exchange. In some embodiments, airway smooth muscle is not damaged to a significant extent. For example, a relatively small section of smooth muscle in an airway wall which does not appreciably impact respiratory function may be reversibly altered. If energy is used to destroy the nerve tissue outside of the airways, a therapeutically effective amount of energy does not reach a significant portion of the non-targeted smooth muscle tissue.
Any number of procedures can be performed on one or more of these nerve trunks to affect the portion of the lung associated with those nerve trunks. Because some of the nerve tissue in the network of nerve trunks coalesces into other nerves (e.g., nerves connected to the esophagus, nerves though the chest and into the abdomen, and the like), specific sites can be treated to minimize, limit, or substantially eliminate unwanted damage of other nerves. Some fibers of anterior and posterior pulmonary plexuses coalesce into small nerve trunks which extend along the outer surfaces of the trachea 20 and the branching bronchi and bronchioles as they travel outward into the lungs 10. Along the branching bronchi, these small nerve trunks continually ramify with each other and send fibers into the walls of the airways.
Referring to
The energy emitter 209 can ablate the efferent and/or the afferent tissues to control airway smooth muscle (e.g., innervate smooth muscle), mucous secretion, nervous mediated inflammation, and tissue fluid content (e.g., edema). The contraction of airway smooth muscle, excess mucous secretion, inflammation, and airway wall edema associated with pulmonary diseases often results in relatively high air flow resistance causing reduced gas exchange and decreased lung performance.
The instrument 204 can be delivered through a percutaneous opening in the chest, back, or other suitable location. Potential access locations include between the ribs in the chest, between the ribs in a para-sternal location, between the ribs along the back or side of the subject, from a subxiphoid location in the chest, or through the pre-sternal notch superior to the manubrium. As used herein, the term “percutaneous” and derivations thereof refer generally to medical procedures that involve accessing internal organs via an opening, such as a puncture or small incision in a subject's skin and may involve the use of an access apparatus, such as the access apparatus 210. The access apparatus 210 can be in the form of a trocar, a cannula, a port, a sleeve, or other less-invasive access device, along with an endoscope, a thoracoscope, or other visualization device. The distal section 214 can be relatively sharp to puncture and pass through tissue. A stylet can be positioned in a lumen in the instrument 204 and can have a relatively sharp tip to directly puncture the skin. After the stylet is inserted into the skin, the instrument 204 can be moved along the stylet through the user's skin into and between internal organs.
The instrument 204 may be visualized using fluoroscopy, computed tomography (CT), thoracoscopy, ultrasound, or other imaging modalities, and may have one or more markers (e.g., radiopaque marks), or dyes (e.g., radiopaque dyes), or other visual features. The visual features can help increase the instrument's visibility, including the instrument's radiopacity or ultrasonic visibility.
An instrument shaft 207 of
To damage nerve tissue 45, the distal section 214 can be at different orientations, including transverse to the nerve trunk 45, generally parallel to the nerve trunk 45, or any other suitable orientation with respect to the airway 100. If the tissue is ablated using chemicals, the distal section 214 can puncture the nerve trunk 45 and deliver the agent directly to nerve tissue.
As used herein, the term “energy” is broadly construed to include, without limitation, thermal energy, cryogenic energy (e.g., cooling energy), electrical energy, acoustic energy (e.g., ultrasonic energy), microwave energy, radiofrequency energy, high voltage energy, mechanical energy, ionizing radiation, optical energy (e.g., light energy), and combinations thereof, as well as other types of energy suitable for treating tissue. The energy emitter 209 of
For mechanical denervation, the distal section 214 can mechanically damage tissue by cutting, abrading, or tearing nerve tissue. A minimal amount of tissue adjacent to the nerve tissue 45 may also be damaged. The damaged non-targeted tissue can heal without any appreciable decrease in lung function. In embodiments, the distal section 214 comprises a morcellation device.
The distal section 214 can comprise one or more energy absorption devices for absorbing energy from a remote energy source. The remote energy source can be a microwave energy source, a radiofrequency energy source, an ultrasound energy source, or a radiation energy source and can be positioned outside the subject's body or located in another body structure, such as the esophagus, airway (trachea or bronchus), or elsewhere in the subject's body. The distal section 214 can be heated by the remote energy source to a sufficient temperature to damage targeted tissue. Additionally or alternatively, the element 209 can include a reflector to reflect energy from a remote energy source. The reflected energy can create a pattern (e.g., interference pattern) to control the amplitude of energy waves at the target site.
With continued reference to
The instrument 204 can also include any number of different types of visualization devices, such as cameras, optical fibers, lenses, or mirrors. Ultrasound or other types of energy-based viewing systems can be used to visualize deep targeted tissues. Surface tissues can be targeted using direct visualization while deeper tissues are subsequently targeted using ultrasound.
In RF ablation, RF energy causes heating of the nerve tissue 45 and, ultimately, the formation of the lesion 219. The nerve tissue is destroyed without removing a significant amount of airway tissue, if any, to preserve the integrity of the airway 100. The lesion 219 can be left in the body to avoid potential complications from removing airway tissue. The healthy airway wall 103 prevents gas escape across the airway wall 103. The smooth muscle and interior lining of the airway 100 can remain substantially undamaged to allow mucociliary transport and other bodily functions that are important to overall health. This reduces the recovery time and avoids or mitigates problems associated with surgical techniques of removing or cutting through the airway wall. In contrast to lung resection procedures in which entire airways are severed and removed, an intact denervated airway 100 can also ensure that distal regions of the lung continue to function.
Large lesions can extend through the airway wall and can be formed to destroy unwanted tissue (e.g., cancerous tissues) positioned along the inner surface. Differential cooling can be used to form lesions buried deep within the sidewall 103, spaced apart from the interior and exterior surfaces of the airway 100, or any other suitable location. U.S. patent application Ser. No. 12/463,304, filed on May 8, 2009, and U.S. patent application Ser. No. 12/913,702, filed on Oct. 27, 2010 discloses various catheters and differential cooling techniques. The instrument 204 can cool tissues to keep the nontargeted tissue below a temperature at which cell death occurs. In some embodiments, the distal section 214 has a cooling member (e.g., a cooling balloon) that absorbs thermal energy to keep nontargeted regions of the airway wall 103 at or below a desired temperature. The shape and size of lesions can also be adjusted as desired.
Natural body functions can help prevent, reduce, or limit tissue damage. If the bronchial artery branch 130 is heated, blood within the blood vessels 130 can absorb the thermal energy and can then carry the thermal energy away from the heated section of the branches 130. The lesion 219 can surround a region of the blood vessel 130 without destroying the vessel 130. After the treatment is performed, the bronchial artery branches 130 can continue to maintain the health of lung tissue.
The lesion depth D of
The instrument 310 can be delivered along the trachea, esophagus, or other body structure in the vicinity of the treatment site. For example, the instrument 310 can extend through one or more organs to position an energy emitter 314 proximate to the targeted tissue. Instruments 310, 312 can cooperate to treat the targeted tissue therebetween. The instrument 310 can cool interior regions of the airway wall 103 to cause the formation of the lesion 219 at the outer periphery of the airway wall 103. For radiofrequency ablation, the RF energy can travel between bipolar electrodes 314, 316. Tissue impedance causes heating that can reach sufficiently high temperatures to cause cell death. To protect non-targeted tissues (e.g., interior tissue), the instrument 310 can cool the airway to keep the nontargeted tissue below a temperature at which cell death occurs.
Thermal energy can be absorbed by the instrument 312 to keep the exterior regions of the airway wall 103 at or below a desired temperature. Both instruments 310, 312 can provide cooling to form lesions generally midway through the airway wall 103. The amount of energy delivered and cooling capacity provided by the instruments 310, 312 can be adjusted to shape and form lesions at different locations.
At least one of the instruments 310, 312 can be adapted to tunnel through tissue or between adjacent structures to allow it to reach the desired location, for example, along the bronchi. Additionally or alternatively, the instruments 310, 312 may be adapted to adhere to or slide smoothly along tissue or to be urged against a structure (e.g., trachea, esophagus, and/or bronchi) as the instrument is advanced.
Referring to
A wide range of different types of guides can partially or completely surround a structure, such as the esophagus, trachea, or bronchus. Guides may include, without limitation, a plurality of arms (e.g., a pair of arms, a set of curved or straight arms, or the like), a ring (e.g., a split ring or a continuous ring), or the like.
The illustrated guide 352 is a split ring lying in an imaginary plane that is generally perpendicular to a longitudinal axis 361 of the distal section 350. To treat the main bronchus, resilient arms 353a, 353b can be moved away from each other to receive the bronchus. The arms 353a, 353b can snuggly hold the bronchus to allow atraumatic sliding. Surface 355a, 355b can slide smoothly along an airway or other body structure. In some embodiments, the guide 352 is pivotally coupled to the instrument shaft to allow the guide 352 to rotate as it moves along a structure.
To treat the nerves 45, the electrodes 414c, 414j, 414k can be activated. The other electrodes 414 can remain inactive. In other embodiments, a continuous electrode can extend along the length of the distal section 414. The continuous electrode can be used to form a helical or spiral shaped lesion. In certain embodiments, the continuous electrode can have addressable sections to allow for selective ablation.
Airway cartilage rings or cartilage layers typically have a significantly larger electrical resistance than airway soft tissue (e.g., smooth muscle or connective tissue). Airway cartilage can impede the energy flow (e.g., electrical radiofrequency current flow) and makes the formation of therapeutic lesions to affect airway trunks challenging when the electrode is next to cartilage. The electrodes 414 can be positioned to avoid energy flow through cartilage. For example, the electrode 414 can be positioned between cartilage rings. Most or substantially all of the outputted energy can be delivered between the rings in some procedures. Tissue impedance can be measured to determine whether a particular electrode is positioned next to a cartilage ring, in an intercartilaginous space, or at another location.
Referring again to
Beam radiation may be delivered from different remote locations to damage deep nerve tissue without damaging intervening tissues. The source of beam radiation may be a beam emitter 500 of an external beam radiotherapy system or a stereotactic radiation system 510. Because the lungs and bronchi move as the subject breathes, the system can be adapted to target moving tissues. By positioning the radiation beam emitter 500 at various locations relative to the patient's body 522, such systems may be used to deliver a radiation beam from various angles to the targeted nerve tissue. The dose of radiation given to intervening tissues may be insufficient to cause injury, but the total dose given to the target nerve tissue is high enough to damage (e.g., ablate) the targeted tissue.
Ultrasound can be used to damage targeted tissue. High intensity focused ultrasound may be used to target and damage the nerve tissue. The external energy source 500 can be a HIFU emission device. Alternatively, a catheter, an intra-luminal instrument, or other type of instrument for insertion into the body can include a HIFU emission device. By way of example, the element 209 of
The HIFU-based systems can be adapted to target moving tissues. For example, such systems may have a computer-controlled positioning system which receives input from an ultrasound or other imaging system and commands a positioning system in real time to maintain the HIFU device in a fixed position relative to the target structure.
Instruments disclosed herein may be entirely or partially controlled robotically or by a computer. Instruments may be attachable to a computer-controlled robotic manipulator which moves and steers the instruments. Robotic systems, such as the da Vinci® Surgical System from Intuitive Surgical or the Sensei Robotic Catheter system from Hansen Medical, Inc., or similar types of robotic systems, can be used. The instruments can have a proximal connector (e.g., an adaptor mechanism) that connects with a complementary fitting on the robotic system and links movable mechanisms of the instrument with control mechanisms in the robotic system. The instrument connector can also provide electrical couplings for wires leading to energy emitters, electrodes, microwave antennae, or other electrically powered devices. The instrument may further include sensor devices (e.g., temperature sensors, tissue impedance sensors, etc.) which are also coupled via the connector of the robotic system. The robotic system can include a control module that allows the physician to move and activate the denervation instrument while visualizing the location of the instrument within the chest, for example, using thoracoscopy, fluoroscopy, ultrasound, or other suitable visualization technology. The instrument may also be computer controlled, with or without robotic manipulation. A computer may receive feedback (e.g., sensory data) from sensors carried by the instrument or elsewhere to control positioning, power delivery, or other parameters of interest. For example, in energy-based denervation embodiments, a computer may be used to receive temperature data from temperature sensors of the instrument and to control power delivery to avoid overheating of tissue.
The instruments can access sites through blood vessels, as well as external to the organs. Robot surgery (including robotic catheter systems), natural orifice access methods, and minimally invasive access methods such as using trocar access methods and thoracoscopy have provided clinicians with access procedure locations within the human body and also minimized patient morbidity and complications due to surgery.
The assemblies, methods, and systems described herein can be used to affect tissue which is located on the outside of hollow organs, such as the lung, esophagus, nasal cavity, sinus, colon, vascular vessels and the like or other solid organs. Various types of activatable elements (e.g., energy emitters) can be utilized to output the energy. The activatable elements can be sufficiently small to facilitate percutaneous delivery to minimize or limit trauma to the patient.
The embodiments disclosed herein can treat the digestive system, nervous system, vascular system, or other systems. The treatment systems and its components disclosed herein can be used as an adjunct during another medical procedure, such as minimally invasive procedures, open procedures, semi-open procedures, or other surgical procedures (e.g., lung volume reduction surgery) that provide access to a desired target site. Various surgical procedures on the chest may provide access to lung tissue, the bronchial tree, or the like. Access techniques and procedures used to provide access to a target region can be performed by a surgeon and/or a robotic system. Those skilled in the art recognize that there are many different ways that a target region can be accessed. The various embodiments h such claims are entitled. Accordingly, the claims are not limited by the disclosure. described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
This application is a continuation of application Ser. No. 12/944,666 filed Nov. 11, 2010, now U.S. Pat. No. 8,911,439, which claims the benefit of U.S. Provisional Application No. 61/260,350 filed Nov. 11, 2009, each of which is hereby fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
612724 | Hamilton | Oct 1898 | A |
1155169 | Starkweather | Sep 1915 | A |
1207479 | Bisgaard | Dec 1916 | A |
1216183 | Swingle | Feb 1917 | A |
1695107 | Kahl | Dec 1928 | A |
2072346 | Smith | Mar 1937 | A |
2279714 | Meyerhof et al. | Apr 1942 | A |
3320957 | Sokolik | May 1967 | A |
3568659 | Karnegis | Mar 1971 | A |
3667476 | Muller | Jun 1972 | A |
3692029 | Adair | Sep 1972 | A |
3918449 | Pistor | Nov 1975 | A |
3946745 | Hsiang-Lai et al. | Mar 1976 | A |
3949743 | Shanbrom | Apr 1976 | A |
3995617 | Watkins et al. | Dec 1976 | A |
4078864 | Howell | Mar 1978 | A |
4095602 | Leveen | Jun 1978 | A |
4116589 | Rishton | Sep 1978 | A |
4129129 | Amrine | Dec 1978 | A |
4154246 | LeVeen | May 1979 | A |
4277168 | Oku | Jul 1981 | A |
4305402 | Katims | Dec 1981 | A |
4351330 | Scarberry | Sep 1982 | A |
4461283 | Doi | Jul 1984 | A |
4502490 | Evans et al. | Mar 1985 | A |
4503855 | Maslanka | Mar 1985 | A |
4503863 | Katims | Mar 1985 | A |
4512762 | Spears | Apr 1985 | A |
4522212 | Gelinas et al. | Jun 1985 | A |
4557272 | Carr | Dec 1985 | A |
4565200 | Cosman | Jan 1986 | A |
4567882 | Heller | Feb 1986 | A |
4573481 | Bullara | Mar 1986 | A |
4584998 | McGrail | Apr 1986 | A |
4612934 | Borkan | Sep 1986 | A |
4621642 | Chen | Nov 1986 | A |
4621882 | Krumme | Nov 1986 | A |
4625712 | Wampler | Dec 1986 | A |
4643186 | Rosen et al. | Feb 1987 | A |
4646737 | Hussein et al. | Mar 1987 | A |
4649924 | Taccardi | Mar 1987 | A |
4649935 | Charmillot et al. | Mar 1987 | A |
4658836 | Turner | Apr 1987 | A |
4674497 | Ogasawara | Jun 1987 | A |
4683890 | Hewson | Aug 1987 | A |
4704121 | Moise | Nov 1987 | A |
4706688 | Don Michael et al. | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
4754065 | Levenson et al. | Jun 1988 | A |
4754752 | Ginsburg et al. | Jul 1988 | A |
4765322 | Charmillot et al. | Aug 1988 | A |
4765959 | Fukasawa | Aug 1988 | A |
4767402 | Kost et al. | Aug 1988 | A |
4772112 | Zider et al. | Sep 1988 | A |
4773899 | Spears | Sep 1988 | A |
4779614 | Moise | Oct 1988 | A |
4784135 | Blum et al. | Nov 1988 | A |
4790305 | Zoltan et al. | Dec 1988 | A |
4799479 | Spears | Jan 1989 | A |
4802492 | Grunstein | Feb 1989 | A |
4808164 | Hess | Feb 1989 | A |
4817586 | Wampler | Apr 1989 | A |
4825871 | Cansell | May 1989 | A |
4827935 | Geddes et al. | May 1989 | A |
4846152 | Wampler et al. | Jul 1989 | A |
4862886 | Clarke et al. | Sep 1989 | A |
4881542 | Schmidt et al. | Nov 1989 | A |
4895557 | Moise et al. | Jan 1990 | A |
4902129 | Siegmund et al. | Feb 1990 | A |
4904472 | Belardinelli et al. | Feb 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4907589 | Cosman | Mar 1990 | A |
4908012 | Moise et al. | Mar 1990 | A |
4920978 | Colvin | May 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4945910 | Budyko et al. | Aug 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4967765 | Turner et al. | Nov 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4976709 | Sand | Dec 1990 | A |
4985014 | Orejola | Jan 1991 | A |
4989604 | Fang | Feb 1991 | A |
4991603 | Cohen et al. | Feb 1991 | A |
4992474 | Skidmore et al. | Feb 1991 | A |
5005559 | Blanco et al. | Apr 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5009636 | Wortley et al. | Apr 1991 | A |
5009936 | Yamanaka et al. | Apr 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5027829 | Larsen | Jul 1991 | A |
5030645 | Kollonitsch | Jul 1991 | A |
5036848 | Hewson | Aug 1991 | A |
5053033 | Clarke | Oct 1991 | A |
5054486 | Yamada | Oct 1991 | A |
5056519 | Vince | Oct 1991 | A |
5056529 | de Groot | Oct 1991 | A |
5057107 | Parins et al. | Oct 1991 | A |
5074860 | Gregory et al. | Dec 1991 | A |
5078716 | Doll | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5096916 | Skupin | Mar 1992 | A |
5100388 | Behl et al. | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5105826 | Smits et al. | Apr 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5107830 | Younes | Apr 1992 | A |
5107835 | Thomas | Apr 1992 | A |
5109846 | Thomas | May 1992 | A |
5114423 | Kasprzyk et al. | May 1992 | A |
5116864 | March et al. | May 1992 | A |
5117828 | Metzger et al. | Jun 1992 | A |
5123413 | Hasegawa et al. | Jun 1992 | A |
5126375 | Skidmore et al. | Jun 1992 | A |
5135480 | Bannon et al. | Aug 1992 | A |
5135517 | McCoy | Aug 1992 | A |
5139029 | Fishman et al. | Aug 1992 | A |
5151100 | Abele et al. | Sep 1992 | A |
5152286 | Sitko et al. | Oct 1992 | A |
5165420 | Strickland | Nov 1992 | A |
5167223 | Koros et al. | Dec 1992 | A |
5170802 | Mehra | Dec 1992 | A |
5170803 | Hewson et al. | Dec 1992 | A |
5174288 | Bardy et al. | Dec 1992 | A |
5188602 | Nichols | Feb 1993 | A |
5190540 | Lee | Mar 1993 | A |
5191883 | Lennox et al. | Mar 1993 | A |
5213576 | Abiuso et al. | May 1993 | A |
5215103 | Desai | Jun 1993 | A |
5224491 | Mehra | Jul 1993 | A |
5225445 | Skidmore et al. | Jul 1993 | A |
5231996 | Bardy et al. | Aug 1993 | A |
5232444 | Just et al. | Aug 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5239982 | Trauthen | Aug 1993 | A |
5254088 | Lundquist et al. | Oct 1993 | A |
5255678 | Deslauriers et al. | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5265604 | Vince | Nov 1993 | A |
5269758 | Taheri | Dec 1993 | A |
5281218 | Imran | Jan 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5292331 | Boneau | Mar 1994 | A |
5293869 | Edwards et al. | Mar 1994 | A |
5309910 | Edwards et al. | May 1994 | A |
5311866 | Kagan et al. | May 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5343936 | Beatenbough et al. | Sep 1994 | A |
5344398 | Hara | Sep 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5370644 | Langberg | Dec 1994 | A |
5370675 | Edwards et al. | Dec 1994 | A |
5370679 | Atlee, III | Dec 1994 | A |
5372603 | Acker et al. | Dec 1994 | A |
5374287 | Rubin | Dec 1994 | A |
5379765 | Kajiwara et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5393207 | Maher et al. | Feb 1995 | A |
5394880 | Atlee, III | Mar 1995 | A |
5396887 | Imran | Mar 1995 | A |
5400778 | Jonson et al. | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5405362 | Kramer et al. | Apr 1995 | A |
5405366 | Fox et al. | Apr 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5415166 | Imran | May 1995 | A |
5415656 | Tihon et al. | May 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5422362 | Vincent et al. | Jun 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5425023 | Haraguchi et al. | Jun 1995 | A |
5425703 | Feiring | Jun 1995 | A |
5425811 | Mashita | Jun 1995 | A |
5431696 | Atlee, III | Jul 1995 | A |
5433730 | Alt | Jul 1995 | A |
5437665 | Munro | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5454840 | Krakovsky et al. | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5470352 | Rappaport | Nov 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478578 | Arnold et al. | Dec 1995 | A |
5496271 | Burton et al. | Mar 1996 | A |
5496304 | Chasan | Mar 1996 | A |
5496311 | Abele et al. | Mar 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5500011 | Desai | Mar 1996 | A |
5505728 | Ellman et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507791 | Sitko | Apr 1996 | A |
5509419 | Edwards et al. | Apr 1996 | A |
5522862 | Testerman et al. | Jun 1996 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5545161 | Imran | Aug 1996 | A |
5545193 | Fleischman et al. | Aug 1996 | A |
5547469 | Rowland et al. | Aug 1996 | A |
5549559 | Eshel | Aug 1996 | A |
5549655 | Erickson | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
RE35330 | Malone et al. | Sep 1996 | E |
5553611 | Budd et al. | Sep 1996 | A |
5558073 | Pomeranz et al. | Sep 1996 | A |
5562608 | Sekins et al. | Oct 1996 | A |
5571074 | Buckman, Jr. et al. | Nov 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5574059 | Regunathan et al. | Nov 1996 | A |
5578072 | Barone et al. | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5598848 | Swanson et al. | Feb 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5601088 | Swanson et al. | Feb 1997 | A |
5605157 | Panescu et al. | Feb 1997 | A |
5607419 | Amplatz et al. | Mar 1997 | A |
5607462 | Imran | Mar 1997 | A |
5620438 | Amplatz et al. | Apr 1997 | A |
5620463 | Drolet | Apr 1997 | A |
5623940 | Daikuzono | Apr 1997 | A |
5624392 | Saab | Apr 1997 | A |
5624439 | Edwards et al. | Apr 1997 | A |
5626618 | Ward et al. | May 1997 | A |
5630425 | Panescu et al. | May 1997 | A |
5630794 | Lax et al. | May 1997 | A |
5630813 | Kieturakis | May 1997 | A |
5634471 | Fairfax et al. | Jun 1997 | A |
5641326 | Adams | Jun 1997 | A |
5647870 | Kordis et al. | Jul 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5658322 | Fleming | Aug 1997 | A |
5658549 | Akehurst et al. | Aug 1997 | A |
5660175 | Dayal | Aug 1997 | A |
5662108 | Budd et al. | Sep 1997 | A |
5669930 | Igarashi | Sep 1997 | A |
5669932 | Fischell et al. | Sep 1997 | A |
5674472 | Akehurst et al. | Oct 1997 | A |
5678535 | DiMarco | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681280 | Rusk et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5690692 | Fleming | Nov 1997 | A |
5693078 | Desai et al. | Dec 1997 | A |
5694934 | Edelman | Dec 1997 | A |
5695471 | Wampler | Dec 1997 | A |
5699799 | Xu et al. | Dec 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5707218 | Maher et al. | Jan 1998 | A |
5707336 | Rubin | Jan 1998 | A |
5707352 | Sekins et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5722416 | Swanson et al. | Mar 1998 | A |
5725525 | Kordis | Mar 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728094 | Edwards | Mar 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5730704 | Avitall | Mar 1998 | A |
5730726 | Klingenstein | Mar 1998 | A |
5730741 | Horzewski et al. | Mar 1998 | A |
5733319 | Neilson et al. | Mar 1998 | A |
5735846 | Panescu et al. | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5741248 | Stern et al. | Apr 1998 | A |
5746224 | Edwards | May 1998 | A |
5752518 | McGee et al. | May 1998 | A |
5755714 | Murphy-Chutorian | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5759158 | Swanson | Jun 1998 | A |
5765568 | Sweezer, Jr. et al. | Jun 1998 | A |
5766605 | Sanders et al. | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5779669 | Haissaguerre et al. | Jul 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5782239 | Webster, Jr. | Jul 1998 | A |
5782797 | Schweich, Jr. et al. | Jul 1998 | A |
5782827 | Gough et al. | Jul 1998 | A |
5782848 | Lennox | Jul 1998 | A |
5782899 | Imran | Jul 1998 | A |
5792064 | Panescu et al. | Aug 1998 | A |
5795303 | Swanson et al. | Aug 1998 | A |
5800375 | Sweezer et al. | Sep 1998 | A |
5800486 | Thome et al. | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5810757 | Sweezer, Jr. et al. | Sep 1998 | A |
5810807 | Ganz et al. | Sep 1998 | A |
5814078 | Zhou et al. | Sep 1998 | A |
5817028 | Anderson | Oct 1998 | A |
5817073 | Krespi | Oct 1998 | A |
5820554 | Davis et al. | Oct 1998 | A |
5820589 | Torgerson et al. | Oct 1998 | A |
5823189 | Kordis | Oct 1998 | A |
5827277 | Edwards | Oct 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5836874 | Swanson et al. | Nov 1998 | A |
5836905 | Lemelson et al. | Nov 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5837001 | Mackey | Nov 1998 | A |
5843075 | Taylor | Dec 1998 | A |
5843077 | Edwards | Dec 1998 | A |
5843088 | Barra et al. | Dec 1998 | A |
5846238 | Jackson et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5848972 | Triedman et al. | Dec 1998 | A |
5849026 | Zhou et al. | Dec 1998 | A |
5855577 | Murphy-Chutorian et al. | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5863291 | Schaer | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5868740 | LeVeen et al. | Feb 1999 | A |
5871443 | Edwards et al. | Feb 1999 | A |
5871483 | Jackson et al. | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5873852 | Vigil et al. | Feb 1999 | A |
5873865 | Horzewski et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5881727 | Edwards | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5891027 | Tu et al. | Apr 1999 | A |
5891135 | Jackson et al. | Apr 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5891138 | Tu et al. | Apr 1999 | A |
5891182 | Fleming | Apr 1999 | A |
5893847 | Kordis | Apr 1999 | A |
5893887 | Jayaraman | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899882 | Waksman et al. | May 1999 | A |
5902268 | Saab | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906636 | Casscells, III et al. | May 1999 | A |
5908445 | Whayne et al. | Jun 1999 | A |
5908446 | Imran | Jun 1999 | A |
5908839 | Levitt et al. | Jun 1999 | A |
5911218 | DiMarco | Jun 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5919172 | Golba, Jr. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5931806 | Shimada | Aug 1999 | A |
5931835 | Mackey | Aug 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5951494 | Wang et al. | Sep 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5954662 | Swanson et al. | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5957919 | Laufer | Sep 1999 | A |
5957961 | Maguire et al. | Sep 1999 | A |
5964223 | Baran | Oct 1999 | A |
5964753 | Edwards | Oct 1999 | A |
5964796 | Imran | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
5976175 | Hirano et al. | Nov 1999 | A |
5976709 | Kageyama et al. | Nov 1999 | A |
5979456 | Magovern | Nov 1999 | A |
5980563 | Tu et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5984971 | Faccioli et al. | Nov 1999 | A |
5989545 | Foster et al. | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
5992419 | Sterzer et al. | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5995873 | Rhodes | Nov 1999 | A |
5997534 | Tu et al. | Dec 1999 | A |
5999855 | DiMarco | Dec 1999 | A |
6001054 | Regulla et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6006755 | Edwards | Dec 1999 | A |
6008211 | Robinson et al. | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010500 | Sherman et al. | Jan 2000 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6016437 | Tu et al. | Jan 2000 | A |
6023638 | Swanson | Feb 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6029091 | De La Rama et al. | Feb 2000 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6039731 | Taylor et al. | Mar 2000 | A |
6043273 | Duhaylongsod | Mar 2000 | A |
6045549 | Smethers et al. | Apr 2000 | A |
6045550 | Simpson et al. | Apr 2000 | A |
6050992 | Nichols | Apr 2000 | A |
6052607 | Edwards et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6056745 | Panescu et al. | May 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6060454 | Duhaylongsod | May 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6063768 | First | May 2000 | A |
6071280 | Edwards et al. | Jun 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6071282 | Fleischman | Jun 2000 | A |
6081749 | Ingle et al. | Jun 2000 | A |
6083249 | Familoni | Jul 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6087394 | Duhaylongsod | Jul 2000 | A |
6090104 | Webster, Jr. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6097985 | Kasevich et al. | Aug 2000 | A |
6101412 | Duhaylongsod | Aug 2000 | A |
6102886 | Lundquist et al. | Aug 2000 | A |
6106524 | Eggers et al. | Aug 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6125301 | Capel | Sep 2000 | A |
6127410 | Duhaylongsod | Oct 2000 | A |
6129726 | Edwards et al. | Oct 2000 | A |
6135997 | Laufer et al. | Oct 2000 | A |
6139527 | Laufer et al. | Oct 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6139845 | Donovan | Oct 2000 | A |
6141589 | Duhaylongsod | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6143277 | Ashurst et al. | Nov 2000 | A |
6149647 | Tu et al. | Nov 2000 | A |
6152143 | Edwards | Nov 2000 | A |
6152899 | Farley et al. | Nov 2000 | A |
6152953 | Hipskind | Nov 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6163716 | Edwards et al. | Dec 2000 | A |
6174323 | Biggs et al. | Jan 2001 | B1 |
6179833 | Taylor | Jan 2001 | B1 |
6183468 | Swanson et al. | Feb 2001 | B1 |
6197013 | Reed et al. | Mar 2001 | B1 |
6198970 | Freed et al. | Mar 2001 | B1 |
6200311 | Danek et al. | Mar 2001 | B1 |
6200332 | Del Giglio | Mar 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6203562 | Ohkubo | Mar 2001 | B1 |
6210367 | Carr | Apr 2001 | B1 |
6212432 | Matsuura | Apr 2001 | B1 |
6212433 | Behl | Apr 2001 | B1 |
6214002 | Fleischman et al. | Apr 2001 | B1 |
6216043 | Swanson et al. | Apr 2001 | B1 |
6216044 | Kordis | Apr 2001 | B1 |
6216704 | Ingle et al. | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6226543 | Gilboa et al. | May 2001 | B1 |
6230052 | Wolff et al. | May 2001 | B1 |
6231595 | Dobak, III | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6240307 | Beatty et al. | May 2001 | B1 |
6241727 | Tu et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251368 | Akehurst et al. | Jun 2001 | B1 |
6253762 | Britto | Jul 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6254599 | Lesh et al. | Jul 2001 | B1 |
6258083 | Daniel et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6264653 | Falwell | Jul 2001 | B1 |
6265379 | Donovan | Jul 2001 | B1 |
6269813 | Fitzgerald et al. | Aug 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6273907 | Laufer | Aug 2001 | B1 |
6283987 | Laird et al. | Sep 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6296639 | Truckai et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6302870 | Jacobsen et al. | Oct 2001 | B1 |
6303509 | Chen et al. | Oct 2001 | B1 |
6306423 | Donovan et al. | Oct 2001 | B1 |
6315173 | Di Giovanni et al. | Nov 2001 | B1 |
6315778 | Gambale et al. | Nov 2001 | B1 |
6317615 | KenKnight et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6322584 | Ingle et al. | Nov 2001 | B2 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6327503 | Familoni | Dec 2001 | B1 |
6338727 | Noda et al. | Jan 2002 | B1 |
6338836 | Kuth et al. | Jan 2002 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6355031 | Edwards et al. | Mar 2002 | B1 |
6356786 | Rezai et al. | Mar 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6357447 | Swanson et al. | Mar 2002 | B1 |
6358245 | Edwards et al. | Mar 2002 | B1 |
6358926 | Donovan | Mar 2002 | B2 |
6361554 | Brisken | Mar 2002 | B1 |
6363937 | Hovda et al. | Apr 2002 | B1 |
6366814 | Boveja et al. | Apr 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6383509 | Donovan et al. | May 2002 | B1 |
6394956 | Chandrasekaran et al. | May 2002 | B1 |
6402744 | Edwards et al. | Jun 2002 | B2 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6414018 | Duhaylongsod | Jul 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6416740 | Unger | Jul 2002 | B1 |
6423058 | Edwards et al. | Jul 2002 | B1 |
6423105 | Iijima et al. | Jul 2002 | B1 |
6424864 | Matsuura | Jul 2002 | B1 |
6425877 | Edwards | Jul 2002 | B1 |
6425887 | McGuckin et al. | Jul 2002 | B1 |
6425895 | Swanson et al. | Jul 2002 | B1 |
6432092 | Miller | Aug 2002 | B2 |
6436130 | Philips et al. | Aug 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6440128 | Edwards et al. | Aug 2002 | B1 |
6440129 | Simpson | Aug 2002 | B1 |
6442435 | King et al. | Aug 2002 | B2 |
6447505 | McGovern et al. | Sep 2002 | B2 |
6447785 | Donovan | Sep 2002 | B1 |
6448231 | Graham | Sep 2002 | B2 |
6458121 | Rosenstock et al. | Oct 2002 | B1 |
6460545 | Kordis | Oct 2002 | B2 |
6464680 | Brisken et al. | Oct 2002 | B1 |
6464697 | Edwards et al. | Oct 2002 | B1 |
6475160 | Sher | Nov 2002 | B1 |
6480746 | Ingle et al. | Nov 2002 | B1 |
6485416 | Platt et al. | Nov 2002 | B1 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6491710 | Satake | Dec 2002 | B2 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6494880 | Swanson et al. | Dec 2002 | B1 |
6496737 | Rudie et al. | Dec 2002 | B2 |
6496738 | Carr | Dec 2002 | B2 |
6506399 | Donovan | Jan 2003 | B2 |
6510969 | Di Giovanni et al. | Jan 2003 | B2 |
6514246 | Swanson et al. | Feb 2003 | B1 |
6514290 | Loomas | Feb 2003 | B1 |
6519488 | KenKnight et al. | Feb 2003 | B2 |
6522913 | Swanson et al. | Feb 2003 | B2 |
6524555 | Ashurst et al. | Feb 2003 | B1 |
6526320 | Mitchell | Feb 2003 | B2 |
6526976 | Baran | Mar 2003 | B1 |
6529756 | Phan et al. | Mar 2003 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6533780 | Laird et al. | Mar 2003 | B1 |
6536427 | Davies et al. | Mar 2003 | B2 |
6544226 | Gaiser et al. | Apr 2003 | B1 |
6544262 | Fleischman | Apr 2003 | B2 |
6546928 | Ashurst et al. | Apr 2003 | B1 |
6546932 | Nahon et al. | Apr 2003 | B1 |
6546934 | Ingle et al. | Apr 2003 | B1 |
6547776 | Gaiser et al. | Apr 2003 | B1 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6549808 | Gisel et al. | Apr 2003 | B1 |
6551274 | Heiner | Apr 2003 | B2 |
6551310 | Ganz et al. | Apr 2003 | B1 |
6558333 | Gilboa et al. | May 2003 | B2 |
6558378 | Sherman et al. | May 2003 | B2 |
6558381 | Ingle et al. | May 2003 | B2 |
6562034 | Edwards et al. | May 2003 | B2 |
6572612 | Stewart et al. | Jun 2003 | B2 |
6575623 | Werneth | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582430 | Hall | Jun 2003 | B2 |
6587718 | Talpade | Jul 2003 | B2 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6587731 | Ingle et al. | Jul 2003 | B1 |
6589235 | Wong et al. | Jul 2003 | B2 |
6589238 | Edwards et al. | Jul 2003 | B2 |
6593130 | Sen et al. | Jul 2003 | B1 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6601581 | Babaev | Aug 2003 | B1 |
6603996 | Beatty et al. | Aug 2003 | B1 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6610083 | Keller et al. | Aug 2003 | B2 |
6610713 | Tracey | Aug 2003 | B2 |
6613002 | Clark et al. | Sep 2003 | B1 |
6613045 | Laufer et al. | Sep 2003 | B1 |
6620159 | Hegde | Sep 2003 | B2 |
6620415 | Donovan | Sep 2003 | B2 |
6622047 | Barrett et al. | Sep 2003 | B2 |
6623742 | Voet | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6626903 | McGuckin, Jr. et al. | Sep 2003 | B2 |
6629535 | Ingle et al. | Oct 2003 | B2 |
6629951 | Laufer et al. | Oct 2003 | B2 |
6632440 | Quinn et al. | Oct 2003 | B1 |
6633779 | Schuler et al. | Oct 2003 | B1 |
6634363 | Danek et al. | Oct 2003 | B1 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6635056 | Kadhiresan et al. | Oct 2003 | B2 |
6638273 | Farley et al. | Oct 2003 | B1 |
6640119 | Budd et al. | Oct 2003 | B1 |
6640120 | Swanson et al. | Oct 2003 | B1 |
6645200 | Koblish et al. | Nov 2003 | B1 |
6645496 | Aoki et al. | Nov 2003 | B2 |
6647617 | Beatty et al. | Nov 2003 | B1 |
6648881 | KenKnight et al. | Nov 2003 | B2 |
6649161 | Donovan | Nov 2003 | B1 |
6652517 | Hall et al. | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6656960 | Puskas | Dec 2003 | B2 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6663622 | Foley et al. | Dec 2003 | B1 |
6666858 | Lafontaine | Dec 2003 | B2 |
6669693 | Friedman | Dec 2003 | B2 |
6673068 | Berube | Jan 2004 | B1 |
6673070 | Edwards et al. | Jan 2004 | B2 |
6675047 | Konoplev et al. | Jan 2004 | B1 |
6676686 | Naganuma | Jan 2004 | B2 |
6681136 | Schuler et al. | Jan 2004 | B2 |
6692492 | Simpson et al. | Feb 2004 | B2 |
6692494 | Cooper et al. | Feb 2004 | B1 |
6699180 | Kobayashi | Mar 2004 | B2 |
6699243 | West et al. | Mar 2004 | B2 |
6708064 | Rezai | Mar 2004 | B2 |
6711436 | Duhaylongsod | Mar 2004 | B1 |
6712074 | Edwards et al. | Mar 2004 | B2 |
6712812 | Roschak et al. | Mar 2004 | B2 |
6712814 | Edwards et al. | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6719685 | Fujikura et al. | Apr 2004 | B2 |
6719694 | Weng et al. | Apr 2004 | B2 |
6723053 | Ackerman et al. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6728562 | Budd et al. | Apr 2004 | B1 |
6735471 | Hill et al. | May 2004 | B2 |
6735475 | Whitehurst et al. | May 2004 | B1 |
6740321 | Donovan | May 2004 | B1 |
6743197 | Edwards | Jun 2004 | B1 |
6743413 | Schultz et al. | Jun 2004 | B1 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6749606 | Keast et al. | Jun 2004 | B2 |
6752765 | Jensen et al. | Jun 2004 | B1 |
6755026 | Wallach | Jun 2004 | B2 |
6755849 | Gowda et al. | Jun 2004 | B1 |
6767347 | Sharkey et al. | Jul 2004 | B2 |
6767544 | Brooks et al. | Jul 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6772013 | Ingle et al. | Aug 2004 | B1 |
6773711 | Voet et al. | Aug 2004 | B2 |
6776991 | Naumann | Aug 2004 | B2 |
6777423 | Banholzer et al. | Aug 2004 | B2 |
6778854 | Puskas | Aug 2004 | B2 |
6780183 | Jimenez et al. | Aug 2004 | B2 |
6786889 | Musbach et al. | Sep 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6805131 | Kordis | Oct 2004 | B2 |
6819956 | DiLorenzo | Nov 2004 | B2 |
6826420 | Beatty et al. | Nov 2004 | B1 |
6826421 | Beatty et al. | Nov 2004 | B1 |
6827931 | Donovan | Dec 2004 | B1 |
6836688 | Ingle et al. | Dec 2004 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6838429 | Paslin | Jan 2005 | B2 |
6838434 | Voet | Jan 2005 | B2 |
6838471 | Tracey | Jan 2005 | B2 |
6840243 | Deem et al. | Jan 2005 | B2 |
6841156 | Aoki et al. | Jan 2005 | B2 |
6843998 | Steward et al. | Jan 2005 | B1 |
6846312 | Edwards et al. | Jan 2005 | B2 |
6847849 | Mamo et al. | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6852091 | Edwards et al. | Feb 2005 | B2 |
6852110 | Roy et al. | Feb 2005 | B2 |
6861058 | Aoki et al. | Mar 2005 | B2 |
6866662 | Fuimaono et al. | Mar 2005 | B2 |
6871092 | Piccone | Mar 2005 | B2 |
6872206 | Edwards et al. | Mar 2005 | B2 |
6872397 | Aoki et al. | Mar 2005 | B2 |
6878156 | Noda | Apr 2005 | B1 |
6881213 | Ryan et al. | Apr 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6890347 | Machold et al. | May 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6893438 | Hall et al. | May 2005 | B2 |
6893439 | Fleischman | May 2005 | B2 |
6895267 | Panescu et al. | May 2005 | B2 |
6904303 | Phan et al. | Jun 2005 | B2 |
6908462 | Joye et al. | Jun 2005 | B2 |
6908928 | Banholzer et al. | Jun 2005 | B2 |
6913616 | Hamilton et al. | Jul 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6937896 | Kroll | Aug 2005 | B1 |
6937903 | Schuler et al. | Aug 2005 | B2 |
6939309 | Beatty et al. | Sep 2005 | B1 |
6939345 | KenKnight et al. | Sep 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6947785 | Beatty et al. | Sep 2005 | B1 |
6954977 | Maguire et al. | Oct 2005 | B2 |
6957106 | Schuler et al. | Oct 2005 | B2 |
6961622 | Gilbert | Nov 2005 | B2 |
6970742 | Mann et al. | Nov 2005 | B2 |
RE38912 | Walz et al. | Dec 2005 | E |
6971395 | Edwards et al. | Dec 2005 | B2 |
6974224 | Thomas-Benedict | Dec 2005 | B2 |
6974456 | Edwards et al. | Dec 2005 | B2 |
6974578 | Aoki et al. | Dec 2005 | B1 |
6978168 | Beatty et al. | Dec 2005 | B2 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6990370 | Beatty et al. | Jan 2006 | B1 |
6994706 | Chomenky et al. | Feb 2006 | B2 |
6997189 | Biggs et al. | Feb 2006 | B2 |
7004942 | Laird et al. | Feb 2006 | B2 |
7022088 | Keast et al. | Apr 2006 | B2 |
7022105 | Edwards | Apr 2006 | B1 |
7027869 | Danek et al. | Apr 2006 | B2 |
7043307 | Zelickson et al. | May 2006 | B1 |
7070800 | Bechtold-Peters et al. | Jul 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7083614 | Fjield et al. | Aug 2006 | B2 |
7101368 | Lafontaine | Sep 2006 | B2 |
7101387 | Garabedian et al. | Sep 2006 | B2 |
7104987 | Biggs et al. | Sep 2006 | B2 |
7104990 | Jenkins et al. | Sep 2006 | B2 |
7112198 | Satake | Sep 2006 | B2 |
7118568 | Hassett et al. | Oct 2006 | B2 |
7122031 | Edwards et al. | Oct 2006 | B2 |
7122033 | Wood | Oct 2006 | B2 |
7125407 | Edwards et al. | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7142910 | Puskas | Nov 2006 | B2 |
7150745 | Stem et al. | Dec 2006 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7165551 | Edwards et al. | Jan 2007 | B2 |
7167757 | Ingle et al. | Jan 2007 | B2 |
7175644 | Cooper et al. | Feb 2007 | B2 |
7179257 | West et al. | Feb 2007 | B2 |
7186251 | Malecki et al. | Mar 2007 | B2 |
7187964 | Khoury | Mar 2007 | B2 |
7187973 | Hauck | Mar 2007 | B2 |
7189208 | Beatty et al. | Mar 2007 | B1 |
7198635 | Danek et al. | Apr 2007 | B2 |
7200445 | Dalbec et al. | Apr 2007 | B1 |
7229469 | Witzel et al. | Jun 2007 | B1 |
7238357 | Barron | Jul 2007 | B2 |
7241295 | Maguire | Jul 2007 | B2 |
7255693 | Johnston et al. | Aug 2007 | B1 |
RE39820 | Banholzer et al. | Sep 2007 | E |
7264002 | Danek et al. | Sep 2007 | B2 |
7266414 | Cornelius et al. | Sep 2007 | B2 |
7273055 | Danek et al. | Sep 2007 | B2 |
7289843 | Beatty et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7292890 | Whitehurst et al. | Nov 2007 | B2 |
7309707 | Bender et al. | Dec 2007 | B2 |
7310552 | Puskas | Dec 2007 | B2 |
RE40045 | Palmer | Feb 2008 | E |
7326207 | Edwards | Feb 2008 | B2 |
7344535 | Stem et al. | Mar 2008 | B2 |
7371231 | Rioux et al. | May 2008 | B2 |
7393330 | Keast et al. | Jul 2008 | B2 |
7393350 | Maurice | Jul 2008 | B2 |
7394976 | Entenman et al. | Jul 2008 | B2 |
7402172 | Chin et al. | Jul 2008 | B2 |
7422563 | Roschak et al. | Sep 2008 | B2 |
7422584 | Loomas et al. | Sep 2008 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7430449 | Aldrich et al. | Sep 2008 | B2 |
7462162 | Phan et al. | Dec 2008 | B2 |
7462179 | Edwards et al. | Dec 2008 | B2 |
7473273 | Campbell | Jan 2009 | B2 |
7477945 | Rezai et al. | Jan 2009 | B2 |
7483755 | Ingle et al. | Jan 2009 | B2 |
7493160 | Weber et al. | Feb 2009 | B2 |
7494661 | Sanders | Feb 2009 | B2 |
7507234 | Utley et al. | Mar 2009 | B2 |
7507238 | Edwards et al. | Mar 2009 | B2 |
7517320 | Wibowo et al. | Apr 2009 | B2 |
7530979 | Ganz et al. | May 2009 | B2 |
7532938 | Machado et al. | May 2009 | B2 |
7542802 | Danek et al. | Jun 2009 | B2 |
7553307 | Bleich et al. | Jun 2009 | B2 |
7556624 | Laufer et al. | Jul 2009 | B2 |
7559890 | Wallace et al. | Jul 2009 | B2 |
7572245 | Herweck et al. | Aug 2009 | B2 |
7585296 | Edwards et al. | Sep 2009 | B2 |
7588549 | Eccleston | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7608275 | Deem et al. | Oct 2009 | B2 |
7613515 | Knudson et al. | Nov 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7628789 | Soltesz et al. | Dec 2009 | B2 |
7632268 | Edwards et al. | Dec 2009 | B2 |
7641632 | Noda et al. | Jan 2010 | B2 |
7641633 | Laufer et al. | Jan 2010 | B2 |
7648500 | Edwards et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7684865 | Aldrich et al. | Mar 2010 | B2 |
7689290 | Ingle et al. | Mar 2010 | B2 |
7691079 | Gobel | Apr 2010 | B2 |
RE41334 | Beatty et al. | May 2010 | E |
7708712 | Phan et al. | May 2010 | B2 |
7708768 | Danek et al. | May 2010 | B2 |
7711430 | Errico et al. | May 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7722538 | Khoury | May 2010 | B2 |
7725188 | Errico et al. | May 2010 | B2 |
7734355 | Cohen et al. | Jun 2010 | B2 |
7734535 | Bums | Jun 2010 | B1 |
7740017 | Danek et al. | Jun 2010 | B2 |
7740631 | Bleich et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7747324 | Errico et al. | Jun 2010 | B2 |
7756583 | Demarais et al. | Jul 2010 | B2 |
7765010 | Chomenky et al. | Jul 2010 | B2 |
7770584 | Danek et al. | Aug 2010 | B2 |
7783358 | Aldrich et al. | Aug 2010 | B2 |
7815590 | Cooper | Oct 2010 | B2 |
7826881 | Beatty et al. | Nov 2010 | B1 |
7831288 | Beatty et al. | Nov 2010 | B1 |
7837676 | Sinelnikov et al. | Nov 2010 | B2 |
7837679 | Biggs et al. | Nov 2010 | B2 |
7841986 | He et al. | Nov 2010 | B2 |
7844338 | Knudson et al. | Nov 2010 | B2 |
7853331 | Kaplan et al. | Dec 2010 | B2 |
7854734 | Biggs et al. | Dec 2010 | B2 |
7854740 | Carney | Dec 2010 | B2 |
7869879 | Errico et al. | Jan 2011 | B2 |
7869880 | Errico et al. | Jan 2011 | B2 |
7873417 | Demarais et al. | Jan 2011 | B2 |
7877146 | Rezai et al. | Jan 2011 | B2 |
7904159 | Errico et al. | Mar 2011 | B2 |
7906124 | Laufer et al. | Mar 2011 | B2 |
7914448 | Bob et al. | Mar 2011 | B2 |
7921855 | Danek et al. | Apr 2011 | B2 |
7930012 | Beatty et al. | Apr 2011 | B2 |
7931647 | Wizeman et al. | Apr 2011 | B2 |
7937143 | Demarais et al. | May 2011 | B2 |
7938123 | Danek et al. | May 2011 | B2 |
7949407 | Kaplan et al. | May 2011 | B2 |
7967782 | Laufer et al. | Jun 2011 | B2 |
7985187 | Wibowo et al. | Jul 2011 | B2 |
7992572 | Danek et al. | Aug 2011 | B2 |
7993336 | Jackson et al. | Aug 2011 | B2 |
8002740 | Willink et al. | Aug 2011 | B2 |
8010197 | Errico et al. | Aug 2011 | B2 |
8012149 | Jackson et al. | Sep 2011 | B2 |
8041428 | Errico et al. | Oct 2011 | B2 |
8046085 | Knudson et al. | Oct 2011 | B2 |
8052668 | Sih | Nov 2011 | B2 |
8088127 | Mayse et al. | Jan 2012 | B2 |
8099167 | Errico et al. | Jan 2012 | B1 |
8105817 | Deem et al. | Jan 2012 | B2 |
8128595 | Walker et al. | Mar 2012 | B2 |
8128617 | Bencini et al. | Mar 2012 | B2 |
8131371 | Demarals et al. | Mar 2012 | B2 |
8133497 | Deem et al. | Mar 2012 | B2 |
8152803 | Edwards et al. | Apr 2012 | B2 |
8172827 | Deem et al. | May 2012 | B2 |
8204598 | Errico et al. | Jun 2012 | B2 |
8208998 | Beatty et al. | Jun 2012 | B2 |
8209034 | Simon et al. | Jun 2012 | B2 |
8216216 | Warnking et al. | Jul 2012 | B2 |
8226638 | Mayse et al. | Jul 2012 | B2 |
8229564 | Rezai | Jul 2012 | B2 |
8231621 | Hutchins et al. | Jul 2012 | B2 |
8233988 | Errico et al. | Jul 2012 | B2 |
8251992 | Utley et al. | Aug 2012 | B2 |
8267094 | Danek et al. | Sep 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8303581 | Arts et al. | Nov 2012 | B2 |
8313484 | Edwards et al. | Nov 2012 | B2 |
8328798 | Witzel et al. | Dec 2012 | B2 |
8338164 | Deem et al. | Dec 2012 | B2 |
8347891 | Demarais et al. | Jan 2013 | B2 |
8357118 | Orr | Jan 2013 | B2 |
8364237 | Stone et al. | Jan 2013 | B2 |
8371303 | Schaner et al. | Feb 2013 | B2 |
8377055 | Jackson et al. | Feb 2013 | B2 |
8483831 | Hlavka et al. | Jul 2013 | B1 |
8489192 | Hlavka et al. | Jul 2013 | B1 |
8731672 | Hlavka et al. | May 2014 | B2 |
8740895 | Mayse et al. | Jun 2014 | B2 |
8777943 | Mayse et al. | Jul 2014 | B2 |
8808280 | Mayse et al. | Aug 2014 | B2 |
8821489 | Mayse et al. | Sep 2014 | B2 |
8911439 | Mayse et al. | Dec 2014 | B2 |
8932289 | Mayse et al. | Jan 2015 | B2 |
8961507 | Mayse et al. | Feb 2015 | B2 |
8961508 | Mayse et al. | Feb 2015 | B2 |
9005195 | Mayse et al. | Apr 2015 | B2 |
9017324 | Mayse et al. | Apr 2015 | B2 |
20010020151 | Reed et al. | Sep 2001 | A1 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020002387 | Naganuma | Jan 2002 | A1 |
20020010495 | Freed et al. | Jan 2002 | A1 |
20020016344 | Tracey | Feb 2002 | A1 |
20020042564 | Cooper et al. | Apr 2002 | A1 |
20020042565 | Cooper et al. | Apr 2002 | A1 |
20020049370 | Laufer et al. | Apr 2002 | A1 |
20020072738 | Edwards et al. | Jun 2002 | A1 |
20020082197 | Aoki et al. | Jun 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020087208 | Koblish et al. | Jul 2002 | A1 |
20020091379 | Danek et al. | Jul 2002 | A1 |
20020107512 | Edwards | Aug 2002 | A1 |
20020107515 | Edwards et al. | Aug 2002 | A1 |
20020111386 | Sekins et al. | Aug 2002 | A1 |
20020111619 | Keast et al. | Aug 2002 | A1 |
20020111620 | Cooper et al. | Aug 2002 | A1 |
20020115991 | Edwards | Aug 2002 | A1 |
20020116030 | Rezai | Aug 2002 | A1 |
20020143302 | Hinchliffe et al. | Oct 2002 | A1 |
20020143326 | Foley et al. | Oct 2002 | A1 |
20020143373 | Courtnage et al. | Oct 2002 | A1 |
20020151888 | Edwards et al. | Oct 2002 | A1 |
20020183682 | Darvish et al. | Dec 2002 | A1 |
20020198512 | Seward | Dec 2002 | A1 |
20020198570 | Puskas | Dec 2002 | A1 |
20020198574 | Gumpert | Dec 2002 | A1 |
20030018327 | Truckai et al. | Jan 2003 | A1 |
20030018344 | Kaji et al. | Jan 2003 | A1 |
20030023287 | Edwards et al. | Jan 2003 | A1 |
20030027752 | Steward et al. | Feb 2003 | A1 |
20030050591 | Patrick McHale | Mar 2003 | A1 |
20030050631 | Mody et al. | Mar 2003 | A1 |
20030065371 | Satake | Apr 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030070676 | Cooper et al. | Apr 2003 | A1 |
20030074039 | Puskas | Apr 2003 | A1 |
20030093069 | Panescu et al. | May 2003 | A1 |
20030093128 | Freed et al. | May 2003 | A1 |
20030125786 | Gliner et al. | Jul 2003 | A1 |
20030130571 | Lattouf | Jul 2003 | A1 |
20030130657 | Tom et al. | Jul 2003 | A1 |
20030144572 | Oschman et al. | Jul 2003 | A1 |
20030153905 | Edwards et al. | Aug 2003 | A1 |
20030159700 | Laufer et al. | Aug 2003 | A1 |
20030181949 | Whale | Sep 2003 | A1 |
20030187430 | Vorisek | Oct 2003 | A1 |
20030195593 | Ingle et al. | Oct 2003 | A1 |
20030195604 | Ingle et al. | Oct 2003 | A1 |
20030202990 | Donovan et al. | Oct 2003 | A1 |
20030208103 | Sonnenschein et al. | Nov 2003 | A1 |
20030211121 | Donovan | Nov 2003 | A1 |
20030216791 | Schuler et al. | Nov 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030216891 | Wegener | Nov 2003 | A1 |
20030225443 | Kiran et al. | Dec 2003 | A1 |
20030233099 | Danaek et al. | Dec 2003 | A1 |
20030236455 | Swanson et al. | Dec 2003 | A1 |
20040006268 | Gilboa et al. | Jan 2004 | A1 |
20040009180 | Donovan | Jan 2004 | A1 |
20040010289 | Biggs et al. | Jan 2004 | A1 |
20040010290 | Schroeppel et al. | Jan 2004 | A1 |
20040028676 | Klein et al. | Feb 2004 | A1 |
20040029849 | Schatzberg et al. | Feb 2004 | A1 |
20040030368 | Kemeny et al. | Feb 2004 | A1 |
20040031494 | Danek et al. | Feb 2004 | A1 |
20040044390 | Szeles | Mar 2004 | A1 |
20040059383 | Puskas | Mar 2004 | A1 |
20040073201 | Cooper et al. | Apr 2004 | A1 |
20040073206 | Foley et al. | Apr 2004 | A1 |
20040073278 | Pachys | Apr 2004 | A1 |
20040086531 | Barron | May 2004 | A1 |
20040087936 | Stem et al. | May 2004 | A1 |
20040088030 | Jung, Jr. | May 2004 | A1 |
20040088036 | Gilbert | May 2004 | A1 |
20040091880 | Wiebusch et al. | May 2004 | A1 |
20040106954 | Whitehurst et al. | Jun 2004 | A1 |
20040116981 | Mazar | Jun 2004 | A1 |
20040122488 | Mazar et al. | Jun 2004 | A1 |
20040122489 | Mazar et al. | Jun 2004 | A1 |
20040127942 | Yomtov et al. | Jul 2004 | A1 |
20040127958 | Mazar et al. | Jul 2004 | A1 |
20040142005 | Brooks et al. | Jul 2004 | A1 |
20040147921 | Edwards et al. | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040147988 | Stephens | Jul 2004 | A1 |
20040151741 | Borodic | Aug 2004 | A1 |
20040153056 | Muller et al. | Aug 2004 | A1 |
20040162584 | Hill et al. | Aug 2004 | A1 |
20040162597 | Hamilton et al. | Aug 2004 | A1 |
20040167509 | Taimisto | Aug 2004 | A1 |
20040167580 | Mann et al. | Aug 2004 | A1 |
20040172075 | Shafer et al. | Sep 2004 | A1 |
20040172080 | Stadler et al. | Sep 2004 | A1 |
20040172084 | Knudson et al. | Sep 2004 | A1 |
20040175399 | Schiffman | Sep 2004 | A1 |
20040176803 | Whelan et al. | Sep 2004 | A1 |
20040176805 | Whelan et al. | Sep 2004 | A1 |
20040182399 | Danek et al. | Sep 2004 | A1 |
20040186435 | Seward | Sep 2004 | A1 |
20040204747 | Kemeny et al. | Oct 2004 | A1 |
20040213813 | Ackerman | Oct 2004 | A1 |
20040213814 | Ackerman | Oct 2004 | A1 |
20040215235 | Jackson et al. | Oct 2004 | A1 |
20040215289 | Fukui | Oct 2004 | A1 |
20040215296 | Ganz et al. | Oct 2004 | A1 |
20040220556 | Cooper et al. | Nov 2004 | A1 |
20040220621 | Zhou et al. | Nov 2004 | A1 |
20040226556 | Deem et al. | Nov 2004 | A1 |
20040230251 | Schuler et al. | Nov 2004 | A1 |
20040230252 | Kullok et al. | Nov 2004 | A1 |
20040243118 | Ayers et al. | Dec 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040248188 | Sanders | Dec 2004 | A1 |
20040249401 | Rabiner et al. | Dec 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20040253274 | Voet | Dec 2004 | A1 |
20050004609 | Stahmann et al. | Jan 2005 | A1 |
20050004631 | Benedict | Jan 2005 | A1 |
20050010263 | Schauerte | Jan 2005 | A1 |
20050010270 | Laufer | Jan 2005 | A1 |
20050015117 | Gerber | Jan 2005 | A1 |
20050019346 | Boulis | Jan 2005 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050049615 | Cooper et al. | Mar 2005 | A1 |
20050056292 | Cooper | Mar 2005 | A1 |
20050059153 | George et al. | Mar 2005 | A1 |
20050060041 | Phan et al. | Mar 2005 | A1 |
20050060042 | Phan et al. | Mar 2005 | A1 |
20050060044 | Roschak et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050065562 | Rezai | Mar 2005 | A1 |
20050065567 | Lee et al. | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065574 | Rezai | Mar 2005 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050065584 | Schiff et al. | Mar 2005 | A1 |
20050074461 | Donovan | Apr 2005 | A1 |
20050076909 | Stahmann et al. | Apr 2005 | A1 |
20050080461 | Stahmann et al. | Apr 2005 | A1 |
20050085801 | Cooper et al. | Apr 2005 | A1 |
20050090722 | Perez | Apr 2005 | A1 |
20050096529 | Cooper et al. | May 2005 | A1 |
20050096644 | Hall et al. | May 2005 | A1 |
20050107783 | Tom et al. | May 2005 | A1 |
20050107829 | Edwards et al. | May 2005 | A1 |
20050107853 | Krespi et al. | May 2005 | A1 |
20050125044 | Tracey | Jun 2005 | A1 |
20050137518 | Biggs et al. | Jun 2005 | A1 |
20050137611 | Escudero et al. | Jun 2005 | A1 |
20050137715 | Phan et al. | Jun 2005 | A1 |
20050143788 | Yun et al. | Jun 2005 | A1 |
20050149146 | Boveja et al. | Jul 2005 | A1 |
20050152924 | Voet | Jul 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050159736 | Danek et al. | Jul 2005 | A9 |
20050165456 | Mann et al. | Jul 2005 | A1 |
20050171396 | Pankratov et al. | Aug 2005 | A1 |
20050177144 | Phan et al. | Aug 2005 | A1 |
20050177192 | Rezai et al. | Aug 2005 | A1 |
20050182288 | Zabara | Aug 2005 | A1 |
20050182393 | Abboud et al. | Aug 2005 | A1 |
20050183732 | Edwards | Aug 2005 | A1 |
20050187579 | Danek et al. | Aug 2005 | A1 |
20050193279 | Daners | Sep 2005 | A1 |
20050203503 | Edwards et al. | Sep 2005 | A1 |
20050222628 | Krakousky | Oct 2005 | A1 |
20050222635 | Krakovsky | Oct 2005 | A1 |
20050222651 | Jung, Jr. | Oct 2005 | A1 |
20050228054 | Tatton | Oct 2005 | A1 |
20050228459 | Levin et al. | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050234523 | Levin et al. | Oct 2005 | A1 |
20050238693 | Whyte | Oct 2005 | A1 |
20050240176 | Oral et al. | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050245992 | Persen et al. | Nov 2005 | A1 |
20050251128 | Amoah | Nov 2005 | A1 |
20050251213 | Freeman | Nov 2005 | A1 |
20050255317 | Bavaro et al. | Nov 2005 | A1 |
20050256028 | Yun et al. | Nov 2005 | A1 |
20050261747 | Schuler et al. | Nov 2005 | A1 |
20050267536 | Freeman et al. | Dec 2005 | A1 |
20050277993 | Mower | Dec 2005 | A1 |
20050283197 | Daum et al. | Dec 2005 | A1 |
20060015151 | Aldrich | Jan 2006 | A1 |
20060058692 | Beatty et al. | Mar 2006 | A1 |
20060058693 | Beatty et al. | Mar 2006 | A1 |
20060058780 | Edwards et al. | Mar 2006 | A1 |
20060062808 | Laufer et al. | Mar 2006 | A1 |
20060079887 | Buysse et al. | Apr 2006 | A1 |
20060084884 | Beatty et al. | Apr 2006 | A1 |
20060084966 | Maguire et al. | Apr 2006 | A1 |
20060084970 | Beatty et al. | Apr 2006 | A1 |
20060084971 | Beatty et al. | Apr 2006 | A1 |
20060084972 | Beatty et al. | Apr 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060095032 | Jackson et al. | May 2006 | A1 |
20060100666 | Wilkinson et al. | May 2006 | A1 |
20060106361 | Muni et al. | May 2006 | A1 |
20060111755 | Stone et al. | May 2006 | A1 |
20060116749 | Willink et al. | Jun 2006 | A1 |
20060135953 | Kania et al. | Jun 2006 | A1 |
20060135984 | Kramer et al. | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060137698 | Danek et al. | Jun 2006 | A1 |
20060142801 | Demarais et al. | Jun 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060178703 | Huston et al. | Aug 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060212076 | Demarais et al. | Sep 2006 | A1 |
20060212078 | Demarais et al. | Sep 2006 | A1 |
20060222667 | Deem et al. | Oct 2006 | A1 |
20060225742 | Deem et al. | Oct 2006 | A1 |
20060235474 | Demarais | Oct 2006 | A1 |
20060241523 | Sinelnikov et al. | Oct 2006 | A1 |
20060247617 | Danek et al. | Nov 2006 | A1 |
20060247618 | Kaplan et al. | Nov 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060247683 | Danek et al. | Nov 2006 | A1 |
20060247726 | Biggs et al. | Nov 2006 | A1 |
20060247727 | Biggs et al. | Nov 2006 | A1 |
20060247746 | Danek et al. | Nov 2006 | A1 |
20060254600 | Danek et al. | Nov 2006 | A1 |
20060259028 | Utley et al. | Nov 2006 | A1 |
20060259029 | Utley et al. | Nov 2006 | A1 |
20060259030 | Utley et al. | Nov 2006 | A1 |
20060265014 | Demarais et al. | Nov 2006 | A1 |
20060265015 | Demarais et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20060276807 | Keast et al. | Dec 2006 | A1 |
20060276852 | Demarais et al. | Dec 2006 | A1 |
20060278243 | Danek et al. | Dec 2006 | A1 |
20060278244 | Danek et al. | Dec 2006 | A1 |
20060280772 | Roschak et al. | Dec 2006 | A1 |
20060280773 | Roschak et al. | Dec 2006 | A1 |
20060282071 | Utley et al. | Dec 2006 | A1 |
20060287679 | Stone | Dec 2006 | A1 |
20070021803 | Deem et al. | Jan 2007 | A1 |
20070025919 | Deem et al. | Feb 2007 | A1 |
20070027496 | Pamis et al. | Feb 2007 | A1 |
20070032788 | Edwards et al. | Feb 2007 | A1 |
20070043342 | Kleinberger | Feb 2007 | A1 |
20070055328 | Mayse et al. | Mar 2007 | A1 |
20070060954 | Cameron et al. | Mar 2007 | A1 |
20070060990 | Satake | Mar 2007 | A1 |
20070062545 | Danek et al. | Mar 2007 | A1 |
20070066957 | Demarais et al. | Mar 2007 | A1 |
20070074719 | Danek et al. | Apr 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070083197 | Danek et al. | Apr 2007 | A1 |
20070083239 | Demarais et al. | Apr 2007 | A1 |
20070093802 | Danek et al. | Apr 2007 | A1 |
20070093809 | Edwards et al. | Apr 2007 | A1 |
20070100390 | Danaek et al. | May 2007 | A1 |
20070102011 | Danek et al. | May 2007 | A1 |
20070106292 | Kaplan et al. | May 2007 | A1 |
20070106296 | Laufer et al. | May 2007 | A1 |
20070106337 | Errico et al. | May 2007 | A1 |
20070106338 | Errico | May 2007 | A1 |
20070106339 | Errico et al. | May 2007 | A1 |
20070106348 | Laufer | May 2007 | A1 |
20070112349 | Danek et al. | May 2007 | A1 |
20070118184 | Danek et al. | May 2007 | A1 |
20070118190 | Danek et al. | May 2007 | A1 |
20070123922 | Cooper et al. | May 2007 | A1 |
20070123958 | Laufer | May 2007 | A1 |
20070123961 | Danek et al. | May 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070129761 | Demarais et al. | Jun 2007 | A1 |
20070135875 | Demarais et al. | Jun 2007 | A1 |
20070173899 | Levin et al. | Jul 2007 | A1 |
20070191902 | Errico et al. | Aug 2007 | A1 |
20070197896 | Moll et al. | Aug 2007 | A1 |
20070203549 | Demarais et al. | Aug 2007 | A1 |
20070225768 | Dobak, III | Sep 2007 | A1 |
20070232896 | Gilboa et al. | Oct 2007 | A1 |
20070239256 | Weber et al. | Oct 2007 | A1 |
20070244479 | Beatty et al. | Oct 2007 | A1 |
20070250050 | Lafontaine | Oct 2007 | A1 |
20070255270 | Carney | Nov 2007 | A1 |
20070255304 | Roschak et al. | Nov 2007 | A1 |
20070265639 | Danek et al. | Nov 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20070267011 | Deem et al. | Nov 2007 | A1 |
20070276362 | Rioux et al. | Nov 2007 | A1 |
20080004596 | Yun et al. | Jan 2008 | A1 |
20080021274 | Bayer et al. | Jan 2008 | A1 |
20080021369 | Deem et al. | Jan 2008 | A1 |
20080051839 | Libbus et al. | Feb 2008 | A1 |
20080086107 | Roschak | Apr 2008 | A1 |
20080097139 | Clerc et al. | Apr 2008 | A1 |
20080097422 | Edwards et al. | Apr 2008 | A1 |
20080097424 | Wizeman et al. | Apr 2008 | A1 |
20080125772 | Stone et al. | May 2008 | A1 |
20080147137 | Cohen et al. | Jun 2008 | A1 |
20080154258 | Chang et al. | Jun 2008 | A1 |
20080161801 | Steinke et al. | Jul 2008 | A1 |
20080183248 | Rezai et al. | Jul 2008 | A1 |
20080188912 | Stone et al. | Aug 2008 | A1 |
20080188913 | Stone et al. | Aug 2008 | A1 |
20080194956 | Aldrich et al. | Aug 2008 | A1 |
20080208305 | Rezai et al. | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080234564 | Beatty et al. | Sep 2008 | A1 |
20080243112 | DeNeve | Oct 2008 | A1 |
20080255449 | Warnking et al. | Oct 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20080262489 | Steinke | Oct 2008 | A1 |
20080275445 | Kelly et al. | Nov 2008 | A1 |
20080302359 | Loomas et al. | Dec 2008 | A1 |
20080306570 | Rezai et al. | Dec 2008 | A1 |
20080312543 | Laufer et al. | Dec 2008 | A1 |
20080312725 | Penner | Dec 2008 | A1 |
20080319350 | Wallace et al. | Dec 2008 | A1 |
20090018473 | Aldrich et al. | Jan 2009 | A1 |
20090018538 | Webster et al. | Jan 2009 | A1 |
20090030477 | Jarrard | Jan 2009 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090043301 | Jarrard et al. | Feb 2009 | A1 |
20090043302 | Ford et al. | Feb 2009 | A1 |
20090048593 | Ganz et al. | Feb 2009 | A1 |
20090060953 | Sandars | Mar 2009 | A1 |
20090062873 | Wu et al. | Mar 2009 | A1 |
20090069797 | Danek et al. | Mar 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090076491 | Roschak et al. | Mar 2009 | A1 |
20090112203 | Danek et al. | Apr 2009 | A1 |
20090124883 | Wibowo et al. | May 2009 | A1 |
20090131765 | Roschak et al. | May 2009 | A1 |
20090131928 | Edwards et al. | May 2009 | A1 |
20090131930 | Gelbart et al. | May 2009 | A1 |
20090143678 | Keast et al. | Jun 2009 | A1 |
20090143705 | Danek et al. | Jun 2009 | A1 |
20090143776 | Danek et al. | Jun 2009 | A1 |
20090143831 | Huston et al. | Jun 2009 | A1 |
20090155336 | Rezai | Jun 2009 | A1 |
20090177192 | Rioux et al. | Jul 2009 | A1 |
20090192505 | Askew et al. | Jul 2009 | A1 |
20090192508 | Laufer et al. | Jul 2009 | A1 |
20090204005 | Keast et al. | Aug 2009 | A1 |
20090204119 | Bleich et al. | Aug 2009 | A1 |
20090227885 | Lowery et al. | Sep 2009 | A1 |
20090227980 | Kangas et al. | Sep 2009 | A1 |
20090232850 | Manack et al. | Sep 2009 | A1 |
20090248011 | Hlavka et al. | Oct 2009 | A1 |
20090254079 | Edwards et al. | Oct 2009 | A1 |
20090254142 | Edwards et al. | Oct 2009 | A1 |
20090259274 | Simon et al. | Oct 2009 | A1 |
20090275840 | Roschak et al. | Nov 2009 | A1 |
20090275878 | Cambier et al. | Nov 2009 | A1 |
20090281593 | Errico et al. | Nov 2009 | A9 |
20090287087 | Gwerder et al. | Nov 2009 | A1 |
20090306644 | Mayse et al. | Dec 2009 | A1 |
20090318904 | Cooper et al. | Dec 2009 | A9 |
20090319002 | Simon | Dec 2009 | A1 |
20100003282 | Deem et al. | Jan 2010 | A1 |
20100004648 | Edwards et al. | Jan 2010 | A1 |
20100010564 | Simon | Jan 2010 | A1 |
20100016709 | Gilboa et al. | Jan 2010 | A1 |
20100042089 | Soltesz et al. | Feb 2010 | A1 |
20100049031 | Fruland et al. | Feb 2010 | A1 |
20100049186 | Ingle et al. | Feb 2010 | A1 |
20100049188 | Nelson et al. | Feb 2010 | A1 |
20100057178 | Simon | Mar 2010 | A1 |
20100063495 | Edwards et al. | Mar 2010 | A1 |
20100070004 | Hlavka et al. | Mar 2010 | A1 |
20100076518 | Hlavka et al. | Mar 2010 | A1 |
20100087783 | Weber et al. | Apr 2010 | A1 |
20100087809 | Edwards et al. | Apr 2010 | A1 |
20100094231 | Bleich et al. | Apr 2010 | A1 |
20100114087 | Edwards et al. | May 2010 | A1 |
20100116279 | Cooper | May 2010 | A9 |
20100125239 | Perry et al. | May 2010 | A1 |
20100130892 | Warnking | May 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100145427 | Gliner et al. | Jun 2010 | A1 |
20100152835 | Orr | Jun 2010 | A1 |
20100160906 | Jarrard | Jun 2010 | A1 |
20100160996 | Simon et al. | Jun 2010 | A1 |
20100174340 | Simon | Jul 2010 | A1 |
20100179424 | Warnking et al. | Jul 2010 | A1 |
20100185190 | Danek et al. | Jul 2010 | A1 |
20100191089 | Stebler et al. | Jul 2010 | A1 |
20100204689 | Danek et al. | Aug 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100228318 | Errico et al. | Sep 2010 | A1 |
20100241188 | Errico et al. | Sep 2010 | A1 |
20100249873 | Errico | Sep 2010 | A1 |
20100256629 | Wylie et al. | Oct 2010 | A1 |
20100256630 | Hamilton et al. | Oct 2010 | A1 |
20100268222 | Danek et al. | Oct 2010 | A1 |
20100298905 | Simon | Nov 2010 | A1 |
20100305463 | Macklem et al. | Dec 2010 | A1 |
20100318020 | Atanasoska et al. | Dec 2010 | A1 |
20100331776 | Salahieh et al. | Dec 2010 | A1 |
20110004148 | Ishii | Jan 2011 | A1 |
20110015548 | Aldrich et al. | Jan 2011 | A1 |
20110028898 | Clark, III et al. | Feb 2011 | A1 |
20110046432 | Simon et al. | Feb 2011 | A1 |
20110060380 | Gelfand et al. | Mar 2011 | A1 |
20110079230 | Danek et al. | Apr 2011 | A1 |
20110093032 | Boggs, II et al. | Apr 2011 | A1 |
20110098762 | Rezai | Apr 2011 | A1 |
20110112400 | Emery et al. | May 2011 | A1 |
20110112521 | DeLonzor et al. | May 2011 | A1 |
20110118725 | Mayse et al. | May 2011 | A1 |
20110125203 | Simon et al. | May 2011 | A1 |
20110125213 | Simon et al. | May 2011 | A1 |
20110130708 | Perry et al. | Jun 2011 | A1 |
20110137284 | Arora et al. | Jun 2011 | A1 |
20110144630 | Loeb | Jun 2011 | A1 |
20110146673 | Keast et al. | Jun 2011 | A1 |
20110146674 | Roschak | Jun 2011 | A1 |
20110152855 | Mayse et al. | Jun 2011 | A1 |
20110152967 | Simon et al. | Jun 2011 | A1 |
20110152974 | Rezai et al. | Jun 2011 | A1 |
20110166499 | Demarais et al. | Jul 2011 | A1 |
20110166565 | Wizeman et al. | Jul 2011 | A1 |
20110172655 | Biggs et al. | Jul 2011 | A1 |
20110172658 | Gelbart et al. | Jul 2011 | A1 |
20110178569 | Pamis et al. | Jul 2011 | A1 |
20110184330 | Laufer et al. | Jul 2011 | A1 |
20110190569 | Simon et al. | Aug 2011 | A1 |
20110196288 | Kaplan et al. | Aug 2011 | A1 |
20110202098 | Demarais et al. | Aug 2011 | A1 |
20110224768 | Edwards | Sep 2011 | A1 |
20110230701 | Simon et al. | Sep 2011 | A1 |
20110230938 | Simon et al. | Sep 2011 | A1 |
20110245756 | Arora et al. | Oct 2011 | A1 |
20110251592 | Biggs et al. | Oct 2011 | A1 |
20110257622 | Salahieh et al. | Oct 2011 | A1 |
20110257647 | Mayse et al. | Oct 2011 | A1 |
20110263960 | Mitchell | Oct 2011 | A1 |
20110264086 | Ingle | Oct 2011 | A1 |
20110270249 | Utley et al. | Nov 2011 | A1 |
20110276107 | Simon et al. | Nov 2011 | A1 |
20110276112 | Simon et al. | Nov 2011 | A1 |
20110282229 | Danek et al. | Nov 2011 | A1 |
20110282418 | Saunders et al. | Nov 2011 | A1 |
20110301587 | Deem et al. | Dec 2011 | A1 |
20110301664 | Rezai | Dec 2011 | A1 |
20110301679 | Rezai et al. | Dec 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20110306904 | Jacobson et al. | Dec 2011 | A1 |
20110306997 | Roschak et al. | Dec 2011 | A9 |
20110319958 | Simon et al. | Dec 2011 | A1 |
20120004656 | Jackson et al. | Jan 2012 | A1 |
20120015019 | Pacetti et al. | Jan 2012 | A1 |
20120016256 | Mabary et al. | Jan 2012 | A1 |
20120016358 | Mayse et al. | Jan 2012 | A1 |
20120016363 | Mayse et al. | Jan 2012 | A1 |
20120016364 | Mayse et al. | Jan 2012 | A1 |
20120029261 | Deem et al. | Feb 2012 | A1 |
20120029500 | Jenson | Feb 2012 | A1 |
20120029512 | Willard et al. | Feb 2012 | A1 |
20120029591 | Simon et al. | Feb 2012 | A1 |
20120029601 | Simon et al. | Feb 2012 | A1 |
20120041412 | Roth et al. | Feb 2012 | A1 |
20120041509 | Knudson et al. | Feb 2012 | A1 |
20120071870 | Salahieh et al. | Mar 2012 | A1 |
20120078096 | Krolik et al. | Mar 2012 | A1 |
20120083734 | Ayres et al. | Apr 2012 | A1 |
20120089078 | Deem et al. | Apr 2012 | A1 |
20120089138 | Edwards et al. | Apr 2012 | A1 |
20120101326 | Simon et al. | Apr 2012 | A1 |
20120101413 | Beetel et al. | Apr 2012 | A1 |
20120109278 | Sih | May 2012 | A1 |
20120143132 | Orlowski | Jun 2012 | A1 |
20120143177 | Avitall | Jun 2012 | A1 |
20120143179 | Avitall | Jun 2012 | A1 |
20120143181 | Demarais et al. | Jun 2012 | A1 |
20120157986 | Stone et al. | Jun 2012 | A1 |
20120157987 | Steinke et al. | Jun 2012 | A1 |
20120157988 | Stone et al. | Jun 2012 | A1 |
20120157989 | Stone et al. | Jun 2012 | A1 |
20120158101 | Stone et al. | Jun 2012 | A1 |
20120165803 | Bencini et al. | Jun 2012 | A1 |
20120184801 | Simon et al. | Jul 2012 | A1 |
20120185020 | Simon et al. | Jul 2012 | A1 |
20120191081 | Markowitz | Jul 2012 | A1 |
20120191082 | Markowitz | Jul 2012 | A1 |
20120197100 | Razavi et al. | Aug 2012 | A1 |
20120197246 | Mauch | Aug 2012 | A1 |
20120197251 | Edwards et al. | Aug 2012 | A1 |
20120203067 | Higgins et al. | Aug 2012 | A1 |
20120203216 | Mayse et al. | Aug 2012 | A1 |
20120203222 | Mayse et al. | Aug 2012 | A1 |
20120209118 | Warnking | Aug 2012 | A1 |
20120209259 | Danek et al. | Aug 2012 | A1 |
20120209261 | Mayse et al. | Aug 2012 | A1 |
20120209296 | Mayse et al. | Aug 2012 | A1 |
20120221087 | Pamis et al. | Aug 2012 | A1 |
20120232436 | Warnking | Sep 2012 | A1 |
20120245415 | Emura et al. | Sep 2012 | A1 |
20120253442 | Gliner et al. | Oct 2012 | A1 |
20120259263 | Celermajer et al. | Oct 2012 | A1 |
20120259269 | Meyer | Oct 2012 | A1 |
20120259326 | Brannan et al. | Oct 2012 | A1 |
20120265280 | Errico et al. | Oct 2012 | A1 |
20120289952 | Utley et al. | Nov 2012 | A1 |
20120290035 | Levine et al. | Nov 2012 | A1 |
20120294424 | Chin et al. | Nov 2012 | A1 |
20120296329 | Ng | Nov 2012 | A1 |
20120302909 | Mayse et al. | Nov 2012 | A1 |
20120310233 | Dimmer et al. | Dec 2012 | A1 |
20120316552 | Mayse et al. | Dec 2012 | A1 |
20120316559 | Mayse et al. | Dec 2012 | A1 |
20120330298 | Ganz et al. | Dec 2012 | A1 |
20130012844 | Demarais et al. | Jan 2013 | A1 |
20130012866 | Deem et al. | Jan 2013 | A1 |
20130012867 | Demarais et al. | Jan 2013 | A1 |
20130035576 | O'Grady et al. | Feb 2013 | A1 |
20130123751 | Deem et al. | May 2013 | A1 |
20130289555 | Mayse et al. | Oct 2013 | A1 |
20130289556 | Mayse et al. | Oct 2013 | A1 |
20130296647 | Mayse et al. | Nov 2013 | A1 |
20130303948 | Deem et al. | Nov 2013 | A1 |
20130310822 | Mayse et al. | Nov 2013 | A1 |
20130345700 | Hlavka et al. | Dec 2013 | A1 |
20140186341 | Mayse | Jul 2014 | A1 |
20140236148 | Hlavka et al. | Aug 2014 | A1 |
20140257271 | Mayse et al. | Sep 2014 | A1 |
20140276792 | Kaveckis et al. | Sep 2014 | A1 |
20150051597 | Mayse et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
2419228 | Aug 2004 | CA |
101115448 | Jan 2008 | CN |
101115448 | May 2010 | CN |
19529634 | Feb 1997 | DE |
19952505 | May 2001 | DE |
189329 | Jun 1987 | EP |
286145 | Oct 1988 | EP |
280225 | Mar 1989 | EP |
286145 | Oct 1990 | EP |
282225 | Jun 1992 | EP |
0 643 982 | Mar 1995 | EP |
908713 | Apr 1999 | EP |
1 143 864 | Oct 2001 | EP |
1 271 384 | Jan 2003 | EP |
1 281 366 | Feb 2003 | EP |
908150 | May 2003 | EP |
1 326 548 | Jul 2003 | EP |
1 326 549 | Jul 2003 | EP |
768091 | Jul 2003 | EP |
1 400 204 | Mar 2004 | EP |
1297795 | Aug 2005 | EP |
1 588 662 | Oct 2005 | EP |
2659240 | Jul 1997 | FR |
2233293 | Jan 1991 | GB |
59167707 | Sep 1984 | JP |
7289557 | Nov 1995 | JP |
9047518 | Feb 1997 | JP |
9243837 | Sep 1997 | JP |
10026709 | Jan 1998 | JP |
2053814 | Feb 1996 | RU |
2091054 | Sep 1997 | RU |
545358 | Feb 1977 | SU |
8911311 | Nov 1989 | WO |
9301862 | Feb 1993 | WO |
9316632 | Sep 1993 | WO |
9407446 | Apr 1994 | WO |
9501075 | Jan 1995 | WO |
9510322 | Jan 1995 | WO |
9510322 | Apr 1995 | WO |
9604860 | Feb 1996 | WO |
9610961 | Apr 1996 | WO |
9725917 | Jul 1997 | WO |
9732532 | Sep 1997 | WO |
9733715 | Sep 1997 | WO |
9737715 | Oct 1997 | WO |
9740751 | Nov 1997 | WO |
9818391 | May 1998 | WO |
9844854 | Oct 1998 | WO |
9852480 | Nov 1998 | WO |
9856234 | Dec 1998 | WO |
9856324 | Dec 1998 | WO |
9903413 | Jan 1999 | WO |
9858681 | Mar 1999 | WO |
9913779 | Mar 1999 | WO |
9932040 | Jul 1999 | WO |
9942047 | Aug 1999 | WO |
9964109 | Dec 1999 | WO |
0010598 | Mar 2000 | WO |
0051510 | Sep 2000 | WO |
0062699 | Oct 2000 | WO |
0066017 | Nov 2000 | WO |
0100114 | Jan 2001 | WO |
0103642 | Jan 2001 | WO |
0170114 | Sep 2001 | WO |
0189526 | Nov 2001 | WO |
0205720 | Jan 2002 | WO |
0205868 | Jan 2002 | WO |
0232333 | Apr 2002 | WO |
0232334 | Apr 2002 | WO |
03073358 | Sep 2003 | WO |
03088820 | Oct 2003 | WO |
2004078252 | Sep 2004 | WO |
2004082736 | Sep 2004 | WO |
2004101028 | Nov 2004 | WO |
2005006963 | Jan 2005 | WO |
2005006964 | Jan 2005 | WO |
2006053308 | May 2006 | WO |
2006053309 | May 2006 | WO |
2006116198 | Nov 2006 | WO |
2007058780 | May 2007 | WO |
2007061982 | May 2007 | WO |
2007092062 | Aug 2007 | WO |
2007094828 | Aug 2007 | WO |
2007143665 | Dec 2007 | WO |
2008005953 | Jan 2008 | WO |
2008024220 | Feb 2008 | WO |
2008051706 | May 2008 | WO |
2008063935 | May 2008 | WO |
2009009236 | Jan 2009 | WO |
2009015278 | Jan 2009 | WO |
2009082433 | Jul 2009 | WO |
2009126383 | Oct 2009 | WO |
2009137819 | Nov 2009 | WO |
2010110785 | Sep 2010 | WO |
2011060200 | May 2011 | WO |
Entry |
---|
Bradley et al., “Effect of vagotomy on the breathing pattern and exercise ability in emphysematous patients,” Clinical Science 62:311-319, 1982. |
Breekveldt-Postma et al., “Enhanced persistence with tiotropium compared with other respiratory drugs in COPD,” Respiratory Medicine 101:1398-1405,2007. |
Chemyshova et al., “The Effect of Low-Energy Laser Radiation in the Infrared Spectrum on Bronchial Patency in Children With Bronchial Asthma,” Vopr Kurortol, Fizioter Lech Fiz Kult 2:11-14, 1995. |
Chumakov et al., “Morphologic studies of bronchial biopsies in chronic bronchitis before and after treatment,” Arkh Patol57(6):21-25, 1995. (See English Abstract on last page.). |
Dimitrov-Szokodi et al., “Lung Denervation in the Therapy oflntractable Bronchial Asthma,” J. Thoracic Surg. 33(2):166-184, Feb. 1957. |
Donohue et al., “A 6-Month, Placebo-Controlled Study Comparing Lung Function and Health Status Changes in COPD Patients Treated With Tiotropium or Salmeterol,” Chest 122:47-55, 2002. |
Friedman et al., “Healthcare Costs with Tiotropium Plus Usual Care versus Usual Care Alone Following 1 Year of Treatment in Patients with Chronic Obstructive Pulmonary Disorder (COPD),” Pharmacoeconomics 22(11):741-749, 2004. |
George et al., “Factors Associated With Medication Nonadherence in Patients With COPD,” Chest 128:3198-3204,2005. |
Korochkin et al., “Use of a Helium-Neon Laser in Combined Treatment of Bronchial Asthma,” New Developments in Diagnostics and Treatment, 1990, 9 pgs. |
Lokke et al., “Developing COPD: a 25 year follow up study of the general population,” Thorax 61:935-939, 2006. |
Maesen et al., “Tiotropium bromide, a new long-acting antimuscarinic bronchodilator: a pharmacodynamic study in patients with chronic obstructive pulmonary disease (COPD),” Eur. Respi. J. 8:1506-1513, 1995. |
Maltais et al., “Improvements in Symptom-Limited Exercise Performance Over 8 h With Once-Daily Tiotropium in Patients With COPD,” Chest 128:1168-1178, 2005. |
O'Connor et al., “Prolonged Effect ofTiotropium Bromide on Methacholine-induced Bronchoconstriction in Asthma,” Am. J. Respir. Crit. Care Med. 154:876-880, 1996. |
Peters et al., “Tiotropium Bromide Step-Up Therapy for Adults with Uncontrolled Asthma,” New England Journal of Medicine 363(18):1715-1726, Oct. 28, 2010. |
Polosukhin, “Dynamics of the ultrastructural changes in blood and lymphatic capillaries ofbronchi in inflammation and following endobronchial laser therapy,” Virchows Arch 431:283-390, 1997. |
Polosukhin, “Regeneration of bronchial epithelium on chronic inflammatory changes under laser treatment,” Path. Res. Pract. 192(9):909-918, 1996. |
Polosukhin, “Ultrastructural study of the destructive and repair processes in pulmonary inflammation and following endobronchial laser therapy,” Virchows Arch 435:13-19, 1999. |
Tashkin et al., “Long-term Treatment Benefits With Tiotropium in COPD Patients With and Without Short-term Bronchodilator Responses,” Chest 123: 1441-1449, 2003. |
Vincken et al., “Improved health outcomes in patients with COPD during 1 yr's treatment with tiotropium,” Eur. Respir. J. 19: 209-216, 2002. |
Wagner et al., “Methacholine causes reflex bronchoconstriction,” J. Appl. Physiol. 86:294-297, 1999. |
Abbott, “Present Concepts Relative to Autonomic Nerve Surgery in the Treatment of Pulmonary Disease,” American Journal of Surgery 90:479-489, 1955. |
Ahnert-Hilger et al., “Introduction of Macromolecules into Bovine Adrenal-Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion,” J Neurochem 52(6):1751-1758, Jun. 1989. |
Babichev et al., “Clinico-morphological comparisons in patients with bronchial asthma aftet denervation of the lungs,” Sov Med. 12:13-16, 1985. |
Babichev et al., “Long-term results of surgical treatment of bronchial asthma based on adaptive response,” Khirurgiia (Mask) 4:5-11, 1993. |
Babichev et al., “Partial deneration of the lungs in bronchial asthma,” Khirurgiia (Mask) 4:31-35, 1985. |
Barlaw, “Surgical Treatment of Asthma,” Postgrad Med. Journal 25:193-196, 1949. |
Bester et al., “Recovery of C-Fiber-Induced Extravasation Following Peripheral Nerve Injury in the Rat,” Experimental Neurology 154:628-636, 1998. |
Bigalke et al., “Clostridial Neurotoxins,” Handbook of Experimental Pharmacology (Aktories, K, and Just, I., eds) 145:407-443, 2000. |
Bittner et al., “Isolated Light Chains of Botulinum Neurotoxins Inhibit Exocytosis,” The Journal of Biological Chemistry 264(18):10354-10360, 1989. |
Blindt et al., “Development of a New Biodegradable Intravascular Polymer Stent with Simultaneous Incorporation ofBioactive Substances,” The International Journal of Artificial Organs 22(12):843-853, 1999. |
Brody et al., “Mucociliary clearance after lung denervation and bronchial transection,” J Applied Physiology 32(2):160-164, 1972. |
Buzzi, “Diphtheria Toxin Treatment of Human Advanced Cancer,” Cancer Research 42:2054-2058, 1982. |
Canning et al., “Reflex Mechanisms in Gastroesophageal Reflux Disease and Asthma,” The American Journal of Medicine 115(3A):45S-48S, 2003. |
Canning et al., “Reflex Mechanisms in Gastroesophageal Reflux Disease and Asthma,” Am J Med. 115(Suppl3A):45S-48S, 2003. (Abstract only.). |
Canning, “Reflex regulation of airway smooth muscle tone,” J Appl. Physiol. (1OJ):971-985,2006. |
Chaddock et al. “Expression and Purification of Catalytically Active, Non-Toxic Endopeptidase Derivatives of Clostridium botulinum Toxin Type A,” Protein Expression and Purification 25(2):219-228, Jul. 2002. |
Chang, “Cell poration and cell fusion using an oscillating electric field,” Biophys. J 56:641 652, 1989. |
Chemyshova et al., “The Effect of Low-Energy Laser Radiation in the Infrared Spectrum Oil Bronchial Patency in Children with Bronchial Asthma,” Vopr Kurortol Fizioter Lech Fiz Kult 2:11-14, 1995. (+English translation, 6 pages.). |
Chumakov et al., “Morphologic Studies of Bronchial Biopsies in Chronic Bronchitis Before and After Treatment,” Arkh. Patol. 57(6):21-25, 1995. (+English abstract and translation, 8 pages.). |
Crimi et al., “Protective effects of inhaled ipratropium bromide on bronchoconstriction induced by adenosine and methacholine in asthma,” Eur Respir J 5:560-565, 1992. |
De Paiva et al., “Light chain of botulinum neurotoxin is active in mammalian motor nerve terminals when delivered via liposomes,” FEES Lett. 17:277(1-2): 171-174, Dec. 1990. |
Feshenko et al., “Clinico-morphological comparisons in the laser therapy of chronic bronchitis patients,” Lik Sprava. (10-12):75-79, 1993. (+English abstract, 1 Page.). |
Gelb et al., “Laser in treatment of lung cancer,” Chest 86(5):662-666, 1984. |
Gerasin et al., “Endobronchial electrosurgery,” Chest 93:270-274, 1988. |
Gibson et al., “Gastroesophageal Reflux Treatment for Asthma in Adults and Children,” Cochrane Database Syst. Rev. 2:CD001496, 2003. (Abstract only.). |
Glanville et al., “Bronchial responsiveness after human heart-lung transplantation,” Chest 97(6):1360-1366, 1990. |
Glanville et al., “Bronchial responsiveness to exercise after human cardiopulmonary transplantation,” Chest 96(2):81-286, 1989. |
Gosens et al., “Muscarinic receptor signaling in the pathophysiology of asthma and COPD,” Respiratory Research 7(73):1-15, 2006. |
Groeben et al. “High Thoracic Epidural Anesthesia Does Not Alter Airway Resistance and Attenuates the Response to an Inhalational Provocation Test in Patients with Bronchial Hyperreactivity,” Anesthesiolozy 81(4):868-874, 1994. |
Guarini et al., “Efferent Vagal Fibre Stimulation Blunts Nuclear Factor-kB Activation and Protects Against Hypovolemic Hemmorrhagic Shock,” Circulation 107:1189-1194, 2003. |
Guzman et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius,” Ultrasound in Med. & Biol. 29(8): 1211-1222, 2003. |
Hainsworth et al., “Afferent lung denervation by brief inhalation of steam,” Journal of Applied Physiology (34)5: 708-714, 1972. |
Harding, “Recent Clinical Investigations Examining the Association of Asthma and Gastroesophageal Reflux,” Am J Med. 115(Suppl3A):39S-44S, 2003. (Abstract only.). |
Hiraga, “Experimental surgical therapy of bronchial asthma. The effect of denervation in dogs,” Nihon Kyobu Shikkan Gakkai Zasshi 19(1):46-56, 1981. |
Hoffmann et al., “Inhibition of Histamine-Induced Bronchoconstriction in Guinea Pig and Swine by Pulsed Electrical Vagus Nerve Stimulation,” Neuromodulation: Technology at the Neural Inter{ace: 1-9, 2009. |
Hooper et al., “Endobronchial electrocautery,” Chest 87(6):12-714, 1985. |
Ivanyuta OM, et al., “Effect of Low-Power Laser Irradiation of Bronchia Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis,” Problemy Tuberkuleza 6:26-29, 1991. |
Jammes et al., “Assessment of the Pulmonary Origin of Bronchoconstrictor Vagal Tone,” J Physiol. 291: 305-316, 1979. |
Jiang et al., “Effects of Antireflux Treatment on Bronchial Hyper-responsiveness and Lung Function in Asthmatic Patients with Gastroesophageal Reflux Disease,” World J Gastroenterol. 9:1123-1125, 2003. (Abstract only.). |
Karashurov et al., “Electrostimulation in the therapy of bronchial asthma,” Klin Med (Mask) 79(11):38-41, 2001. |
Karashurov et al., “Radiofrequency electrostimulation of carotid sinus nerves for the treatment ofbronchial asthma,” Khirurgiia (Mask) 12:2-6, 1999. |
Khmel'kova et al., “Does laser irridation affect bronchial obstruction?,” Probl Tuberk 3:41-42, 1995. (Abstract only.). |
Khoshoo et al., “Role of Gastroesophageal Reflux in Older Children with Persistent Asthma,” Chest 123:1008-1013,2003. (Abstract only.). |
Kiljander, “The Role ofProton Pump Inhibitors in the Management of Gastroesophageal Reflux Disease-Related Asthma and Chronic Cough,” Am J Med. 115(Suppl3A):65S-71S, 2003. (Abstract only.). |
Kistner et al., “Reductive Cleavage of Tetanus Toxin and Botulinum Neurotoxin A by the Thioredoxin System from Brain,” Naunyn-Schmiedebergs Arch Pharmacal 345(2):227-234, Feb. 1992. |
Kletskin et al., “Value of assessing the autonomic nervous system in bronchial asthma in selecting the surgical treatment method,” Khirurgiia (Mask) 7:91-95, 1987. |
Kliachkin et al., “Bronchoscopy in the treatment of bronchial asthma of infectious allergic origin,” Ter Arkh 54(4):76-79, 1982. |
Korpela et al., “Comparison of Tissue Reactions in the Tracheal Mucosa Surrounding a Bioabsorbable and Silicone Airway Stents,” Annals of Thoracic Surgery 66:1772-1776, 1998. |
Kozaki et al., “New surgical treatment of bronchial asthma—denervation of the hilus pulmonis (2),” Nippon Kyobu Geka Gakkai Zasshi 22(5):465-466, 1974. |
Kreitman, “Taming ricin toxin,” Nature Biotechnology 21:372-374,2003. |
Kuntz, “The Autonomic Nervous System in Relation to the Thoracic Viscera,” Chest 10:1-18, 1944. |
Lennerz et al., “Electrophysiological characterization of vagal afferents relevant to mucosal nociception in the rat upper oesophagus,” J Physiol. 582(1):229-242, 2007. |
Levin, “The Treatment ofBronchial Asthma by Dorsal Sympathectomy,” Annals of Surgery 102(2):161-170, 1935. |
Liou et al., “Causative and Contributive Factors to Asthmas Severity and Patterns of Medication Use in Patients Seeking Specialized Asthma Care,” Chest 124:1781-1788,2003. (Abstract only.). |
Magnussen et al., “Effect ofInhaled Ipratropium Bromide on the Airway Response to Methacholine, Histamine, and Exercise in Patients with Mild Bronchial Asthma,” Respiration 59:42-47, 1992. |
Mathew et al., “Gastro-oesophageal reflux and bronchial asthma: current status and future directions,” Postgrad Med. J 80:701-705,2004. |
McKay et al., “Autocrine regulation of asthmatic airway inflammation: role of airway smooth muscle,” Respir Res 3(11):1-13, 2002. |
Mehta et al., “Effect of endobronchial radiation therapy on malignant bronchial obstruction,” Chest 97(3):662-665, 1990. |
Meshalkin et al., “Partial denervation of the pulmonary hilus as one of the methods of surgical treatment of bronchial asthma,” Grudn Khir 1:109-111, 1975. |
Moore, Keith L., Clinically Oriented Anatomy, 2nd ed., Williams & Wilkins, Baltimore, 1985, pp. 85 and 87. (Abstract only.). |
Netter, Frank H., The Ciba Collection of Medical Illustrations: vol. 7, Respiratory System, CIBA-GEIGY Corporation, West Caldwell, 1979, p. 23, section 1. (Abstract only. |
Ochs, Matthias et al., Fisherman, Alfred P., et al. (eds), Functional Design of the Human Lungfor Gas Exchange, 4th ed., McGraw Hill Medical, New York, 2008, Chap. 2, “Fisherman's Pulmonary Diseases and Disorders.” (Abstract only.). |
Ovcharenko et al., “Endobronchial use oflow-frequency ultrasound and ultraviolet laser radiation in the complex treatment of patients with suppurative bronchial diseases,” Probl Tuberk 3:40-42, 1997. (Abstract only.). |
Overholt, “Glomectomy for Asthma,” Dis Chest 40:605-610, 1961. |
Petrou, et al., “Bronchoscopic Diathermy Resection and Stent Insertion: a Cost Effective Treatment for Tracheobronchial Obstruction,” Thorax 48:1156-1159, 1993. |
Polosukhin, “Dynamics of the ultrastructural changes in blood and lymphatic capillaries of bronchi in inflammation and following endobronchial laser therapy,” Virchows Arch. 431:283-290, 1997. |
Polosukhin, “Regeneration of Bronchial Epithelium on Chronic Inflammatory Changes Under Laser Treatment,” Path. Res. Pract. 192:909-918, 1996. |
Polosukhin, “Ultrastructural study of the destructive and repair processes in pulmonary inflammation and following endobronchial laser therapy,” Virchows Arch. 435:13-19, 1999. |
Polosukhin, “Ultrastructure of the Blood and Lymphatic Capillaries of the Respiratory Tissue During Inflammation and Endobronchial Laser Therapy,” Ultrastructural Pathology 24:183-189, 2000. |
Provotorov VM, et al., “Clinical Efficacy of Treatment of Patients with Non-Specific Pulmonary Diseases by Using Low-Power Laser Irradiation and Performing Intrapulmonary Drug Administration,” Terapevichesky Arkhiv 62:18-23, 1991. |
Raj, “Editorial,” Pain Practice 4(1S): S1-S3, 2004. |
Ramirez et al., “Sympathetomy in Bronchial Asthma,” J A.M. A. 84 (26):2002-2003, 1925. |
Rienhoff et al., “Treatment oflntractable Bronchial Asthma by Bilateral Resection of the Posterior Pulmonary Plexus,” Arch Surg 37(3):456-469, 1938. |
Savchenko et al., “Adaptation of regulatory physiological systems in surgical treatment of patients with bronchial asthma,” Klin Med (Mask) 74(7):38-39, 1996. |
Sengupta, “Part 1 Oral cavity, pharynx and esophagus—Esophageal sensory physiology,” GI Motility online:17 pages, 2006. |
Sepulveda et al., “Treatment of Asthmatic Bronchoconstriction by Percutaneous Low Voltage Vagal Nerve Stimulation: Case Report,” Internet Journal of Asthma, Allergy, and Immunolo;zy 7(2):3 pages, 2009. |
Shaari et al., “Rhinorrhea is Decreased in Dogs After Nasal Application of Botulinum.Toxin,” Otolaryngol Head Neck Surg 112(14):566-571, 1992. |
Sheski FD, et al., “Cryotherapy, Electrocautery, and Brachytherapy,” Clinics in Chest Medicine 20(1):123-138, Mar. 1999. |
Sil'vestrov et al., “The Clinico-Pathogenetic Validation and Efficacy of the Use ofLow-Energy Laser Irradiation and Glucocorticoids in the Treatment of Bronchial Asthma Patients,” Ter Arkh 63(11), 87-92, 1991. |
Simonsson et al., “Role of Autonomic Nervous System and the Cough Reflex in the Increased Responsiveness of Airways in Patients with Obstructive Airway Disease,” The Journal ofClinical Investigation 46(11): 1812-1818, 1967. |
Simpson et al., “Isolation and Characterization of the Botulinum Neurotoxins,” Methods Enzymol165:76-85, 1988. |
Smakov, “Denervation of the lung in the treatment ofbronchial asthma,” Khirurgiia (Mask) 9:117-120, 1982. |
Smakov, “Pathogenetic substantiation of lung denervation in bronchial asthma and it's indications,” Khirurgiia (Mask) 2:67-69, 1999. |
Smakov, “Prognostication of the effect of therapeutic bronchoscopy in patients with bronchial asthma according to the state oflocal immunity,” Klin Med (Mask) 73(5):76-77, 1995. |
Sontag et al., “Asthmatics with Gastroesophageal Reflux: Long-term Results of a Randomized Trial of Medical and Surgical Antireflux Therapies,” Am J Gastroenterol. 98:987-999, 2003. (Abstract only.). |
Stein, “Possible Mechanisms of Influence of Esophageal Acid on Airway Hyperresponsiveness,” Am J Med. 115(Suppl3A):55S-59S, 2003. (Abstract only.). |
Sundaram et al., “An Experimental and Theoretical Analysis ofUltrasound-Induced Permeabilization of Cell Membranes,” Biophysical Journal84:3087-3101, 2003. |
Takino et al., “Surgical Removal of the Carotid Body and its Relation to the Carotid Chemoreceptor and Baroreceptor Reflex in Asthmatics,” Dis Chest 47:129-138, 1965. |
Tsugeno et al., “A Proton-Pump Inhibitor, Rabeprazole, Improves Ventilatory Function in Patients with Asthma Associated with Gastroesophageal Reflux,” Scand J Gastroenterol. 38:456-461, 2003. (Abstract only.). |
Tsuji et al., “Biodegradable Stents as a Platform to Drug Loading,” International Journal of Cardiovascular Interventions 5:13-16, 2003. |
Unal et al., “Effect of Botulinum Toxin Type A on Nasal Symptoms in Patients with Allergic Rhinitis: A Double-blind, Placebo-controlled Clinical Trial,” Acta Oto-Laryngologica 123(9):1060-0163, Dec. 2003. |
Van Boxem TJM, et al., “Tissue Effects ofBronchoscopic Electrocautery,” Chest 117(3):887-891, Mar. 1999. |
van der Velden et al., “Autonomic Innervation of Human Airways: Structure, Function, and Pathophysiology in Asthma,” Neuroimmunomodulation 6:145-159, 1999. |
Verhein et al., “Neural Control of Airway Inflammation,” Current Allergy and Asthma Reports 9:484-490, 2009. |
Vorotnev et al., “Treatment of Patients with Chronic Obstructive Bronchitis Using Low Energy Laser at a General Rehabilitation Center,” Therapeutic Archive 3:17-19, 1997. (+English translation, 4 pages.). |
Wahidi et al., “State of the Art: Interventional Pulmonology,” Chest 131:261-274, 2007. |
Weaver, “Electroporation: A General Phenomenon for Manipulating Cells and Tissues,” Journal ofCellular Biochemistry 51(4):426-435, Apr. 1993. |
Wirtz et al., “Bilateral Lung Transplantation for Severe Persistent and Difficult Asthma,” The Journal of Heart and LunTransplantation 24(10):1700-1703, 2005. |
Laufer, “Method and Apparatus for Treating Smooth Muscles in the Walls of Body Conduits,” U.S. Appl. No. 09/095,323, filed Jun. 10, 1998,25 pages. |
Application and File History for U.S. Appl. No. 14/541,931, filed Nov. 11, 2010, inventors Mayse et al., issued as U.S. Pat. No. 8,911,439 on Dec. 16, 2014. |
Global Strategy for Asthma Management and Prevention, 2002, 192 Pages Total. |
James, et al., “The Mechanics of Airway Narrowing in Asthma,” Am. Rev. Respir. Dis., 1989, 139, 242-246. |
Janssen L. J., “Asthma therapy: how far have we come, why did we fail and where should we go next?,” Eur Respir J, 2009, 33, pp. 11-20. |
Kitamura S., “Color Atlas of Clinical Application ofFiberoptic Bronchoscopy,” 1990, Year Book Medical Publishers, 17. |
Kraft M., “The distal airways: are they Important in asthma?,” European Respiratory, 1999, 1403-1417. |
Notice of final Rejection, Japanese Patent Application No. 2000-553172, dated Sep. 2, 2008, 5 pages. |
PCT International search report for application No. PCT/US00/05412 mailed on Jun. 20, 2000, 2 pages. |
PCT International search report for application No. PCT/US00/18197 mailed on Oct. 3, 2000, 1 page. |
PCT International search report for application No. PCT/US00/28745 mailed on Mar. 28, 2001, 6 pages. |
PCT International search report for application No. PCT/USO1/32321 mailed on Jan. 18, 2002, 2 pages. |
PCT International search report for application No. PCT/US98/03759 mailed on Jul. 30, 1998, 1 page. |
PCT International search report for application No. PCT/US98/26227 mailed on Mar. 25, 1999, 1 page. |
PCT International search report for application No. PCT/US99/00232 mailed on Mar. 4, 1999, 1 page. |
PCT International search report for application No. PCT/US99/12986 mailed on Sep. 29, 1999, 1 page. |
Peter K. Jeffery, “Remodeling in Asthma and Chronic Obstructive Lung Disease,” American Journal ofRespiratory and Critical Care Medicine, 2001, 164 (10), 13516. |
Seow C. Y., et al. “Signal Transduction in Smooth Muscle Historical perspective on airway smooth muscle: the saga of a frustrated cell,” J Appl Physiol, 2001, 91, 938-952. |
Stephanie Ashore, “Airway Smooth Muscle in Asthma—Not Just More of the Same.” N Enol J Med, 2004,351 (6), 531-532. |
UNSW Embryo—Respiratory System [online]. Embryology, 2007, [retrieved on Dec. 10, 2007]. Retrieved from the internet: (URL: http://embryology.med.unsw.edu.au/Refer/respire/select.htm). |
Wayne Mitzner, “Airway Smooth Muscle the appendix of the Lung,” American Journal of Respiratory and Critical Care Medicine, 2004, 169, 787-790. |
Wayne Mitzner, “Bronchial Thermoplasty in Asthma,” Allergology International, 2006, 55, 225-234. |
Non-Final Office Action for U.S. Appl. No. 11/398,353; Mailed on Aug. 31, 2009; 7 pages. |
Non-Final Office Action for U.S. Appl. No. 11/398,353; Mailed on Apr. 27, 2010; 8 pages. |
Simon R. Johnson et al., Synthetic Functions of Airway Smooth Muscle in Asthma, Trends Pharmacal. Sci., Aug. 1997, 18(8), 288-292. |
Macklem P.T., Mechanical Factors Determining Maximum Bronchoconstriction, European Respiratory Journal, Jun. 1989, 6, 516s-519s. |
James C. Hogg, The Pathology of Asthma, APMIS, Oct. 1997, 105(10), 735-745. |
Dierkesmann et al., Indication and Results of Endobronchial Laser Therapy, Lung, 1990, 168, 1095-1102. |
Netter F.H., Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases, In the CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit New Jersey, 1979, vol. 7, 119-135. |
Provotorov et al.; The Clinical Efficacy of Treating Patients with Nonspecific Lung Disease by Using Low-energy Laser Irradiation and Intrapulmonary Drug Administration, ISSN: 0040-3660., Terapevticheskii Arkhiv (USSR), 1991, 63 (12), 18-23. |
Wiggs B.R. et al., On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways, J. Appl. Physiol., Dec. 1997, 83(6), 1814-1821. |
An, S. S. et al., Airway smooth muscle dynamics; a common pathway of airway obstruction in asthma, European Respiratory Journal, 2007, vol. 29, No. 5, pp. 834-860. |
Bel, E, H., Hot Stuff: Bronchial Thermoplasty for Asthma, American Journal of Respiratory and Critical Care Medicine, 2006, vol. 173, pp. 941-942. |
Brown, R. H. et al., In vivo evaluation of the effectiveness of bronchial thermoplasty with computed tomography. Journal of Applied Physiology, 2005, vol. 98, pp. 1603-1606. |
Chhajed, P., Will There be a Role for Bronchoscopic Radiofrequency Ablation?, 2005, J Bronchol, vol. 12, No. 3, p. 184. |
Cox, G., et al, . Early Clinical Experience With Bronchial Thermoplasty for the Treatment of Asthma, 2002, p. 1068. |
Cox, G. et al., Asthma Control During the Year After Bronchial Thermoplasty, The New England Journal of Medicine, Mar. 29, 2007, vol. 356, No. 13, pp. 1327-1337. |
Cox. G. et al., Bronchial Thermoplasty: One-Year Update, American Thoracic Society Annual Meeting, 2004, p. 1. |
Cox, G., et al., Development of a Novel Bronchoscope Therapy for Asthma, Journal of Allergy and Clinical Immunology, 2003, p. 1. |
Cox, G., et al., Bronchial Thermoplasty for Asthma, American Journal of Respiratory and Critical Care Medicine, 2006, vol. 173, pp. 965-969. |
Cox, G., et al., Bronchial Thermoplasty: Long-Term Follow-up and Patient Satisfaction, 2004, p. 1. |
Cox, G., et al., Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations, European Respiratory Journal, 2004, 24, pp. 659-663. |
Cox, G., et al., Clinical Experience with Bronchial Thermoplasty for the Treatment of Asthma, 2003, Chest 124, p. 106S. |
Cox, G., et al., Impact of bronchial thermoplasty on asthma status: interim results from the AIR trial, 2006, European Respiratory Society Annual. Meeting, Munich, Germany, p. 1. |
Danek, C. J., et al., Bronchial thermoplasty reduces canine airway responsiveness to local methacholine challenge, 2002, American Thoracic Society Annual Meeting, p. 1. |
Danek, C. J., et al., Asthma Intervention Research (AIR) Trial Evaluating Bronchial Thermoplasty™; Early Results, 2002, American Thoracic Society Annual Meeting, p. 1. |
Danek, C. J., et al., Reduction in airway hyperesponsiveness to methacholine by the application ofRF energy in dogs, J Appl Physiol, 2004, vol. 97, pp. 1946-1933. |
Solway, J. et al., Airway Smooth Muscle as a Target for Asthma Therapy, The New England Journal of Medicine, Mar. 29, 2007, 356(13), pp. 1367-1369. |
Lavioletts, et al. Asthma Intervention Research (AIR) Trial: Early Safety Assessment of Bronchial Thermoplasty, 2004, p. 1. |
Leff et al., Bronchial Thermoplasty Alters Airway Smooth Muscle and Reduces Responsiveness in Dogs; A Possible Procedure for the Treatment of Asthma, American Thoracic Society Annual Meeting, 2002, p. 1. |
Lim, E.E. et al., Botulinum Toxin: A Novel Therapeutic Option for Bronchial Asthma?, Medical Hypotheses, 2006, vol. 66, pp. 915-919. |
Lombard, et al, Histologic Effects ofBronchial Thermoplasty of Canine and Human Airways, American Thoracic Society Annual Meeting, 2002, p. 1. |
Mayse, M. et al., Clinical Pearls for Bronchial Thermoplasty, J Bronchol, Apr. 2007, vol. 14, No. 2, pp. 115-123. |
Miller. J.D. et al., A Prospective Feasibility Study of Bronchial Thermoplasty in the Human Airway. 2005. vol. 127, No. 6 pp. 1999-2006. |
Miller, J.D. et al., Bronchial Thermoplasty is Well Tolerated by Non-Asthmatic Patients Requiring Lobectomy, 2002, American Thoracic Society Annual Meeting, p. 1. |
Rubin, et al., Bronchial Thermoplasty improves Asthma Status of Moderate to Severe Persistent Asthmatics Over and Above Current Standard-of-Care, 2006, American College of Chest Physicians, 2 pages. |
Sterk, P. J., Heterogeneity of Airway Hyperresponsiveness: Time for Unconventional, but Traditional Studies, 2004, The American Pshychoiogical Society, pp. 2017-2018. |
Wilson, S. R. et al., Global assessment after bronchial thermoplasty: the patient's perspective, Journal of Outcomes Research, 2006, vol. 10, pp. 37-46. |
Toma, T. P., Brave New World for Interventional Bronchoscopy, 2005, Thorax, vol. 60, pp. 180-181. |
Trow, T., Clinical Year in Review I, proceedings of the American Thoracic Society, 2006, vol. 3, pp. 553-556. |
Wizeman, et al., A Computer Model of Thermal Treatment of Airways by Radiofrequency (RF) Energy Delivery, 2007, American Thoracic Society Annual Meeting, p. 1. |
Shesterina. M. V. et al., Effect of laser therapy on immunity in patients with bronchial asthma and pulmonary tuberculosis, 1993, pp. 23-26. |
Evis Exera Bronchovideoscope Brochure, Olympus BF-XT160, Olympus, Jun. 15, 2007, 2 pages. |
Accad, M., “Single-Step Renal Denervation With the OneShot™ Ablation System,” presentation at the Leipzig Interventional Course 2012 in Leipzig, Germany, Jan. 26, 2012, 11 pages. |
Bertog, S., “Covidien-Maya: OneShot™,” presentation at the 2012 Congenital & Structural Interventions Congress in Frankfurt, Germany, Jun. 28, 2012, 25 pages. |
Rocha-Singh, K.J., “Renal Artery Denervation: A Brave New Frontier,” Endovascular Today, Feb. 2012, pp. 45-53. |
Wilson, K.C., et al., “Flexible Bronchoscopy: Indications and Contraindications,” UpToDate, Nov. 12, 2010 <www.uptodate.com> [retrieved Sep. 30, 2012], 15 pages. |
Gaude, G.S., “Pulmonary Manifestations of Gastroesophageal Reflux Disease,” Annals of Thoracic Medicine 4(3):115-123, Jul.-Sep. 2009. |
Awadh, N., et al. “Airway Wall Thickness in Patients With Near Fatal Asthma and Control Groups: Assessment With High Resolution Computed Tomographic Scanning,” Thorax 53:248-253, 1998. |
Castro, M., et al., “Effectiveness and Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma: A Multicenter, Randomized, Double-Blind, Sham-Controlled Clinical Trial,” American Journal of Respiratory and Critical Care Medicine 181: 116-124, 2010. |
Martin, N., et al., “Bronchial Thermoplasty for the Treatment of Asthma,” Current Allergy and Asthma Reports 9(1):88-95, Jan. 2009. |
McEvoy, C.E., et al., “Changing the Landscape: Bronchial Thermoplasty Offers a Novel Approach to Asthma Treatment,” Advance for Managers of Respiratory Care, pp. 22,24-25, Oct. 2007. |
Michaud, G., et al., “Positioned for Success: Interest in Diagnostic and Therapeutic Bronchoscopy is Growing,” Advance for Managers of Respiratory Care, pp. 40, 42-43, Jul./Aug. 2008. |
O'Sullivan, M.P., et al., “Apoptosis in the Airways: Another Balancing Act in the Epithelial Program,” American Journal of Respiratory Cell and Molecular Biology 29:3-7, 2003. |
Pavord, I.D., et al., “Safety and Efficacy of Bronchial Thermoplasty in Symptomatic, Severe Asthma,” American Journal of Respiratory and Critical Care Medicine 176:1185-1191, 2007. |
Tschumperlin, D.J., et al., “Chronic Effects of Mechanical Force on Airways,” Annual Review of Physiology 68: 563-83, 2006. |
Tschumperlin, D.J., et al., “Mechanical Stimuli to Airway Remodeling,” American Journal of Respiratory and Critical Care Medicine 164:S90-S94, 2001. |
Wechsler, M.E., “Bronchial Thermoplasty for Asthma: A Critical Review of a New Therapy,” Allergy and Asthma Proceedings 29(4):1-6, Jul.-Aug. 2008. |
Co-Pending U.S. Appl. No. 13/523,223, filed Jun. 14, 2012, Edwin J. Hlavka et al. |
Preliminary Amendment and Response to Restriction Requirement filed Oct. 22, 2012, in co-pending U.S. Appl. No. 13/523,223, filed Jun. 14, 2012, Edwin J. Hlavka et al. |
Co-Pending U.S. Appl. No. 12/372,607, filed Feb. 17, 2009, Edwin J. Hlavka et al. |
Amendment After Allowance filed Sep. 17, 2012, in co-pending U.S. Appl. No. 12/372,607, filed Feb. 17, 2009, Edwin J. Hlavka et al. |
Montaudon, M., et al., “Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models,” J. Anat. 211:579-588, 2007. |
Urologix, Inc., “CTC Advance™ Instructions for Use,” Targis® System Manual, 2010, 8 pages. |
Urologix, Inc., “Cooled ThermoTherapy™,” 2012, retrieved on Mar. 3, 2005 from URL=http://www.urologix.com/cllinicians/cooled-thermotherapy.php, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150190193 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61260350 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12944666 | Nov 2010 | US |
Child | 14541931 | US |