Non-invasive physiological sensor cover

Information

  • Patent Grant
  • 9295421
  • Patent Number
    9,295,421
  • Date Filed
    Monday, October 13, 2014
    10 years ago
  • Date Issued
    Tuesday, March 29, 2016
    9 years ago
Abstract
A sensor cover according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor, such as a pulse oximetry sensor. Certain embodiments of the sensor cover reduce or eliminate false readings from the sensor when the sensor is not in use, for example, by blocking a light detecting component of a pulse oximeter sensor when the pulse oximeter sensor is active but not in use. Further, embodiments of the sensor cover can prevent damage to the sensor. Additionally, embodiments of the sensor cover prevent contamination of the sensor.
Description

FIELD OF THE DISCLOSURE


The present invention relates to a sensor for measuring oxygen content in the blood, and, in particular, relates to an apparatus and method for preventing sensor activity when the sensor is not in use.


BACKGROUND OF THE DISCLOSURE

Non-invasive physiological sensors are applied to the body for monitoring or making measurements indicative of a patient's health. One application for a non-invasive physiological sensor is pulse oximetry, which provides a noninvasive procedure for measuring the oxygen status of circulating blood. Oximetry has gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, and home care and physical training. A pulse oximetry system generally includes a patient monitor, a communications medium such as a cable, and a physiological sensor having light emitters and a detector, such as one or more LEDs and a photodetector. The sensor is attached to a tissue site, such as a finger, toe, ear lobe, nose, hand, foot, or other site having pulsatile blood flow which can be penetrated by light from the emitters. The detector is responsive to the emitted light after attenuation by pulsatile blood flowing in the tissue site. The detector outputs a detector signal to the monitor over the communication medium, which processes the signal to provide a numerical readout of physiological parameters such as oxygen saturation (SpO2) and pulse rate.


High fidelity pulse oximeters capable of reading through motion induced noise are disclosed in U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952 5,769,785, and 5,758,644, which are assigned to Masimo Corporation (“Masimo”) and are incorporated by reference herein. Advanced physiological monitoring systems may incorporate pulse oximetry in addition to advanced features for the calculation and display of other blood parameters, such as carboxyhemoglobin (HbCO), methemoglobin (HbMet) and total hemoglobin (Hbt), total Hematocrit (Hct), oxygen concentrations and glucose concentrations, as a few examples. Advanced physiological monitors and corresponding multiple wavelength optical sensors capable of measuring parameters in addition to SpO2, such as HbCO, HbMet and Hbt are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, assigned to Masimo Laboratories, Inc. and incorporated by reference herein. Further, noninvasive blood parameter monitors and optical sensors including Rainbow™ adhesive and reusable sensors and RAD-57™ and Radical-7™ monitors capable of measuring SpO2, pulse rate, perfusion index (PI), signal quality (SiQ), pulse variability index (PVI), HbCO and HbMet, among other parameters, are also commercially available from Masimo.


SUMMARY OF THE DISCLOSURE

Optical sensors are widely used across clinical settings, such as operating rooms, emergency rooms, post anesthesia care units, critical care units, outpatient surgery and physiological labs, to name a few. In some situations, such as in operating rooms, emergency rooms or critical care units, sensors can be kept attached to monitors to reduce the setup time needed to begin monitoring a patient. While attached, the sensor can generate false readings by detecting ambient light even though the sensor is not in use. The sensor can also cause the monitor to emit alarms or otherwise make noise due to false readings, which can be distracting to medical personnel.


As such, a method and apparatus for preventing false readings are desirable. A sensor cover, according to embodiments of the disclosure, prevents or reduces false readings until the sensor is in use.


Further, in certain embodiments, the sensor cover can prevent damage to the sensor. For example, the sensors cover can protect the emitters and the detector during shipment or prior to use. In certain embodiments, a sensor cover decreases the likelihood of contamination by keeping covered portions of the sensor clean. Sensors in hospitals and other clinical environments are subject to exposure to infectious agents, dust or other foreign matter from depositing on the emitters or detector. The sensor cover can reduce or prevent exposure to these contaminants.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a sensor cover attached to a sensor of a physiological measurement system according to an embodiment of the disclosure;



FIGS. 2A-2C are top cover-attached, top cover-detached, and bottom cover-attached perspective views, respectively, of the sensor cover and sensor of FIG. 1;



FIG. 2D illustrates a first and second sensor covers over the emitters and detector according to an embodiment of the disclosure;



FIG. 3A illustrates a non-protruding sensor cover according to an embodiment of the disclosure;



FIG. 3B illustrates a non-protruding sensor cover having an opaque border and a removable opaque center according to an embodiment of the disclosure;



FIG. 3C illustrates a sensor cover having a clear “window” according to an embodiment of the disclosure;



FIG. 3D illustrates a sensor cover integrated with an adhesive cover according to an embodiment of the disclosure;



FIG. 3E illustrates a sensor cover covering an adhesive sensor according to an embodiment of the disclosure;



FIGS. 4A-4B are a top view and a close up view, respectively, of an integrated sensor cover according to an embodiment of the disclosure;



FIG. 4C illustrates the sensor cover of FIGS. 4A-4B covering a sensor component;



FIG. 5A is a front view a sensor cover attachable to a reusable sensor according to an embodiment of the disclosure;



FIG. 5B illustrates the mating of the sensor cover of FIG. 5A with a sensor;



FIG. 6 illustrates a sensor cover attachable to a sensor via one or more tabs according to an embodiment of the disclosure;



FIG. 7 illustrates a sensor cover configured to block both the emitters and the detector according to an embodiment of the disclosure;



FIG. 8 illustrates a sensor cover attachable to a sensor via an attachment arm according to an embodiment of the disclosure; and



FIGS. 9A-9D illustrates embodiments of the sensor covers configured for attachment to a bioacoustic sensor, according to embodiments of the disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A sensor cover according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor. Certain embodiments of the sensor cover reduce or eliminate false readings from the sensor when the sensor is not in use. Further, embodiments of the sensor cover can prevent damage to the sensor. Additionally, embodiments of the sensor cover prevent contamination of the sensor.


The tissue site of the illustrated embodiments is a finger and the following description therefore refers specifically to the tissue site as a finger for the purposes of clarity. This is not intended to be limiting and, as described herein, the sensor cover of certain embodiments can be used with sensors attachable to other types of tissue sites, such as a toe, ear lobe, nose, hand, foot, forehead or the like.



FIG. 1 illustrates an embodiment of a sensor cover attached to a physiological measurement system 100 having a monitor 110 and an optical sensor 120. The optical sensor 120 comprises one or more light emitters and a detector. The optical sensor 120 is configured to plug into a monitor sensor port 112 via a patient cable 130. Monitor keys 114 provide control over operating modes and alarms, to name a few. A display 116 provides readouts of measured parameters, such as oxygen saturation, pulse rate, HbCO, HbMet and Hbt to name a few. Other blood parameters that can be measured to provide important clinical information are fractional oxygen saturation, bilrubin and blood glucose, to name a few.


In the illustrated embodiment of FIG. 1, the sensor cover 140 protrudes outside the sensor. The cover can be made from an opaque material, such as, for example, plastic, polyester, polypropylene, rubber, vinyl, cling vinyl and/or the like. The sensor cover 140 can obstruct the detector and prevent the detector from detecting light, thereby reducing or eliminating false readings. For example, the sensor 120 can sometimes be left attached to a monitor 110 to facilitate quick monitoring of a patient, even when not currently in use. The opaque cover 140 can prevent or reduce false readings caused by the emitters or the ambient light, even if the sensor is active, by preventing the sensor from receiving light. In an embodiment, the opaque material can block all wavelengths of light used by a particular sensor. Other embodiments can block different ranges of wavelengths depending on the type of sensor the cover is used for. In an embodiment, the sensor cover 140 is placed over the emitters to prevent the sensor from emitting light receivable by the detector. In an embodiment, both the detector and emitter are covered.


In some embodiments, the sensor cover 140 can be removed before placement at a measurement site. For example, once a patient arrives, medical personnel can remove the sensor cover 140 and attach the now fully operational sensor 120 to the patient. In some embodiments, the medical personnel can attach the sensor 120 with the cover 140 still in place. The opaque cover prevents measurements from being taken until the sensor 120 is generally secure and the medical personnel are ready to take measurements. For example, movement can generate artifacts for some sensors; therefore waiting until the patient is stable can reduce measurement of inaccurate data. Once the sensor 120 is generally secured to an attachment site, the cover 140 can be removed from the sensor. In some embodiments, the sensor cover 140 can be removed before and/or after placement at a measurement site. The sensor cover 140 can be removed by peeling it off from the sensor or by pulling on the protruding portion.


As will be appreciated by skilled artisans from the disclosure provided herein, various attachment mechanisms can be used. For example, the sensor cover can be attached with an adhesive. In certain embodiments, a restorable adhesive can be used to facilitate reattachments of the sensor cover. The restorable adhesive layer can be rejuvenated by application of alcohol to the adhesive. The cover can then be reattached to the sensor. This can be useful where the sensor is moved to a new location or tissue site because the cover can prevent the sensor from taking false readings while the sensor is moved. In some embodiments, no adhesive is used on the sensor cover to leave no residue. In some embodiments, the sensor cover can be made from static cling vinyl, plastic film, or other “clingy” material with no adhesive used. In some embodiments, the sensor cover can be attached through static electricity allowing the cover to cling to the sensor without any adhesive and/or allowing the sensor cover to be reapplied. In other configurations, the sensor cover can be attached with Velcro, fasteners, tabs, clips, slots, or the like.


As will also be appreciated by skilled artisans from the disclosure provided herein, the sensor cover can be detached in various ways. In some embodiments, the sensor cover can be peeled off from the sensor before the sensor is placed at a measurement site. In some embodiments, the sensor can be pulled off from the sensor after placement by pulling on a protruding portion. Depending on the attachment mechanism, the detachment of the sensor cover can expose an adhesive layer or can leave no adhesive residue on the sensor. In some embodiments, the sensor cover can be unclipped or unhooked.


In certain embodiments, the sensor covers are reusable. For example, the sensor cover can be reused if the sensor is temporarily removed for repositioning or for cleaning. The sensor cover can also be replaced on the sensor when the sensor is no longer in use. In some embodiments, the sensor covers are disposable and are disposed of once removed from the sensor.


Although disclosed with reference to the sensor of FIG. 1, an artisan will recognize from the disclosure herein a wide variety of oximeter sensors, optical sensors, noninvasive sensors, medical sensors, or the like that may benefit from the sensor cover disclosed herein. In various embodiments, the sensor can be adapted to receive a tissue site other than a finger such as a, toe, ear lobe, nose, hand, foot, neck, or other site having pulsatile blood flow which can be penetrated by light from the emitter. In addition, the sensor cover 140 can be used with a portable monitor and associated sensor components in certain embodiments. Such monitors, including the sensor components, can be integrated into a hand-held device such as a PDA and typically do not include cables or separate monitors. Portable monitors are often used by first responders in emergency situations, in part because of their portability and ease of use. As such, sensor covers 140 which can protect the sensor components according to embodiments herein can be of particular benefit when used with spot-check monitors.



FIGS. 2A-2C are top cover-attached, top cover-detached, and bottom cover-attached perspective views, respectively, of the sensor cover and sensor of FIG. 1. FIG. 2D illustrates a first 140 and second 240 sensor covers placed over the detector 210 and emitters 230, respectively. FIG. 2A illustrates a view of a side of the sensor placed in contact with a tissue site. In FIG. 2A, the sensor cover 140 attaches to the sensor 120 and covers the detector 210, with a protruding portion 220 extending past the sensor. The sensor cover 140 can be a generally elongated shape made of an opaque material. In an embodiment, one side of the sensor cover can include an adhesive layer over the portion of the cover designed to block the detector 210 while the remainder of the cover can be adhesive free. Thus, the cover 140 does not catch on other objects and cause the cover 140 to be prematurely removed. The cover 140 can be removed by pulling on the protruding portion 220 either before or after the sensor 120 has been placed onto a measurement site. FIG. 2B illustrates the sensor 120 with the sensor cover 140 removed. FIG. 2C illustrates a view of an opposite side of the sensor of FIG. 2A.



FIG. 3A illustrates a non-protruding sensor cover 310 according to an embodiment of the disclosure. The opaque sensor cover 310 fits within the sensor 120 and blocks a sensor component 210, such as the emitters or the detector. By staying within the sensor edges, the chance of accidental removal of the cover can be reduced. When the sensor 120 is ready for use, the sensor cover 310 can be removed.



FIG. 3B illustrates a non-protruding sensor cover having an opaque border 314 and a removable opaque center 312. The opaque center 312 can be removed separately from the opaque border 314, leaving an opaque material surrounding the sensor component 210. When the sensor is attached to the patient, the opaque border 314 can minimize light piping, thereby increasing accuracy of the readings. For example, the opaque border 314 can prevent reflected or scattered light that has not passed through tissue from entering into the detector and/or prevent the detector from picking up light from the emitters that fall around instead of on the detector. In an embodiment, the sensor cover can have adhesive on one both sides. Adhesive on both sides of the sensor cover allows the cover to stick to a patient, further preventing light piping or movement of the sensor. In an embodiment the sensor cover can have a clear window section in addition to or instead of a removable center 312.



FIG. 3C illustrates a sensor cover 316 having a clear “window” 317 over the sensor component. In an embodiment, the sensor cover can be used to protect the sensor component, provide a new adhesive layer, and/or reduce light piping while allowing the light through the “window.” By using a clear window, the sensor cover does not have to be removed when sensor is attached to the patient. In some embodiments, a removable opaque portion can be placed over the window.



FIG. 3D illustrates a sensor cover integrated with an opaque adhesive cover 320 for the sensor. An adhesive sensor generally has one or more adhesive covers 320 covering one or more adhesive portions 330 of the sensor. In FIG. 3D, the opaque adhesive cover 320 is extended to cover the sensor component 210. The adhesive cover 320 can be peeled off to reveal the adhesive layer 330 and uncover the sensor component 210.



FIG. 3E illustrates a sensor cover 340 covering an adhesive sensor. In FIG. 3E, the opaque sensor cover 340 has adhesive material on both sides of the sensor cover in order to allow reattachment of a sensor where the original adhesive material 330 has lost its adhesiveness. The sensor cover 340 can be placed on the sensor using a first adhesive layer 350 while the sensor is detached from a patient. An adhesive cover (not shown) protects a second adhesive layer 360 and can be removed before the sensor is placed on the patient. The second adhesive layer allows the sensor to be reattached to the patient. The sensor cover can cover both the detector and emitters of the sensor. The sensor cover 322 can have removable or clear sections 370, 380 over the detector and/or emitters to allow light to pass through.



FIGS. 4A-4B are a top view and a close up view, respectively, of an integrated sensor cover according to an embodiment of the disclosure. FIG. 4A illustrates an embodiment of the sensor cover where the sensor cover 410 is integrated with the sensor 400. The sensor has a slot 420 positioned near an emitter or a detector. The slot allows an arm 410, 430 to be folded over a sensor component 435, which can be the emitters or the detector, thereby covering it. In certain embodiments, the sensor 400 is an adhesive sensor. The use of a slot allows an adhesive arm 410 to be used as a sensor cover without having to remove the arm's adhesive cover. Once a patient is available, the adhesive arm 410 can be removed from the slot, the adhesive cover can be removed, and the adhesive arms 410, 430 used to secure the adhesive sensor to the patient. FIG. 4B illustrates a close up view of the slot 420 and sensor cover 410 of FIG. 4A. FIG. 4C illustrates the sensor cover 410 folded over the sensor component 435 with the end of the sensor cover inserted into the slot. A portion of the sensor cover extends into the slot and to the back side of the sensor. The slot keeps the sensor cover 410 generally secure against the sensor component 435.



FIG. 5A is a front view a sensor cover 510 attachable to a reusable sensor according to an embodiment of the disclosure. The sensor cover 510 includes a recess 515 into which a sensor housing can be inserted. The sensor housing generally fits closely in the recess 515. Friction between the inner surfaces of the sensor cover 510 and the sensor housing generally secures the housing with the sensor cover 510. FIG. 5B illustrates the mating of the sensor cover 510 of FIG. 5A with a sensor 520. In the illustrated embodiment, the sensor 520 is a reusable clip-style sensor. The sensor cover 510 fits over a lower sensor housing 525. The sensor housings 525, 545 can contain sensor components 530, 540, such as the emitters or the detector. In certain embodiments, the sensor component 530 is a detector and the sensor cover 510 prevents the detector from receiving light. The sensor cover 510 can be removed when the sensor 520 is in use and reattached once the sensor 520 is not in use.



FIG. 6 illustrates a sensor cover 610 attachable to a sensor 520 via one or more tabs or attachment arms 620 according to an embodiment of the disclosure. The tabs 620 fit over the sides of an upper housing 545 of the sensor and generally secure the sensor cover 610 against the upper housing 545. The sensor cover 610 covers the sensor component, such as the emitters or the detector, located in the upper housing 545.



FIG. 7 illustrates an embodiment of the sensor cover 700 configured to block both the emitters and the detector. An upper arm 710 secures against an upper housing of a sensor. A lower arm 720 secures against a lower housing of a sensor. The upper 710 and lower 720 arms are connected by a hinge portion 725. The arms 710, 720 can be attached via a press fit. The lower arm 720 can also include an attachment arm 730 to better secure the sensor cover 700 against the lower housing of the sensor.



FIG. 8 illustrates an embodiment of the sensor cover 800 attachable to a sensor housing via an attachment arm 810. The attachment arm 810 is configured to secure the sensor cover 800 in place when applied to the sensor. Upon application to a sensor, the front portion of the sensor housing may occupy the space defined by the attachment arm 810 and the underside of the lower portion 805 of the sensor cover 800. The attachment arm 810 helps to releasably secure the sensor, via a friction fit, for example. One or more other features, such as the lip 815 disposed on the side of the sensor cover proximal to the sensor can be included to further secure the sensor cover 800 in the sensor. Upon insertion of the sensor cover 800 into the sensor, the sides of the sensor housing abut the lip 815. Accordingly, the lip 815 can help ensure that the sensor cover 800 is positioned appropriately deep within the sensor.


Although the above embodiments have been described with respect to an opaque material intended to optically insulate the optical sensor, as will be appreciated by skilled artisans from the disclosure provided herein, sensor covers made of different insulative materials can be used as appropriate for different types of sensors. For example, sonically insulative materials, such as foam, rubber, cotton, and/or other sound deadening materials can be used to cover sensors that employ sound, such as a bioacoustic or ultrasound sensor. In some embodiments, electrically insulative materials, such as rubber, polyethylene, silicone and/or other insulators can be used to cover sensors that employ electrical signals, such as bioimpedance sensors. In some embodiments, mechanically insulative materials, such as hard plastic, metal, rubber, silicone, and/or other rigid or dampening materials can be used to cover mechanical sensors to prevent sensor actuation. In some embodiments, chemically insulative material, such as plastic, metal, polyethylene or the like can be used to cover chemical sensors and prevent their exposure to the environment.



FIGS. 9A-9D illustrate embodiments of sensor covers for a bioacoustic sensor. FIG. 9A illustrates one embodiment of a bioacoustic sensor. The bioacoustic sensor 900 is configured for placement against a patient's skin. The contact surface 903 of the sensor 900 is placed against the skin. The bioacoustic sensor picks up sound waves from the patient's body and converts them into electrical signals for transmission to a monitoring device. In one embodiment, the bioacoustic sensor can use a piezoelectric transducer as the sensing element to detect sound waves. In FIG. 9A a sensor cover 905 made of a sound-deadening material, such as foam, rubber, and/or cotton, is attached to the contact surface to prevent sound waves from being detected by the bioacoustic sensor 900. The sound-deadening material can be attached by adhesive, tabs, clips, friction fit, and/or other connection mechanism. In FIG. 9A, the bioacoustic sensor has a bump 910 on the contact surface 903 positioned to apply pressure to the sensing element so as to bias the sensing element in tension and improve the receptivity of the sensing element to sound waves. Where such a bump 910 exists on the contact surface 903 of the sensor, embodiments of sensor cover 905 can be provided with a corresponding recess.



FIG. 9B illustrates an embodiment of the sensor cover 920 made of shaped sound-deadening material to increase the surface area available to absorb sound. In one embodiment, a plurality of wedge shaped protrusions 925 is formed on the surface of the sensor cover 920. In other embodiments, different shaped protrusions can be used, such as waveform, pyramid, egg crate, and/or other shapes to increase the surface area.



FIG. 9C illustrates a bioacoustic sensor cover having one or more attachment arms according to an embodiment of the disclosure. An attachment arm 935 is configured to releasably secure the sensor cover 930 when applied to the sensor via a friction fit, for example. A second attachment arm 936 can be provided to further secure the sensor cover 930 to the sensor 900. A recess 940 can also be formed on the interior surface of the sensor cover 930 in order to conform to protrusions on the contact surface of the sensor 900. Where the contact surface of the sensor 900 is flat, the interior surface can also be flat.



FIG. 9D illustrates a bioacoustic sensor having conductive leads according to an embodiment of the disclosure. In FIG. 9D, the illustrated bioacoustic sensor 900 has one or more apertures 950, 955 exposing the sensing element 960 to the contact surface 903. In one embodiment, the sensor cover 962 prevents the bioacoustic sensor from taking readings by creating an electrical short in the sensor. One or more conductive leads or wires 965, 970 configured to fit into the apertures 950, 955 in the sensor housing are disposed on the sensor cover 962. The conductive leads 965, 970 abut the negative and positive electrical poles of the sensing element 960. The conductive leads can be formed of copper or other conductive material. In one embodiment, the conductive leads 965, 970 can abut internal wiring that connects to the negative and positive electrical poles, such that a direct connection is not required. The conductive leads 965, 970 are joined by a connecter lead or wire 975 to generate a short circuit in the sensor 900. In an embodiment, the conductive leads 965, 970 and connector lead 975 are a single connected structure. In an embodiment, the sensor cover 962 further comprises one or more attachment arms 980, 982 for releasably securing the sensor cover 962 to the sensor 900. In an embodiment, the sensor cover 962 further comprises a recess 985 to conform against a protrusion 910 on the contact surface 903 of the sensor. In one embodiment, the sensor cover 962 is formed out of a sound deadening material, such as foam or rubber. In one embodiment, the sensor cover 962 is made of hard plastic or other types of plastic materials.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.


Various sensor covers have been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate the many variations, modifications and combinations. For example, in various embodiments, adhesive, snap-fit, friction-fit, clips, tabs, and other attachment mechanisms can be employed. In addition, in various embodiments the sensor covers are used with a sensor that can measure any type of physiological parameter. In various embodiments, the sensor covers can be for any type of medical device or sensor. In various embodiments, adhesive can be placed on both sides of the sensor cover to aid in the reattachment of sensors where the sensor adhesive has grown weak. In various embodiments, sensors covers can be made in whole or in part of materials such as foam, polyester, polypropylene, rubber, vinyl, cling vinyl, urethane rubber plastic or other plastic materials, cloth, metal, combinations of the same or the like.

Claims
  • 1. A sensor covering system for a noninvasive optical physiological sensor, the sensor covering system comprising: a noninvasive optical physiological sensor comprising: sensing components including a light-emitting component and a light-detecting component;a flexible substrate; andan adhesive layer formed on a side of the flexible substrate; anda sensor cover comprising: a cover portion configured to cover at least one of the sensing components while the noninvasive optical physiological sensor is active so as to block light from the one or more emitters from being received by the detector, the cover portion being at least partially opaque,wherein the cover portion is configured to attach to the adhesive layer of the noninvasive optical physiological sensor,wherein at least a portion of the cover portion protrudes from the noninvasive optical physiological sensor and extends past the noninvasive optical physiological sensor to facilitate removal of the sensor cover, andwherein the sensor is a pulse oximeter sensor.
  • 2. The sensor covering system of claim 1, wherein the cover portion is further configured to prevent the detector from receiving light while the noninvasive optical physiological sensor is active.
  • 3. The sensor covering system of claim 1, wherein the cover portion is further configured to block ambient light from a surrounding area.
  • 4. A sensor cover for use with a noninvasive optical physiological sensor, the sensor cover comprising: a cover portion configured to cover at least one sensing component of a noninvasive optical physiological sensor while the noninvasive optical physiological sensor is active so as to block the light from the one or more emitters from being received by the detector, the cover portion being at least partially opaque,wherein the cover portion is configured to attach to an adhesive layer of the noninvasive optical physiological sensor,wherein at least a portion of the cover portion protrudes from the noninvasive optical physiological sensor and extends past the noninvasive optical physiological sensor to facilitate removal of the sensor cover,wherein the noninvasive optical physiological sensor comprises: sensing components including: a light source configured to emit light from one or more emitters of the sensor; anda detector configured to receive at least a portion of the light emitted by the one or more emitters after the light has passed through a tissue site;a flexible substrate; andthe adhesive layer formed on a side of the flexible substrate,wherein the cover portion is attachable over at least one of the detector or the one or more emitters, andwherein the sensor is a pulse oximeter sensor.
  • 5. The sensor cover of claim 4 wherein the cover portion is further configured to prevent the detector from receiving light while the noninvasive optical physiological sensor is active.
  • 6. The sensor cover of Claim 4, wherein the cover portion is further configured to block ambient light from a surrounding area.
  • 7. A method of blocking readings by a noninvasive optical physiological sensor, the method comprising: providing a sensor cover comprising: a cover portion configured to cover at least one sensing component of a noninvasive optical physiological sensor while the noninvasive optical physiological sensor is active so as to block light from the one or more emitters from being received by the detector, the cover portion being at least partially opaque,wherein the cover portion is configured to attach to an adhesive layer of the noninvasive optical physiological sensor, andwherein at least a portion of the cover portion protrudes from the noninvasive optical physiological sensor and extends past the noninvasive optical physiological sensor to facilitate removal of the sensor cover; andattaching the sensor cover to the noninvasive optical physiological sensor, the sensor cover covering at least one sensing component of the noninvasive optical physiological sensor and being removable from the noninvasive optical physiological sensor,wherein the noninvasive optical physiological sensor comprises: sensing components including: a light source configured to emit light from one or more emitters of the sensor; anda detector configured to receive at least a portion of the light emitted by the one or more emitters after the light has passed through a tissue site;a flexible substrate; andthe adhesive layer formed on a side of the flexible substrate.
  • 8. The method of claim 7, wherein the cover portion is further configured to prevent the detector from receiving light while the noninvasive optical physiological sensor is active.
  • 9. The method of claim 7 further comprising: activating the light source of the sensor to emit light from the one or more emitters of the sensor; andblocking, with the sensor cover, the light from the one or more emitters from being received by the detector of the sensor.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/919,692, filed Jun. 17, 2013, titled “NON-INVASIVE PHYSIOLOGICAL SENSOR COVER,” which is a continuation of U.S. patent application Ser. No. 12/844,720, filed Jul. 27, 2010, titled “NON-INVASIVE PHYSIOLOGICAL SENSOR COVER,” which claims priority benefit under 35 U.S.C. §119(e) from U.S. Provisional Application No. 61/229,682, filed Jul. 29, 2009, titled “Non-invasive Physiological Sensor Cover.” All of the above referenced applications are hereby incorporated by reference herein in their entireties.

US Referenced Citations (474)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4972829 Knerr Nov 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5619992 Guthrie et al. Apr 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5685299 Diab et al. Nov 1997 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6140549 Pompei, Jr. Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6179159 Gurley Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6748254 O'Neil et al. Jun 2004 B2
6760607 Al-All Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7190987 Lindekugel et al. Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7486977 Sweitzer et al. Feb 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7526328 Diab et al. Apr 2009 B2
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7574245 Arizaga Ballesteros Aug 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7618375 Flaherty Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
RE41317 Parker May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8188433 Gonopolskiy et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8886271 Kiani et al. Nov 2014 B2
20090247924 Harima et al. Oct 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090299157 Telfort et al. Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100069725 Al-Ali Mar 2010 A1
20100261979 Kiani Oct 2010 A1
20100317936 Al-Ali et al. Dec 2010 A1
20110001605 Kiani et al. Jan 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110172967 Al-Ali et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237911 Lamego et al. Sep 2011 A1
20120059267 Lamego et al. Mar 2012 A1
20120116175 Al-Ali et al. May 2012 A1
20120179006 Jansen et al. Jul 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120227739 Kiani Sep 2012 A1
20120286955 Welch et al. Nov 2012 A1
20120302894 Diab et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20130045685 Kiani Feb 2013 A1
20130296672 O'Neil Nov 2013 A1
Related Publications (1)
Number Date Country
20150182154 A1 Jul 2015 US
Provisional Applications (1)
Number Date Country
61229682 Jul 2009 US
Continuations (2)
Number Date Country
Parent 13919692 Jun 2013 US
Child 14512945 US
Parent 12844720 Jul 2010 US
Child 13919692 US