The present invention relates generally to vital signs monitors whereby a patient's electrocardiograph (ECG), for example, is sensed and graphically recorded, e.g. as waveform data. More particularly, it concerns a thin flat, flexible monitor having integral electrodes that is extremely lightweight and may be adhered to the patient's chest during a recording session and that may be removed for local or remote outplay, as by mailing it to a physician's or diagnostician's lab for playout, diagnostic and/or archival purposes and ultimate disposal. The invented vital signs monitor lends itself to other continuous graphic waveform e.g. electroencephalograph (EEG) or pulse oximetry, or static, e.g. pulse-rate, blood pressure, glucose level, blood-oxygen level, vital signs monitoring, as well as telemetric control as for delivering pacer or defibrillation pulses to the monitored patient. The invented body composition or risk monitor lends itself to measurement and annunciation, recording and/or telemetry of data relevant to one or more of a patient's non-homeostatic body composition risk indicators, or indicia, including bio-impedance, water mass, respiratory rate, cardiography, e.g. cardiac output, height, weight, waist dimension and incline and standing/sitting position.
Some cardiac monitors having integral electrodes have been worn around the wrist, as described in U.S. Pat. No. 5,289,824 entitled WRIST-WORN ECG MONITOR, which issued Mar. 1, 1994. The high functional density of such cardiac monitors, and the provision therein of trans-telephonic communication of ECG waveform data to a remote physician site, render such monitors extremely useful in our increasingly busy and mobile society. More recent advances have rendered such high functionality and lightweight portability in the form of a credit card-shaped and -sized monitor such as the known HEARTCARD™ monitor. Such a product requires manual placement and slight pressure by the user on the monitor against the chest with the integral dry electrodes in contact with the skin and the manual depression of a record button. Such a product also requires the placement of a telephone call to a physician's office and the careful playing out of recorded, digitized, frequency-shift keyed (FSK) ECG waveform data via a telephone's mouthpiece. The HEARTCARD™ monitor is intended for long-term use, and thus is enclosed in a durable rigid housing, is provided with long-life batteries, and is supplied with a carrying case.
Other vital signs monitoring traditionally have included blood pressure, respiratory rate and body temperature, and a variety of methods for monitoring the same are known in the prior art. One emerging vital sign of vital importance to human health is bio-impedance, as it may be used as an indicator of cardiac output and fluid pressure drops, the latter being an earlier shock predictor than is a drop in blood pressure. It is reported that approximately half of the United States' population is overweight, and some reports suggest that 40-60% of the population is clinically obese. Morbid obesity, defined generally as persons weighing over approximately 300 pounds, is also on the rise: by some very recent reports, it has quadrupled since the 1980's. Obesity, which is preventable, can lead to Type I diabetes, cardiac arrest, cancer and/or even death. Indeed, statistics show that for a male with a waist circumference over forty inches or a female with a waist circumference over thirty-five inches, the risk of stroke or Type I diabetes is three to four times that of a person of more modest waist size. The cost of treating cardiac disorders resulting from obesity approaches $100 B annually just in the United States, and it is believed by many that, next only to tobacco smoking, obesity is the second greatest preventable killer.
Ironically, obesity worldwide now rivals hunger as a health hazard. It has the potential of overtaking smoking as the greatest preventable killer.
Ironically, poverty is responsible for most overweight and obesity. This is because cheap prepared food is fat- and carbohydrate-rich.
Body mass index (BMI) is a widely accepted measure of body mass, since it takes into account both weight and height, in accordance with a well-known formula. Generally, a BMI over twenty-five or thirty is considered a health risk. Morbid obesity is indicated with a BMI over fifty. Personal, so-called ‘bathroom’ scales often provide a measure of BMI, but the user must manually enter his or her height for the calculation to be accurate. Moreover, BMI fails to take into account other indicia of body mass that may implicate health. For example, and in accordance with the invention, the lateral slope of a person's belly can be an indicator of obesity, as can high blood pressure, low cardiac output or increases in bio-impedance.
Anorexia nervosa and bulimia also are on the rise as serious problems, as is human immuno-virus (HIV) or AIDS. These low body fluid mass conditions are preventable by intervention, medication and/or counseling. Nevertheless, detecting the conditions heretofore is not easy. This is because the conditions' characteristic behaviors often are subtle and most often proactively hidden by the victim. Moreover, like obesity, the early indicators of anorexia and bulimia are slight weight loss and patients that hope to hide their conditions may also be willing to lie to themselves and others about even the slightest recent weight losses or gains. Like victims of anorexia nervosa and bulimia, AIDS patients, unfortunately, sometimes simply give in to their disease and let it run its wasting course. Cardiac cachexia, another such wasting disease, also claims the lives of many people.
Obesity prevention preferably involves a combination of diet, exercise and monitoring. Anorexia and bulimia treatments involve a combination of counseling and monitoring. The importance of monitoring cannot be overstated. It provides essential feedback to a person at risk, whether positive or negative. Monitoring and reporting in real time is even more valuable, as it can immediately influence risky behavior or immediately reward measurable indicia of moderation of caloric intake or regimentation of cardiac output.
Several recent articles have been published regarding electrical bio-impedance measurements as they relate to various human subjects. These articles listed below may be referred to herein by their ordinal number, e.g. the Lukaski article may be referred to very simply as [3].
[1] Transthoracic Electrical Bioimpedance R-Wave Triggered Ensemble Averaging, anonymous article from Sorba Medical Systems, publication date unknwn, and related webpages describing non-invasive impedance cardiography.
[2] A Simple Way to Measure Intra and Extra Cellular Fluid/Bioimpedance Spectroscopy (BIS) Technology, anonymous, publication date unknown.
[3] H. Lukaski, Requirements for Clinical Use of Bioelectrical Impedance Analysis (BIA), Annals New York Academy of Sciences, pp. 72-76, publication date unknown.
[4] Casas et al., Ischemia, Annals New York Academy of Sciences, pp. 54-55, publication date unknown.
[5] Gheorghiu, et al., Impedance Spectra, Annals New York Academy of Sciences, pp. 68-69, publication date unknown.
[6] K. Ellis, R. Shypailo and W. Wong, Measurement of body water by multifrequency bioelectrical impedance spectroscopy in a multiethnic pediatric population, Am J Clin Nutr, pp. 847-853, 1999.
[7] A. Lackermeier, E. McAdams, G. Moss and A. Woolfson, In Vivo ac Impedance Spectroscopy of Human Skin/Theory and Problems in Monitoring of Passive Percutaneous Drug Delivery, Annals of New York Academy of Sciences, pp. 197-213, publication date unknown.
[8] J. Strobeck, M. Silver, Impedance Cardiography: Noninvasive Measurement of Cardiac Stroke Volume and Thoracic Fluid Content, Congestive Heart Failure, Volume 6, Number 2, pp. 3-6, March/April 2000 Reprinting.
[9] A. De Maria, A. Raisinghani, Comparative Overview of Cardiac Output Measurement Methods: Has Impedance Cardiography Come of Age?, Congestive Heart Failure, Volume 6, Number 2, pp. 7-18, March/April 2000 Reprinting.
[10] B. Greenberg, D. Hermann, M. Pranulis, L. Lazio, D. Cloutier, Reproducibility of Impedance Cardiography Hemodynamic Measures in Clinically Stable Heart Failure Patients, Congestive Heart Failure, Volume 6, Number 2, pp. 19-31, March/April 2000 Reprinting.
[11] J. Seibert, J. Wtorek and J. Rogowski, Stroke Volume Variability—Cardiovascular Response to Orthostatic Maneuver in Patients with Coronary Artery Diseases, Annals New York Academy of Sciences, pp. 182-96, publication date unknown.
Only one of the above articles remotely suggests body-worn bio-impedance monitors, and it teaches away from such devices. For example, [7] contains a section entitled BODY-WORN DEVICE but contains no teachings but the importance of electrode placement and the difficulty of incorporating impedance measurements into a body-worn device, for any purpose. Of course, the purpose of the work described in the article is transdermal drug delivery. There is no suggestion in [7] of non-invasive skin bio-impedance monitoring for overall body mass indicia, fluid body mass indicia or other non-homeostatic body composition assessment.
Fluid body mass is an important indicium of non-homeostatic body composition. It is believed that fluid body mass changes may be understood to indicate overweight conditions as well as underweight conditions. And it is believed that body fluid balance is an important and high-quality indicator of overall human health. As such, it is believed that body fluid mass monitoring and oversight can detect and can lead to treatment of, or perhaps even prevention of, obesity, anorexia nervosa and bulimia, HIV and cardiac cachexia, all of which are on the rise. All such abnormal conditions, whether absolute or relative, that are outside defined norms, i.e. are non-homeostatic, are candidate indicia for monitoring, oversight and intervention. Preferably, such body fluid mass monitoring is via bio-impedance, although, within the spirit and scope of the invention, any monitoring technique may be used.
Bio-impedance monitoring of humans has seen only limited use in medical diagnostics. This is because its early promise was derailed by success in alternative diagnostic techniques including magnetic resonance imaging, ultrasonic imaging and other non-invasive body scanning techniques. Nevertheless, bio-impedance monitoring is believed to represent an inexpensive, non-invasive technique for monitoring body fluid mass and fat content. As such, non-invasive monitoring and oversight can be achieved by the marriage of skin-electrode-based bio-impedance monitoring, body composition derivation, trend analysis and significant event or trend data conveyance via a common wired or wireless conveyance to a remote clinical site for physician oversight, treatment, medication and intervention.
Briefly, the invented cardiac monitor is in a flexible, nominally flat planar form having integral gel electrodes, a sticky-back rear surface, an internal flex circuit capable of sensing, recording and playing out several minutes of the most recently acquired ECG waveform data and a front surface that includes an outplay port preferably having one or more snap connectors compatible with a lead harness from an n-lead recorder. The monitor has a relatively short battery life, as it is intended for limited-term use. After the patient has completed a recording session, the monitor may be simply sent in the mail to the prescribing physician for diagnostic and archival purposes. The physician or technician may play out the recorded ECG waveform data by activating an outplay mode of operation, and the patient's cardiography may be studied. The tiny, inexpensive monitor may then be disposed of, e.g., discarded or recycled. In a suggested alternative embodiment, the monitor further may be remotely controlled by telemetry to deliver pacer or defibrillation pulses to the patient.
Preferably, the monitor uses one or more zinc-air batteries the air inlet ports of which may be selectively configured, as by folding or otherwise manipulating the monitor's expanse, to either activate or deactivate particular recording or outplay modes of operation of the monitor. Thus, recording may be accomplished by simply opening the monitor, which activates the zinc-air batteries, and pasting the monitor on the patient's chest. When a recording session is complete, e.g. when a cardiac event has been detected or upon the initiative of the patient who may have sensed such an event, the monitor may be folded again thus deactivating the recorder by removing battery power therefrom. At the physician site, the opening again of the monitor may automatically activate an outplay mode of operation in which a connected n-lead recorder presents a strip chart recording of the patient's cardiography.
The circuitry within the flex circuit inner layer of the monitor's expanse may preferably be implemented by very large scale integration (VLSI) techniques by use of a custom integrated circuit (IC) that performs any necessary sensing, recording and outplay functions. The circuitry may be digital, and may include an analogue-to-digital (A/D) converter, a microprocessor with associated memory and a digital-to-analogue (D/A) converter. Alternatively, the circuitry may take the form of a direct analogue storage device having a differential amplifier front-end for sensing the amplitude of the analogue ECG input and having constant gain between input and output, the latter of which is coupled operatively with the outplay port Thus, outplay may be analogue or digital in form, and may be infrared (IR), audio (trans-telephonic), or electrical, e.g. an RS-232 serial input/output (110) port compatible with a connected personal computer (PC) or a lead-set compatible with an n-lead, e.g. a 12-lead, strip chart recorder. Other suitable recording and outplay means may be used such as a printer, tape, disk, CD-ROM, TV, VCR LCD, etc.
In accordance with another embodiment of the invention, non-homeostatic body composition monitoring method and apparatus are disclosed. A preferably portable, so-called ‘risk’ monitor measures one or more of the user's bio-impedance, cardiography including cardiac output, blood pressure, respiratory rate, body mass, water mass, dehydration, body fat and body conformation and position indicators such as height, waist diameter and/or circumference, lateral slope or incline and standing/sitting position. Preferably, the monitor then derives from such measured indicia and from information that may be entered manually or telemetrically indicia of body mass or fat and obesity or anorexia or bulimia risk index, annunciating and/or recording and telemetering such indicia and/or risk index to the user in a form of real-time feedback. The risk monitor preferably includes a housing, or carrying case, and is equipped with external electrodes extending from the housing in contact with the user's skin. A supplemental vital signs monitor can take the form of a flexible adhesive expanse, or so-called ‘patch’ having integral electrodes for cardiographic monitoring and relaying to the risk monitor. The risk monitor is capable of conveying recorded data to a remote site for oversight, treatment and possible intervention by a physician.
The preferred method of the invention involves equipping an at-risk patient with such a risk monitor, attaching electrodes to the patient's skin where appropriate for monitoring a desired vital and/or non-homeostatic body composition sign, and remotely conveying raw or calculated instantiation or trend data for oversight and/or treatment and/or medication and/or intervention purposes.
These and additional objects and advantages of the present invention will be more readily understood after consideration of the drawings and the detailed description of the preferred embodiment which follows.
Referring first to
Monitor 10 will be understood to be capable easily and quickly of being removed by the patient at the end of a monitoring and recording session, thereby enabling waveform data recorded therein to be outplayed. Those skilled in the art will appreciate that outplaying may be via or to a local or remote presentation device such as a printer, tape, disk, CD-ROM, TV, VCR, LCD, etc. An outplay port is provided in monitor 10, as will be described in more detail by reference to
Those of skill in the art will appreciate that monitor 10 alternatively may utilize the world-wide web, or Internet, as a conduit or destination for the vital signs data stored therein. Thus, a so-called Bluetooth or other wireless, e.g. infrared or radio frequency (RF), interface port may be provided—compatible with the small size, thinness and flexibility of monitor 10—and vital signs data may be telecommunicated to nearby or remote sites via the Internet for playback, viewing, analysis, recording, archiving, etc. So-called Instant Messaging, a common feature of e-mail, could be used to post cardiograms to a receiving or diagnostic clinic or individual cardiologist situated anywhere in the world from a cardiac patient also situated anywhere in the world. Indeed, Instant Messaging could be used for duplex communications between a patient and a physician, however remote from one another, of vital signs data and other message content. For example, duplex communications can convey relatively static medical data about a patient such as height to the monitor and concurrently can convey dynamic vital signs and obesity risk data about the patient such as cardiac output or bio-impedance to the physician.
Thus, in accordance with the preferred embodiment of the invention and method for its use monitor 10 may be purchased over-the-counter by a medical patient and upon completion of a recording session may be delivered, as by mail or walk-in or drive-through, to a diagnostic clinic for outplay, oversight, diagnostics and archival recording. Because it is meant for limited-term use, and is extremely inexpensive to manufacture, after its recorded data is outplayed at the clinic, monitor 10 may be disposed of, e.g. discarded or recycled, much like a disposable flash camera. Of course, those of skill in the art will appreciate that, within the spirit and scope of the invention, monitor 10 instead may be reused, as by recharging or replacing one or more batteries, which it is appreciated typically might require some rebuilding of the novel laminar structure and thus may not be cost effective.
The invented vital signs monitor, then, may be seen most broadly to include a flexible generally planar expanse that includes a front surface and a rear surface including a region capable of being adhered to a patient's skin, with the rear surface bearing two or more, e.g. four, electrodes. Preferably, the monitor includes also an outplay port, as will be seen, that may take the form of a general-purpose input/output (I/O) port that is wired or wireless and that enables an interior flexible circuit sandwiched between the rear and front surfaces of the expanse to communicate either unidirectionally or bidirectionally with an external device such as a remote transmitter/receiver or processor or simple hardcopy device.
Those of skill in the art will appreciate that
High-risk athletes or non-athletes also are candidates for use of the invented vital signs monitor. Athletes could wear the monitor under their normal athletic attire during a sporting event, without adverse effect on their performance, but with the possibility of discovering and treating an anomaly. High-risk patients, for example, during the post-myocardial infarction (MI) or post-coronary angioplasty (PCTA) phases of their treatment may be equipped with the vital signs monitor to record and early detect or diagnose any anomalous vital signs that are monitored thereby during critical post-operative or post-treatment phases of their lives. Those of skill in the art also will appreciate that the invented vital signs monitor may be used on non-human patients. In other words, veterinarians might use the vital signs monitor on dogs, cats, horses or other animals in the delivery of veterinary health care.
Turning now to
Referring now in more detail to
Those skilled in the art will appreciate that, by logical extension, disposable vital signs monitor 10 may be of the so-called Holter monitor-type characterized as providing multiple-lead cardiac monitoring. Such a monitor might use any suitable arrangement or number of leads both within the perimeter of the monitor's body, as illustrated in
It will be appreciated that such circuitry 12 as described above readily may be integrated into one or more custom integrated circuits (ICs) that take up little space, whether in the plane of monitor 12 or normal thereto. Preferably, one IC 13 is used to reduce cost and flex circuit and interconnect complexity, as suggested by the simple configuration of monitor illustrated in
Those skilled in the art will appreciate that circuitry 12 also may include an elapsed time clock 30 for data-and-time stamping of recorded vital signs waveform data and one or more audio or visual annunciators such as beepers or light-emitting diodes (LEDs), e.g. LED 32, for indicating to the patient or clinician the status of monitor 10, i.e. whether it contains recorded vital signs waveform data that is ready for outplay.
Within the spirit and scope of the invention, circuitry 12 may provide other useful functions. For example, a scrolling or looping memory function may be provided by which SRAM 16 is partitioned into one or more looping buffers for the capture-store of a predetermined time duration of data, with the most recently sensed, i.e. the latest recorded, data always present therein and with the least recently sensed, i.e. the oldest recorded, data lost. In this way, circuitry 12 equipped to trigger on a detected cardiac anomaly may halt recording of data into the looping memory thereby to capture for outplay a cardiac data window that is pertinent to, because it is time proximate to, the triggering cardiac event. Numerous alternative or additional functions may be provided by circuitry 12, within the spirit and scope of the invention, as it is understood that functionality readily may be added by reprogramming or masking a state or logic controller such as microcontroller 14.
The differences between the human voice and vital signs graphic waveform data lead to this eight-fold recording capacity increase. The human voice may be reasonably well reproduced by digitizing it at a sampling rate of approximately 4000 Hertz (Hz), whereas accurate cardiac graphic waveform data need be sampled only at approximately 400-500 Hz in order to faithfully reproduce it for a clinician to diagnose the shortest duration arrhythmic, ischemic or other cardiac anomaly. Moreover, because of the analogue nature of the stored data, representing essentially in a single sample the amplitude of a patient's skin potential between two electrodes is possible with direct analogue storage, whereas eight binary bits typically are used to represent a digital representation of such amplitude. Thus, by lowering the sampling rate of such a device, its capacity to record vital signs graphic waveform data is greatly increased to a meaningful level.
Whether monitor 10 stores a digital or an analogue representation of the sensed vital signs waveform signal, it is preferably in accordance with the invention that at least approximately one minute of such sensed vital signs, e.g. ECG, signal be recorded within memory 18 or 18′. More preferably, at least approximately two minutes of such sensed vital signs signal is recorded, and most preferably approximately four minutes of capacity within memory 18, 18′ is provided, thereby rendering monitor 10 useful for multiple event or medium-term monitoring of patient vital signs. It will be appreciated that the useful capacity of memory 18 or 18′ may be effectively increased by the use of scrolling or looping memory and automatic trigger event-detection such that the greatest fraction of recorded vital signs signal is useful in representing the patient's vital signs for overview and analysis by a diagnostician.
Other modifications are required to such a direct analogue storage device to render it suitable for vital signs monitoring. First, the input amplifier section must be made differential so match the differential input from the electrodes, as may be readily accomplished by those of skill. Second, the gain of the device must be made substantially constant, or of substantially consistent unity gain, from such differential input to output. Such straightforwardly may be accomplished by simply disabling the automatic gain control (AGC) of the conventional direct analogue storage device.
Operatively connected to the differential input terminals of such analogue storage device 34 is an electrode pair, or ECG electrodes 20 made in accordance with the preferred embodiment of the invention, which electrodes of course carry a differential signal representing the patient's skin potential (typically a third and fourth electrode provide a common baseline for the differential pair). Operatively connected to the output buffer electronics of such analogue storage device 34 is bidirectional I/O, or unidirectional outplay, port 28 also made in accordance with the preferred embodiment of the invention, which outplay port of course may take any of the variety of forms described or illustrated herein. One or more identical batteries such as illustrated battery 18 may be used, connected to the analogue storage device preferably via a battery-integral SWITCH, as shown.
As indicated, it is preferable that a reserve battery (not shown in
Within a preferably central interior region of monitor 10 are one or more batteries such as primary and reserve zinc-air batteries 18, 18′ operatively interconnected preferably by an air-actuated switch integral therewith to circuitry 12 capable of sensing, recording and outplaying vital signs waveform data such as a patient's ECG waveform. It will be appreciated that primary battery 18 has its air inlet normally exposed on the front surface of the expanse of monitor 10 so that it is operative when monitor 10 in its second, deployed configuration is tightly adhered to the patient's chest as in
Recent advances in battery technologies render far greater performance to disposable vital signs monitor 10. It is believed that a sheet battery is presently under development by the military that could be used to power the relatively low-power requirements of monitor 10 as described herein. Such a battery is made of a special laminar fabric which may be cut to size and which exhibits a sustained electrical potential thereacross capable of powering one or more electrical circuits. Such a recent advance might prove extremely suitable as a suitable alternative to the discrete one or more batteries illustrated herein, because of the similar characteristic flexibility of such sheet batteries and the disclosed monitor, leading to even thinner and more flexible disposable vital signs monitors. One such sheet battery, the Power Paper™ thin battery, is available from Power Paper Ltd., an Israeli corporation. It is contemplated that, within the spirit and scope of the present invention, some or all of the circuitry including the electrodes, the flex circuit, the memory and/or processor chip and the batteries may be integrated into a thin, laminar configuration.
In accordance with a preferred embodiment of the invention, four gel-type electrodes 38, 40, 42, 44 are provided in the four corners of the expanse on the bottom surface thereof for contact with the patient's chest. Preferably, such electrodes which are referred to collectively herein as electrodes 20 are connected with corresponding input terminals of circuitry 12 in accordance with one of the schematic diagrams of
It will be appreciated that, alternatively and yet within the spirit and scope of the invention, electrodes 38, 40, 42, 44 may be of another type of so-called wet electrodes, or even may be dry electrodes as are taught in the above-referenced patent disclosure. It will also be appreciated by those skilled in the art that the number, configuration and spacing of electrodes 20, within the spirit and scope of the invention, may vary depending upon the cardiac (in the case of ECG), cerebral (in the case of EEG) or other vector(s) to be monitored and recorded by monitor 10. It will also be appreciated that electrodes 20 of the gel type are suitable for use in pacer and defibrillation pulse transmission to the patient.
Shown in
It will also be appreciated that edge connectors may be used that are within the slight overall profile of monitor 10. For example, many so-called PCMCIA modem cards present a phono jack for telephone cord connection in the extremely thin edge regions thereof, and such might be used with a different type of I/O port envisioned by the invention. With wireless communication schemes such as IR or RF or audio (e.g. trans-telephonic), extremely low- or no-profile I/O ports alternatively may be provided. For example, IR may be-used to provide bidirectional wireless communication between the monitor and a nearby receiver, akin to the use of a wireless remote control on a television or a vehicle security system. All are within the spirit and scope of the invention. Alternatively, monitor 10 may be equipped with an internal modem as part of circuitry 12, thereby enabling direct telephone line connections for remote outplay. All such producing and playing of waveform data functions of circuitry within the expanse are contemplated and are within the spirit and scope of the invention.
Brief reference to
It will be appreciated that, in accordance with an alternative embodiment of the invention, monitor 10 need not be folded or configured specially for stowage. In such an alternative embodiment, the air inlet of battery 18 might be sealed by simply placing a sealing tab thereover, i.e. to save primary battery 18 when it is not needed just as reserve battery 18 is saved when it is not needed. Such a flat configuration of monitor 10 whether in operation or not lends itself to the ‘smart’ card magnetic encoding described above. Nevertheless, by the use of air seal batteries in a disposable vital signs monitor, no physical pushbutton switch or other operator control is required to operate monitor 10 in all of its intended functional roles. Thus, unnecessary cost, weight and complexity in monitor 10 are avoided.
As may be seen by reference to
The flex circuit laminate or substrate for the ICs may include either a so-called complete flex or a so-called rigid flex circuit board material in which, respectively, the entirety or only a region of the patterned circuit area (shown in
Circuitry 12 including IC 13 or 13′ and batteries 18, 18′ may be seen essentially to be sandwiched in the void between the bottom and top layers of the foam laminate of which electrodes 20 preferably are an integral part. Preferably, IC 13 or 13′ is of the surface mount technology (SMT) type, thus producing an extremely low profile, e.g. less than approximately 0.4 cm (0.16″), laminar structure even in the central circuitry-containing region of monitor 10. Alternatively, chip-on-board techniques may be used to mount circuits and to route signals among components including ICs, batteries, electrodes and I/O ports.
Preferably, the four or more electrodes are connected to the inputs of the differential amplifier of the sensing circuit via a corresponding number of metal posts, e.
It will be appreciated that one or more outplay ports may be provided in monitor 10 to achieve a desired price-performance level and compatibility with local or remote outplay, data communication and recording equipment. Referring briefly to
In the event that the primary, preferably air-seal, e.g. zinc-air, battery 18 is dead, when monitor 10 is received at the clinic, a backup battery 18′—having a normally affixed tab 36 over its air inlet—may be used to play out the recorded cardiac waveform data. This is accomplished very simply by uncovering the air inlet over the reserve zinc-air battery. The controller, which is ‘aware’ that it has recorded ECG waveform data in its memory, preferably automatically exits the battery-save mode and-a predetermined number of seconds after the clinician unfolds the monitor-outplays the waveform data stored therein.
Broadly speaking, then, the invented disposable vital signs monitor may be seen to represent a significant improvement in portable, self-contained medical patient vital signs monitoring and control wherein such a monitor includes a generally planar expanse including a front surface and a rear surface having integral electrodes and having between the front and rear surfaces circuitry capable of sensing a vital signs signal present on the electrodes, recording the sensed signal and outplaying the recorded signal to an external device. The improvement may be understood to involve, most importantly, rendering such an expanse flexible and conformable to the shape of a patient's body, thereby to greatly improve the sensitivity and accuracy of such monitoring. Preferably, as described and illustrated herein, the monitor is also rendered self-adherent to the patient's body, thereby obviating cumbersome handling by the otherwise ambulatory patient. Also as described and illustrated herein, the monitor preferably is rendered capable of being controlled by remote telemetry, as via the provided I/O port in the wireless ones of its disclosed embodiments.
Preferably, the vital signs that are within the monitoring capability of such an improved monitor include ECG, and the monitor includes integral gel electrodes, which have been found further to increase the sensitivity and accuracy of such ECG monitoring. Within the spirit and scope of the invention, however, EEG, pulse oximetry or other continuous, real-time medical patient waveform monitoring is contemplated. In the case where ECG is the vital sign being monitored, the monitor may be rendered capable of being controlled by remote telemetry, wherein it is rendered capable of pacing a cardiac patient being monitored thereby by remote control, as described above. Moreover, as taught herein, the monitor may be rendered capable of defibrillating such a cardiac patient whose ECG is being monitored thereby.
In those cases where the vital signs being monitored include ECG, and where the monitor is equipped with cardiac event-detection capability, the monitor preferably may be equipped with a looping memory for continuous recording and window captured-data outplaying of a buffer representing—at the time of outplay thereof—a sensed ECG waveform signal that is related in time to a detected cardiac event, Such a scrolling memory feature is described in detail above and in the above-referenced patent, and, by saving on memory capacity, minimizes the circuitry required to implement the required functionality in a tiny, thin, planar flexible expanse that—due to its low cost—may be readily disposed of or recycled after use.
Those of skill in the art will appreciate that the invented flexible monitor also far better conforms to the patient's chest, which may be irregular or even scarred, and utilizes gel electrodes rather than dry skin electrodes, thus increasing the integrity of-cardiac waveform data sensed therethrough. Accordingly, diagnostic accuracy is improved, yet in an extremely inexpensive-to-manufacture, easy-to-use device. It also will be appreciated that the disposable vital signs monitor may find application in areas other than cardiac monitoring. For example, electroencephalograph (EEG) or pulse oximetry waveform monitoring are also possible, as well as more static medical patient vital signs monitoring such as pulse-rate, blood pressure, glucose level, blood-oxygen level, etc. Such may require a transducer of a different form to convert a patient's body characteristic signal into data suitable for recording and outplay, but any one or more lend themselves to the convenient, lightweight, inexpensive form of the invented disposable vital signs monitor.
In accordance with an alternative embodiment, a monitor that also is capable of acting as a pacer or defibrillator may be remotely controlled by a nearby transmitter to which its I/O port is programmed to respond. An ambulatory cardiac patient who is visibly experiencing tachycardia or other arrhythmia may be treated by a bystander equipped with such a portable, hand-held transmitter that may resemble, for example, a television remote control device. Valuable seconds, perhaps critical seconds, may be saved by such a remote pacer or defibrillator function provided by circuitry 12, as described above, using the proposed telemetry which requires only that I/O port 28 have bidirectional capability and that microcontroller 14 and associated circuitry provide pulse generation means, as is known.
Alternative configurations for disposable vital signs monitor 10 are contemplated as being within the spirit and scope of the invention. For example, components of the monitor may be removed from the integral flexible expanse 54, which will be referred to hereinafter as a flexible housing, to a remote, preferably portable and belt- or body-worn device 72 having its own housing.
Thus, additional hardware of any suitable function may be provided in a convenient auxiliary device 72 operatively coupled with a patient chest-worn device 10. Indeed, auxiliary device 72 may include conventional cellular telephone circuitry (including a transmitting (and perhaps also a receiving) antenna) capable at least of initiating a call to a remote patient data center and conveying vital signs data directly from chest-worn monitor 10 thereto (and preferably capable also of conveying patient medical data directly to monitor 10, as may be needed by some applications). As shown in
Those of skill will appreciate that invented device 72 including vital signs monitor 10 and invented device 72′ including body composition monitoring device 80 and two or more electrodes 86a-86h are completely external to the outer surface of the patient's skin. Thus, their use in accordance with the present invention requires no bodily invasion of any kind, whether surgical (e.g. implantation) or otherwise. Accordingly, the body composition monitor and the vital signs monitor, system and method are referred to herein as being “non-invasive.”
Device 72′ may be seen from
Those of skill in the art will appreciate that any suitable coupling means may be used to communicate data from device 72′ to the Receiving Station (RS). For example, a landline (POTS); a modem; a local area network (LAN); a wide area network (WAN), e.g. the Internet; a satellite link, a mobile phone or pager, or any other suitable wired or wireless means and combinations of such means may be used. Any or all such coupling and communication means are contemplated, and are within the spirit and scope of the invention.
Those of skill in the art will appreciate, electrodes 86a-86h are positioned on the patient's body in accordance with known body composition monitoring vectors similar to those vectors that are known in electrocardiography for cardiac waveform monitoring. (Vectors generally refer to current paths or measurement paths between pairs of electrodes placed on the patient's skin.) In accordance with the second embodiment of the invention, electrodes 86a-86h are configured and positioned dynamically to impress alternating current across the patient's skin and to pick-up or sense the dynamic voltages that result therefrom. Those of skill in the art will appreciate that the resulting voltages are related to the impressed currents as impedance generally in accordance with the well-known Ohm's Law represented in the formula:
E=I/R 1),
wherein E represents voltage, I represents current and R represents impedance. From formula 1) above, formula 2 is readily derived:
R=I/E 2).
Accordingly, body impedance will be understood to be the ratio of impressed current over resulting voltage. Dynamic body impedance (over time) in accordance with the invention thus is calculated using formula 2) above by a microprocessor with the variable stored current and voltage inputs as well as the variable, calculated body impedance, all stored at least temporarily in memory.
Those of skill will appreciate that as few as two electrodes are useful in body composition monitoring, in accordance with the invention. For example, two electrodes can provide a single vector of current injection and voltage response signal, three electrodes can provide as many as three vectors, four electrodes can provide as many as six vectors, etc. Thus, the eight electrodes 86a-86n shown in
Those of skill in the art also will appreciate that the resulting dynamic body impedance, as well as other variables derived therefrom, may be stored in memory and may be conveyed, e.g. via telephone line, modem or other wired or wireless conveyance, to a remote clinic for oversight by a qualified physician. The physician may, at the remote site, record the patient's body impedance and other data, e.g. vital signs data similarly conveyed. The physician may also perform diagnostic, prescriptive and/or prognostic functions such as trend analysis and reporting. Alternatively or additionally, the resulting dynamic body impedance and other derived variables may be maintained at the patient site and the patient may interpret his or her own data and take any action that is indicated thereby. Those of skill in the art will appreciate that a patient may, over time and with a physician's assistance, learn the patient's own trends and how to analyze them and take any necessary remedial action prior to the next office visit.
Thus, a remote ambulatory patient effectively can monitor, record, review and take remedial action on his or her own vital signs and/or body composition. Alternatively, the patient can monitor, record and telecommunicate his or her own vital signs and/or body composition to a remote site for oversight by a physician or other qualified personnel, who may analyze the data and optionally diagnose and/or prescribe remedial action to be taken by the patient, caregiver or clinician. Such physician-to-patient diagnosis and/or prescription can be conveyed in the reverse direction via any suitable telecommunications conveyance, whether wired or wireless. Any suitable telecommunications conveyance or protocol is contemplated, and is within the spirit and scope of the invention.
For purposes of communicating patient data to the physician, those of skill in the art will appreciate that any suitable conveyance may be used, e.g. a phone line, the Internet (device 72′ can be equipped with an IR or USB port, for example, to a personal computer (PC)) or a wireless analog or digital network such as those used by mobile telephones. For purposes of communicating such oversight to the patient, those of skill in the art will appreciate that a display (not shown in
At least two electrodes, and preferably more, e.g. the eight electrodes 86a-86n shown in
Those of skill in the art will appreciate that monitoring device 72′ may be used to monitor other indicia of non-homeostatic body composition. For example, monitoring device 72′ could be configured to measure the incline of the waist of the user, which incline indicates a body conformation indicates that the wearer is overweight or obese. Or it could be configured to measure the height of the user or the user's blood pressure, cardiac output, respiratory rate, body fat, dehydration or body position/inclination (standing/sitting/reclining/reposing position) of a user. Those of skill in the art will appreciate that invented measurement device may incorporate any combination of measures of the risk of the user of monitoring device 72′ to such non-homeostatic body composition conditions as are precursors to or evidence of obesity, anorexia nervosa, bulimia or AIDS. All are within the spirit and scope of the invention.
Bio-impedance means 94 preferably includes an electrode selector switch array 102, an injection current source 104, and plural sensing amplifiers 106a . . . 106h. Signal processing means 96 preferably includes an digital-to-analog converter (DAC) 108 operatively driving injection current source 104 and a multi-channel analog-to-digital converter (ADC) 110 operatively sampling sensing amplifiers 106a, . . . 106h. Device control means 98 preferably includes a memory 112 operatively coupled with a digital controller/processor 114, which by suitable programming controls electrode selector switch array 102, injection current source 104, DAC 108, ADC 110, memory 112 and user interface 100. User interface means 100 preferably includes one or more displays, e.g. an LCD, 116 and console controls, e.g. pushbuttons in a keypad, 118. Risk monitor 80 also may be seen to include an internal power supply, e.g. a battery, 78 and input/output (I/O) transmission means 120. Transmission means 120 provides (via I/O port 84) for the telecommunication of patient output data and physician input data to/from a remote site having a suitable sending/receiving subsystem or Receiving Station (RS), as shown. (Those of skill in the art will appreciate that examples of such a Receiving Station (RS) include an appropriately configured and programmed workstation, personal or handheld or other type of computer, Internet server, etc. Any suitable Receiving Station (RS) is contemplated, and is within the spirit and scope of the invention).
Those of skill will appreciate that fewer electrodes require fewer elements within the electrode selector switch array, fewer sensing amplifiers, fewer channels within the ADC and a simpler control algorithm within the controller and processor. Indeed, with only one pair of electrodes capable of supplying only one vector of bio-impedance data, the switch array is altogether obviated. Such alternative configurations for injecting current, monitoring voltage and deriving bio-impedance are all within the spirit and scope of the invention.
Preferably, the bio-impedance element, the user interface means the device control means, the transmission means and the power supply all are contained in a portable lightweight housing 82, as shown in
The electrodes may be made of any suitable electrically conductive material, e.g. Ag—AgCl with an electrically conductive gel to couple to the patient's skin. An electrode ‘patch’ similar to that shown in
In brief summary, body composition or risk monitor 84 is an electronic subsystem that is capable of performing several basic tasks including repeatedly injecting current into the patient, repeatedly sensing voltages or currents resulting from the injected current, repeatedly calculating raw electrical bio-impedance data from the sensed voltages or currents and either deriving useful data therefrom and annunciating the same to the proximate patient or conveying the raw electrical bio-impedance data to a remote site for derivation therefrom of useful data and oversight by a skilled medical practitioner.
Those of skill in the art will appreciate that the memory and microprocessor are configured via programming to inject current at defined amplitudes and frequencies (via control of electrode selector switch array 102, injection current source 104 and DAC 108), to process voltage signals responsive thereto (via control of electrode selector switch array 102, sensing amplifiers 106a, . . . 106h and ADCs 110) and to store and process patient medical data, whether measured, downloaded, calculated or otherwise uploaded, e.g. weight data uploaded from a digital scale or trend data regarding body composition or individual or normative data downloaded from a remote medical patient data server. Those of skill also will appreciate that the memory and microprocessor may be used in conjunction with a display to instruct or annunciate the patient on how to use the vital signs or obesity risk monitor or what the results of various measurements and/or calculations regarding the same. Those of skill in the art will appreciate that device control means 98 common to all embodiments of the present invention include a user interface such as a display, soft or hard keyboard and cursor control means permit the user to view and/or enter data, to communicate with his or her doctor or clinic, to program settings or to input patient data and to otherwise effect user control options like automatic versus semiautomatic operation of device 72 or 72′ and/or to choose operational parameters or options. These and other alternative device control means are contemplated, and are within the spirit and scope of the invention.
(Those skilled in the art will also appreciate that injected current data represented of the injected current is ‘acquired’ by controller and processor 114, e.g. from electrode selector switch array 102, injection current source 104, sensing amplifiers 106a, . . . 106h, DAC 108, ADC 110 or memory 112. Thus, ‘acquired’ injected current data will be understood to represent the AC current injected via the electrodes onto the patient's skin, wherever such data resides and from whatever source such data is read or derived. It will be understood that such acquired injected current data is correlated with the resultant measured voltage data by either the local patient monitor or the remote Receiving Station (RS) to calculate the patient's electrical bio-impedance and/or body fluid composition.)
Electrical bio-impedance is a complex quantity that in a medical monitoring context represents the ratio of electrical AC current applied to and a resulting voltage measured across living tissue. The measured voltage as a function of applied frequency has amplitude and phase, or real and imaginary components and bio-impedance data would include these components, which may further include waveforms containing these elements.
Electrical bio-impedance has been used in several clinical applications, including evaluations of body composition, including both body fats and fluids, and of various hemodynamic or cardio-respiratory measurements. Several apparatuses of varying configuration and methods have been described in the background of this application which utilize bio-impedance at single or multiple frequencies for the purpose of measuring: body composition, including the distribution between extra-cellular and intracellular fluid components as well as total body water, and the distribution of fat and lean body mass; and, various hemodynamic, cardiac and respiratory measurements. The prior art further describes an apparatus similar in feature and appearance to a weight-measuring scale that further includes electrodes for use in making bio-impedance measurements to determine body fat.
In accordance with the present invention, the electrical bio-impedance values are digitized by an analog-to-digital converter (ADC) and the digital output of the ADC is analyzed by a computer or device microprocessor to detect fluid shifts within such defined volume. Fluid shifts can indicate distribution between extra-cellular fluid (ECF) and intra-cellular fluid (ICF), total body water (TBW) or fluid, changes in these components of body fluid, changes in hemodynamic and cardio-respiratory parameters including cardiac output, presence of fluid accumulations inside the body and presence, if any, of bleeding out of the circulatory system into or out of the body. In the present invention, changes in aspects of the patient's body fluid, including total body water, are of most interest, as they represent body composition characteristics that may be non-homeostatic and thus potentially indicate serious risk to the patient's overall health.
In summary of the above description of the invention, it will be understood to involve monitoring the body composition of a patient, more particularly the body fluidcontent of the patient, whereby the information regarding such body composition is communicated to a remote location by either wireless, optical, or wire-line (wired) communication. The means by which the body composition of the patient is determined is preferably through the use of bio-impedance.
The patient's body composition, e.g. information describing TBW, ICF and ECF, may be calculated by known techniques in body composition monitoring and compared and/or contrasted with previously recorded or downloaded baseline measurements to accomplish trend analysis and thus to assess patient's health risk, as indicated by non-homeostatic body composition changes. The method and device are intended for use with any patient, including humans, for whom information regarding body composition information may be useful for the purpose of monitoring at least one medical condition or disease state. More particularly, the device may be used to monitor body composition, including TBW, ICF or ECF, in patients having the condition of congestive heart failure, or the condition of kidney failure who require renal dialysis.
Thus, the invented system includes a portable, non-invasive monitoring device, generally located with a patient and including data acquisition and communication means, and a Receiving Station (RS), generally containing means of data receipt and optional processing, storage and output.
Use of body composition monitor 80 includes the following basic steps: a) attaching at least two electrically conductive electrode contacts to the patient's body, thus coupling the device to the patient for the purpose of injecting AC current and measuring resultant voltages; b) injecting AC current onto the patient's skin via the electrodes; c) acquiring voltage measurements from the patient's body responsive to and correlated with the injected current; d) optionally calculating bio-impedance measurements, including phase angle and amplitude, based upon the injected AC current and the resultant measured voltage measurements; e) optionally calculating body fluid composition from the calculated bio-impedance measurements; f) transmitting data including characteristics of at least one of the injected AC current and the measured resultant voltage measurements, the bio-impedance data and the body fluid composition data to a remote site; and g) receiving and optionally processing, storing and outputting the transmitted data at the remote site using a Receiving Station (RS).
Those of skill in the art will appreciate that, in accordance with the invention, the calculating steps can be performed at the patient monitor site or at the Receiving Station (RS) site. In the latter case, the optional steps are performed by the Receiving Station (RS) after the raw injected AC current and resultant voltage measurements data are conveyed from the patient monitor site to the Receiving Station (RS). Such post-conveyance calculations of patient bio-impedance data and optional body fluid composition data render the remote patient monitoring method equally robust but less expensive, since the patient monitor need not perform calculations that are readily performed by the Receiving Station (RS). Such bio-impedance and body fluid composition calculations, within the spirit and scope of the invention, can be performed in any suitable manner by any suitable processor at any suitable site.
Thus, the patient's bio-impedance and/or body fluid composition, more particularly the patient's body water, may also be calculated in whole or in part in the device and this information similarly transmitted to the remote site. Calculation of the bio-impedance and/or body composition information may alternatively be performed by the Receiving Station (RS). For example, only the characteristics of the injected AC current and resultant voltage measurements, preferably including the phase angle, timing and amplitude thereof, would be transmitted to a Receiving Station (RS), which would then calculate the bio-impedance and body composition. The Receiving Station (RS), for example, a computer with software and communications means to enable receipt of data from a device, may have the capability not only of receiving data, but also of performing calculations on the data, and storing and outputting the data, calculations and other information for one or more patients. The Receiving Station (RS) further includes means for enabling one-way or two-way communication with the patient by any one or more of voice communication, text messages and other visual and/or auditory signaling, as will be described further below.
Output from the Receiving Station (RS) may find use by medical professionals, including physicians, in monitoring patients having suspected or previously diagnosed medical conditions, for example, congestive heart failure, or kidney failure, or obesity, or conditions associated with body wasting. This method of monitoring would find use for both remote monitoring of such patients, for example, in their residences, or in medical facilities which otherwise have no such monitoring capability, or during medical procedures such as renal dialysis, where monitoring would occur by staff at a central Receiving Station (RS) at a distance away from the site of such procedure.
Transmission of the data may be made to a remote site that may be located within several feet of the transmitting device, for example as in a hospital or renal dialysis clinic, or the data may be transmitted to a remote site that is located dozens or hundreds or thousands of miles remote from the transmitting device, for example as in residential or institutional monitoring of congestive heart failure patients by an off-site central trans-telephonic monitoring center.
Thus, in accordance with one embodiment of the invention, the invented device corresponding generally with the invented method includes the following components: 1) a bio-impedance element capable of injecting AC current into a patient and acquiring voltages from the patient's body surface by means of electrically conductive electrodes coupling the patient to the device (see
The bio-impedance or body composition information may alternatively be derived or calculated by the receiving system in addition to or instead of in the device; for example, the device might only transmit the characteristics of the injected AC current and resultant voltage measurements, including the phase, to a receiving system, which would then calculate the bio-impedance and body composition.
Device operation may be achieved with minimal or no intervention by a patient or their caregiver, following application of the electrodes, either automatically by the device control means, or remotely, by the remote receiving system interacting with the device control means. Thus, device operation may also be accomplished with only minimal interaction with controls located on the device.
The communication means may be located onboard and may comprise wireless, optical, or wire-line means for the purpose of communicating with a remote site; for example, the device may include a modem, or an onboard wireless telephone or radio, or infrared or Bluetooth® transceiver. The communication means may further include a means of receiving data or instructions from the receiving system, so that communication is two-way, for example, in addition to transmitting bio-impedance data or body composition data, the device may also receive instructions which can modify its operation or instruct the patient or caregiver. The device may also include a speakerphone capability, so that voice information may be passed from, for example, a microphone on the receiving system through to the patient using a speaker and microphone built into the device. It can easily be imagined that text sent from the receiving system could also be displayed on the device, using a display means, for example, an LCD.
The device may include an onboard means of coupling to an external transmission means for the purpose of transmitting data, instead of or in addition to an onboard communication means. For example, it may include an RJ-11 or RJ-45 or Universal Serial Bus (USB) connector or other connectors for the purpose of inserting a cable to connect the device to a telephone line, local area network, or computer or other device or network. Such coupling means may alternatively comprise optical means incorporating collimated or non-collimated light waves of any wavelength. Such wireless communication coupling means may alternatively comprise acoustic means including a speaker or emitter emitting tones having characteristics, such as frequencies, durations, or intervals, which correspond to data, such as telephone dialing tones or frequency shift key (FSK). For example, a telephone hand-piece or microphone may be placed in proximity to the speaker for purposes of conveying the tones over a telephone system. Such an acoustic device including the speaker may itself further include a microphone for the purpose of acquiring tones from the telephone handset or speaker.
The device control means enables the device to be controlled either by the patient or caregiver through the use of controls and feedback mechanisms located on the device, for example, buttons, switches, lights, light-emitting diodes (LEDs), annunciators or speakers emitting audible signals, visual displays such as a liquid crystal display, or tactile mechanisms such as vibration or other stimulation. Alternatively, the device control means may operate without human intervention by using instructions located onboard or when coupled to the receiving station by the communication means, to enable control by an operator at the receiving system or by instructions contained in the receiving station.
In addition, a data storage means, or electronic memory for the purpose of storing data or device control instructions, may be included; examples may include solid state memory, magnetic or optical media such as diskettes or compact discs, or other means, which may furthermore be removable from the device. The data contained in the data storage means may be permanently placed there, for example as with read-only solid state memory, or may be temporarily placed there, for example as with volatile random access memory.
Those of skill in the art will appreciate, then, that the body composition monitor aspect of the invention may be seen to take the alternative forms illustrated schematically in
Those of skill in the art will appreciate that on-board or out-board communication element 122 or 122′ can be the circuits from a landline phone, a mobile phone, a PDA, a PC or another wired or wireless conveyance. Those of skill in the art also will appreciate that the monitor shown in
In an alternative configuration, the device may further include a scale for the purpose of measuring a patient's weight, or a means of connecting to a scale, so that data about the patient's weight may be acquired, and communicated similarly to the bio-impedance or body composition data. The device may further include a means of acquiring at least one lead of ECG, acquired using the same electrodes as are used for the bio-impedance application. The device, through the data processing means, may have the additional capability of calculating cardiac output using data from the bio-impedance element of the device; alternatively, the cardiac output calculations may be made by the receiving station using, at least in part, the transmitted data, including the bio-impedance measurements. The cardiac output calculations, if supplied by the device, may be provided by a device which does not have the body fluid composition or body water information capability, and which does not have the ECG acquisition capability, but which does have the capability of transmitting data or connecting to an external transmission means. Additional biological measurements may similarly be acquired and transmitted, including respiration rate, blood pressure, and pulse oximetry measurements, as well as others which those skilled in the art can imagine.
Any suitable method of measuring or calculating body composition is within the spirit and scope of the invention. Such a calculated body composition may be compared to previously recorded or downloaded baseline measurements to determine change and rate of change, thereby to document and record trends that might indicate dehydration or other conditions of concern. It also may be compared to previously recorded or downloaded baseline measurements to determine change and rate of change, thereby to document and record trends that might indicate adverse health status.
Referring first to
In accordance with a preferred embodiment of the invention, the invented method further includes h) coupling such calculated bio-impedance and body composition data to a communications means (1112); i) transmitting such calculated bio-impedance and body composition data via such communications means to a Receiving Station (RS) or other site remote from the patient (1114) j) receiving such calculated bio-impedance and body composition data at the Receiving Station (RS) or other remote site (1116); k) processing such received data at the Receiving Station (RS) or other remote site (1118); l) storing such processed data at the Receiving Station (RS) or other remote site (111820 and m) outputting such processed and stored data at the Receiving Station (RS) or other remote site (1120). It will be understood that the remote site typically would include a Receiving Station (RS), as indicated in
More preferably, the method further includes acquiring, calculating, coupling and transmitting further patient data representative of at least one of body weight, electrocardiogram, respiration rate, blood pressure, cardiac output and pulse oximetry. The transmitting via such communications means preferably is wireless, wire-line or optical. Like the bio-impedance data, the body composition and other acquired and/or derived patient data preferably are stored and output at the remote site. Referring now to
In
In accordance with the alternative embodiment of the invention, the method further includes i) calculating bio-impedance data from the received measured voltage and injected current data (1108′) j) calculating body composition data from the calculated bio-impedance data (1110′); k) processing such calculated (or derived) data at the Receiving Station (RS) or other remote site (1118); l) storing such processed data at the Receiving Station (RS) or other remote site (I 120); and m) outputting such processed and stored data at the Receiving Station (RS) or other remote site (1122). In accordance with this alternative embodiment of the invention, it will be similarly understood that the remote site typically would include a Receiving Station (RS), as indicated in
Those of skill in the art will appreciate that, in accordance with the alternative embodiment of the invention illustrated in
In accordance with either of the alternative invented methods described above by reference to
Such a message can include diagnostic or prescriptive advice to the patient from the remotely sited qualified medical personnel who is involved in oversight and review of the stored/output patient data. Or such a message can include instructions to the patient regarding use of the monitor device. Or such a message can include a simple confirmation of patient data receipt and archive. The message can be created manually by the medical professional or can be created automatically based on an intelligent response system programmed into the Receiving Station (RS) consistent with sound professional judgment. Any and all suitable communications, contents, formats, scripts and protocols are contemplated, whether one-way or two-way and whether involving data, instructions and/or voice, and are within the spirit and scope of the invention. It will be appreciated that, for the purpose of ensuring medical patient data security, patient data may be encrypted in accordance with applicable industry standards and government requirements, e.g. HIPAA regulations, before they are transmitted. Any suitable known or developed data security technique is contemplated, and is within the spirit and scope of the invention.
All such configurations of the invented vital signs monitor-whether integrated fully within a housing worn, for example, on the patient's chest or separately housed within an adherent patch-like housing and an external device worn on the patient's belt, arm, wrist, ankle or in a patient's purse, waist-pack, backpack or pocket or within a portable, grippable housing separate from the patient's body and clothing-are contemplated as being within the spirit and scope of the invention. As circuit and battery miniaturization and densification continue to increase, it is contemplated that more and more functionality may be accommodated within the confines of a conveniently portable, grippable, non-invasive, telemetric monitoring housing.
Finally, those of skill in the art will appreciate that the invented monitor, system and method described and illustrated herein may be implemented in software, firmware or hardware, or any suitable combination thereof. Preferably, the monitor, system and method are implemented in a combination of the three, for purposes of low cost and flexibility. Thus, those of skill in the art will appreciate that the monitor, system and method of the invention may be implemented by a computer or microprocessor process in which instructions are executed, the instructions being stored for execution on a computer-readable medium and being executed by any suitable instruction processor. Alternative embodiments are contemplated, however, and are within the spirit and scope of the invention.
Accordingly, while the present invention has been shown and described with reference to the foregoing preferred device and method for its use, it will be apparent to those skilled in the art that other changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined in the appended claims.
This present invention is a continuation-in-part of prior application Ser. No. 09/971,507, filed Oct. 4, 2001, entitled DISPOSABLE VITAL SIGNS MONITOR, the disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 09971507 | Oct 2001 | US |
Child | 11017455 | Dec 2004 | US |