This invention in general relates to method and technique for correcting optical signals of spectroscopic technologies used for non-invasive measurement of concentrations of human blood constitutes, and in particular, for monitoring the blood glucose levels in vivo for diabetes.
Currently, daily blood glucose self-monitoring for diabetes patients can only be done through the use of invasive method that requires drawing blood from patients. It is painful and inconvenient since the skin has to be lanced into the soft tissue in order to collect the blood sample for the periodic measurements, typically 6-8 times a day. It is the same routine for the diabetics in order to provide feedback for insulin dosing and other management. Clinical studies have shown that a tight glucose control with frequent glucose measurements leads to a substantial decrease in the long-term complications of diabetes.
There has been growing interest and high desire to develop a non-invasive method and apparatus that is suitable for frequently or continuously monitoring glucose levels without drawing blood. In the last decade, various attempts have been made to measure blood glucose level non-invasively (or in vivo), mainly using spectroscopic technologies in which the concentration of analytes is determined from spectral information through light-blood interaction. These techniques include visible and near-infrared (NIR) spectroscopy, mid-infrared (MIR) spectroscopy, infrared (IR) spectroscopy, diffuse reflectance spectroscopy, fluorescence spectroscopy, polarimetry, scattering changes, photo-acoustic spectroscopy, and Raman scattering through human eyes, etc. Most recently Raman lightwave technology through human skin (U.S. Pat. No. 6,167,290) has been employed to measure glucose non-invasively. These optical methods open up an opportunity for developing a new generation of glucose meters to detect blood glucose without drawing a blood sample.
To date, all of these optical methods suffer a number of technical difficulties though Raman scattering is believed to be the most promising technology in this direction. It is worth noting that all non-invasive lightwave technologies, such as infrared absorption spectroscopy and its variants, both NIR and MIR, diffuse reflectance spectroscopy, fluorescence spectroscopy, and Raman spectroscopy, involve the penetration of excitation light energy into skin and, after the light-blood interaction, the derived signal comes through the skin back into free space. A technical issue that prevents the non-invasive glucose concentration from being accurately measured is the energy dissipation process arising from the skin and tissues as light propagates. The direct consequence is poor repeatability and reproducibility of optical measurements. For example, different skin color and thickness will lead to different light power loss, and different types of skin conditions (e.g., roughness and moisture) will create different degrees of interference, such as different scattering and absorption strength. This practical problem has so far not been addressed.
The intention of the present invention is to provide an optical method and technique that accounts for interference from the skin and tissues. The optical signals of a particular spectroscopic technology can be corrected, which is used for precise non-invasive measurement of concentrations of human blood constituents such as glucose.
The invention generally provides an optical method and technique to correct optical signal deformation due to optical absorption and scattering arising from skin and tissue. The associated apparatus is designed for non-invasively measuring concentrations of analytes, preferably glucose, from human blood through the skin using a lightwave technique such as Raman Spectroscopy.
It is our object of the present invention to provide an optical method and apparatus to measure in real-time skin/tissue function that is used to account for signal energy loss as it propagates within tissues when used in Raman lightwave system for non-invasive monitoring of blood glucose levels from human subjects without drawing blood.
Another object of the present invention is to provide a method to correct signal distortion in real-time due to light absorption as it propagates within tissues, including the skin.
Still another object of the present invention is to provide a method to correct signal distortion due to light scattering as it propagates within tissues and on the skin surface.
Yet another object of the present invention is to provide an algorithm to correct optical signals used for non-invasively measuring concentrations of analytes, preferably glucose, from human blood through the skin using a lightwave technique such as Raman Spectroscopy.
The present invention discloses a skin/tissue function and its important role for non-invasive spectroscopic technologies used for measuring the concentrations and physiological levels of analytes from human blood through the skin. The skin/tissue function disclosed in the present invention can be employed to account for signal energy dissipation process and remove the uncertainty of signal analysis in all spectroscopic technologies described above, including, for example, infrared absorption spectroscopy and its variants, diffuse reflectance spectroscopy, fluorescence spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and Raman spectroscopy.
The disclosed skin/tissue function is defined and measured over the particular spectral range of interest. For example, when used for Raman lightwave system, the spectral range is consistent with the Raman wavelengths, i.e., from the pump wavelength to the maximum Raman shift.
In one embodiment, the skin/tissue function is measured at one specific wavelength. The corresponding optical system and apparatus is relatively simple. The preferred wavelength is selected at the center of the spectral range.
In another embodiment, the skin/tissue function is measured at a few discrete wavelengths. Typically, three wavelengths are used, one at lower end, the second one at the middle and the remaining one at the upper end. For a narrow spectral range, the skin/tissue function obtained over these three wavelengths gives a good estimation.
In still another embodiment, the skin/tissue function is preferably measured over a continuous spectral region. To this end, a broadband light source is used to obtain the correction signals.
The aforementioned method and apparatus for skin/tissue function can be applied to various spectroscopic systems for non-invasively monitoring levels of blood analytes through the skin. Further objects and advantages of the subject invention will be apparent from the following drawings and detailed description of the preferred embodiments.
These, as well as other features of the present invention, will become more apparent upon reference to the drawings wherein:
The present invention provides a method and apparatus for accounting for the influence of skin/tissue along with signal processing used to non-invasively measure the concentrations and physiological levels of analytes from human blood through the skin. The invention is described based on Raman spectroscopy, but it can be applied to other lightwave methods including near-infrared spectroscopy, mid-infrared spectroscopy, infrared spectroscopy, reflectance spectroscopy, fluorescence spectroscopy, polarization changes, scatter changes, and photo-acoustic spectroscopy, but is not limited to.
Referring now to the drawings,
Further information about the use of Raman Spectroscopy for measuring constituents in the body can be found in the following patents and patent applications, each of which is incorporated herein by reference: U.S. Pat. No. 6,167,290 (Yang), U.S. Pat. No. 5,481,113 (Dou); U.S. Pat. No. 5,553,616 (Ham); U.S. Pat. No. 5,615,763 (Burger), U.S. Pat. No. 6,151,522 (Alfano), U.S. Pat. No. 5,243,983 (Tarr), and 2003/0208169 (Chaiken).
There exists a practical issue when the Raman apparatus shown in
To precisely acquire Raman signal spectra and reduce calculation error for a glucose measurement, an optical apparatus and method is desirable to dynamically measure the effects from skin and tissue and in real-time correction Raman signals.
The generated reflectance signals are collected by the lens 225, reflected by 220, and then focused by 240 onto Raman spectrometer 245. Note that when the broadband light is applied, the laser should be blocked, and vice versa. This requires the mirror 115 in
Since the intensity of the light emitted from the broadband source is not constant over the selected wavelength range, it is desirable to normalize the reflectance measurement with a measurement of the light incident on the sample. In the
By using the above optical apparatus disclosed in the present invention, a skin/tissue function is defined and measured. This characteristic function is defined as
where P(λ) is the reflectance spectrum from skin and tissue, and P0(λ) is the incident spectrum of broadband light.
The function and role of the skin/tissue function ƒ(λ) is to factor out the energy dissipation caused by various processes mentioned above. Suppose that the measured Raman spectrum is R(λ). It varies not only with glucose concentration but also with variations in the skin and tissue conditions for different people. From the measured skin/tissue function ƒ(λ) and measured Raman spectrum R(λ) and noting that both the pump and Raman scattering signals travel in a single path through the tissue medium, while the broadband light travels both into and out of the tissue medium, a new corrected Raman spectrum R0(λ) can be defined as
The resulting corrected “Raman spectrum” R0(λ) is equivalent to the spectrum that would be obtained if it was measured in the absence of these energy dissipation processes.
In one preferred embodiment, the skin/tissue function is measured using procedures illustrated in
The skin tissue function f(λ) is then used to correct the measured Raman spectral response, using for example, equation (2). In the preferred embodiment, when broadband light is used to generate the skin/tissue function f(λ), the correction is performed for all wavelength components over the whole selected wavelength range.
While correction on a wavelength by wavelength basis will provide the greatest accuracy, some measure of improvement can be obtained using only a few wavelengths or even a single wavelength. In a simple case, the correction measurements taken at one or a few wavelengths can be applied across the entire spectral range. In a more sophisticated method, a modeling approach could be developed which would define a theoretical skin/tissue function over a large range of wavelengths based on a subset of measurements.
Once the corrected function is obtained, a determination of the concentration of the constituent or analyte is performed in accordance with prior methods. Some of those methods are described in the above cited patents. The current approach preferred by the inventors is described in our copending applications which are incorporated herein by reference: Ser. Nos. 10/914,761, filed on Aug. 9, 2004; Ser. No. 10/940,791 and 10/940,097 both filed on Sep. 14, 2004.
As noted above, the subject correction approach can be used for measurement systems other than Raman Spectroscopy. In particular, where measurements are made with other spectroscopic approaches in which light signals are required to travel within tissues, they can be corrected with the skin/tissue function f(λ).
As noted above, measuring the incident spectrum P0(λ) requires directing the incident broadband light beam to the Raman spectrometer 245. This can be done by moving one or more optical elements as discussed above with respect to
Although the present invention has been described in terms of specific embodiments it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.