There exist several medical therapies that involve inducing temperature changes in parts of the body. To facilitate the monitoring of such therapies, it would be desirable to provide apparatus and techniques for non-invasively measuring the temperature of an internal treatment site.
One such therapeutic technique involves the use of high intensity ultrasound fields, which can be focused on deep seated regions within the human body. If sufficient acoustic energy is concentrated within the focal volume, the temperature in that region can be increased to a level sufficient to induce cellular necrosis. This technique is commonly referred to as High Intensity Focused Ultrasound (HIFU) or Focused Ultrasound Surgery (FUS). The focusing of ultrasound can result in high acoustic intensities (measured as power density in W/cm2) at the focus. An intensity gain of 100 to 1000 times can be achieved in the cross-sectional area of the beam at the focus, resulting in intensities upward of 1000 W/cm2, orders of magnitude greater than that of diagnostic ultrasound systems. The technique has potential applications in any medical field that may benefit from the selective destruction of tissue volumes. Clinical interest has concentrated on treating soft-tissue cancers, de-bulking enlarged prostates (benign prostatic hyperplasia), and acoustic homeostasis. HIFU provides the ability to ablate localized tissue volumes without damaging intervening and surrounding tissue, thus eliminating the need for incisions—a feature that distinguishes it from other widely used ablative therapies, such as Radio Frequency (RF) ablation.
HIFU therapy is significantly different than conventional hyperthermia treatment, in which the temperature is raised a few degrees above body temperature and maintained for a relatively lengthy time, typically on the order of minutes. In HIFU therapy, the temperature typically rises by more than 40-50° C. in a few seconds, with increases up to 70° C. in one second having been reported. One consequence of the rapid heating to cytotoxic temperatures is that there is a very narrow boundary between live cells and dead cells at the edges of the focal point volume. The volume of dead cells is referred to as a lesion, and this method of selectively inducing cellular necrosis is commonly referred to as thermal ablation.
Some form of medical imaging can be employed to facilitate HIFU therapy. Because HIFU therapy can be carried out non-invasively, a non-invasive imaging technology will normally be employed. Medical imaging can facilitate HIFU therapy by enabling the exact location of abnormal tissue to be identified and targeted, by providing verification that the HIFU focal point properly corresponds to the abnormal tissue, by facilitating monitoring during HIFU treatment to ensure optimal therapeutic dose control, and by enabling post-therapy imaging of the treatment site to assess treatment efficacy. Ultrasound imaging for guiding HIFU therapy offers the following advantages: ultrasound imaging can be performed in real-time, ultrasound imaging has minimal side effects, ultrasound imaging equipment is ubiquitous and relatively inexpensive, ultrasound imaging and therapeutic ultrasound can be easily integrated into a single assembly, and acoustic distortions arising from sound wave and tissue interactions will generally have similar effects on both imaging ultrasound and HIFU.
Temperature measurements during HIFU therapy are useful for several reasons. First, a spatio-temporal temperature map overlaid over a B-mode ultrasound image of the treatment site will enable a clinician to prevent the temperatures of non-target tissue (such as tissue beyond the bounds of a tumor) from reaching necrotic levels. Further, temperature measurements can be used to calculate a thermal dose. It has been suggested and experimentally verified that, once a tissue type dependent thermal dose has been achieved for a given volume inside the tumor, irreversible damage will have been caused in this region. Based on the times for which temperatures are held, an equivalent time at one reference temperature (usually taken to be 43° C.) is computed, and this time estimate is referred to as the thermal dose. The mathematical expressions for thermal dose are as follows:
where T is the temperature at time t, Δt represents the time interval between consecutive temperature measurements, TD43 is the thermal dose referenced to 43° C., x is the spatial location in tissue where the thermal dose is computed, and to and tend represent the start time and end time of treatment, respectively. This expression has typically been used in hyperthermia treatments, in which the heating profile is relatively long and stays near 43.0° C., but also has been suggested for use in HIFU. From Eq. (1), it can be seen that estimating the temporal and spatial profile of the temperature rise during treatment is important for computing the thermal dose delivered to the patient.
Thus, it would be desirable to provide techniques and apparatus enabling ultrasound imaging and ultrasound data-based temperature estimates to be performed during HIFU therapy. Indeed, several suggested techniques have been investigated. In particular, the relationship between the speed of sound in tissue and temperature (i.e., acoustic attenuation) has been studied, in order to enable temperature monitoring to be achieved. Due to the nature of ultrasound imaging, it is relatively straightforward to collect time-of-flight data for ultrasound waves propagating between an imaging transducer and the treatment site. Changes in temperature at the treatment site will affect the speed at which reflected ultrasound waves propagate between the treatment site and the imaging transducer (acting as a receiver), enabling an estimation of temperature at the treatment site to be made.
Unfortunately, temperature estimates generated using the above-noted technique are prone to significant errors, for several reasons. Because the acoustic attenuation of a given mass of tissue is difficult to measure non-invasively, a generic acoustic attenuation value for biological tissue is generally employed to generate temperature estimates based on backscattered ultrasound data. However, the acoustic attenuation of biological tissue is not a constant value, and different types of tissue exhibit different acoustic attenuation (i.e., the speed of sound in fatty tissue is different than the speed of sound in muscle tissue, even at the same temperature). Thus, the use of a generic value for acoustic attenuation will introduce errors into the temperature estimates, and the use of numerical model-based approaches to derive temperature values assuming a priori knowledge of attenuation coefficient are therefore ineffective. It would therefore be desirable to provide a more accurate method and apparatus for obtaining profiles of the spatio-temporal temperature distribution of tissue during thermal therapy.
The concepts disclosed herein enable ultrasound based non-invasive quantitative temperature estimations to be achieved over the therapeutic temperature range of interest for monitoring thermal-based therapies (such as cryogenic therapy or HIFU), using acoustic travel time changes measured from backscattered ultrasound. Specifically, the model-based techniques described herein are based on combining spatio-temporal constraints imposed by an underlying physical model for heat diffusion, and the bio-heat transfer equation (BHTE), with non-invasively acquired ultrasound backscatter data. This approach addresses the lack of sensitivity of earlier ultrasound-based temperature estimation methods that were based only on acoustic attenuation.
The disclosure provided herein is thus directed to non-invasive temperature monitoring using ultrasound over a wide range of temperatures (from at least room temperature up to the boiling point of water). Furthermore, another aspect of the concepts disclosed herein is a method for using ultrasound to non-invasively measure heat diffusivity of a region of interest (i.e., of a tissue mass), and the magnitude of a heat source in a region of interest. Still another aspect of the concepts disclosed herein is the use of the BHTE to constrain temperature fields estimated using ultrasound. It should be noted that the model-constrained inversion of ultrasound data can be used for applications beyond temperature measurement, such as flow measurement and tissue displacement/strain measurements (elastography), as well as to provide detailed time and temperature maps useful for pre-therapy planning.
In general, two different calibration experiments (one calibration experiment for each of two parameters defined in the BHTE) are performed on the tissue to be thermally treated. One parameter is Q′, which relates to the magnitude of the thermal source employed during therapy, as well as tissue properties affecting propagation of thermal energy through the tissue. In one exemplary embodiment, the thermal source is a HIFU therapy probe (i.e., a HIFU transducer or transducers configured to provide HIFU therapy). It should be recognized that other thermal sources, such as a hot wire, radio-frequency ablation, or microwaves, can also be utilized to provide the thermal therapy. It should also be recognized that the thermal source is simply responsible for changing a temperature of tissue, regardless of whether the temperature increases or decreases. Thus, for cryogenic therapy, the thermal source will be used to lower the temperature of a mass of tissue.
The second parameter is K, the thermal diffusivity of the tissue being treated. Signal processing of RF backscattered ultrasound data is used to non-invasively estimate these parameters in situ. Essentially, the pre-calibration exposures employ the same thermal source that will be used to provide therapy, and apply to the same tissue to which therapy will later be provided, which minimizes any variation due to tissue irregularities and differences between thermal sources.
Once the calibration experiments are completed, the data collected in the calibration experiments and the thermal model (i.e., the BHTE) are used to define a temperature dependence curve (i.e., a speed of sound in tissue versus temperature relationship) unique to the tissue being treated and to the thermal source that will be used to provide the thermal therapy. At this point, detailed time and temperature maps can be generated before therapy is initiated, to facilitate pre-therapy planning. During the thermal therapy, backscatter data are collected, and Q′ is redefined, based on the collected data. Note that Q′ measured during therapy is likely to be different than Q′ measured during the calibration experiment, because of attenuation changes to the ultrasound beam caused by variations in tissue absorption in the beam path. Because the previously generated temperature dependence curve was generated based on the Q′ value measured in the calibration experiments, any changes to Q′ during therapy will affect the temperature dependence curve. Thus, as Q′ changes during therapy, new temperature dependence curves are generated to increase the accuracy of the temperature estimations during therapy. The real-time temperature measurements (based on the updated temperature dependence curve) can be compared to the time and temperature maps generated for pre-therapy planning, such that therapy time can be increased or decreased based on real-time data. For example, if the real-time data indicate that the pre-therapy time and temperature maps overestimated the real-time temperature measurements, the therapy time can be increased. Conversely, if the real-time data indicate that the pre-therapy time and temperature maps underestimated the real-time temperature measurements, the therapy time can be decreased. The real-time temperature measurements provide greater control over the thermal therapy, maximizing the therapeutic dose delivered to the target tissue, while minimizing undesired thermal effects on non-target tissue.
To estimate K, the thermal source is employed to induce a relatively modest change in temperature of the target tissue. A temperature change of about 5° C. to about 15° C. is generally sufficient. As the tissue returns to the ambient temperature (i.e., to the temperature before being changed by the thermal source), ultrasound data are collected for the target tissue. RF waveforms are processed to estimate a spatial width of the temperature distribution (the Gaussian radius) as a function of time, using measures of the ultrasound strain for each RF A-line. To achieve enhanced accuracy, a unique strain estimation method is used to detect very small strains over very small regions, using a model for waveform compounding that uses a Gaussian peak function to fit the strain due to the dissipation of heat resulting from the HIFU beam pattern. In this temperature regime, the ultrasonic strain is assumed to be linear with temperature, but the absolute temperature need not be known. The rate of change of the Gaussian radius leads directly to an estimate for K. Independent measures of K determined using invasive transient hot wire techniques in the same tissue have validated the accuracy of this technique for estimating K.
In one exemplary embodiment, where the thermal source is a HIFU transducer, to estimate K, a brief low intensity HIFU exposure is employed to raise tissue temperature at the focal point less than about 15° C. in a few seconds. During cool down of the treated tissue, the RF waveforms are processed as described above. Significantly, no damage will occur to the target tissue in this procedure, since the temperature rise and duration are not sufficient to cause such damage.
To estimate Q′, the time required for the thermal source to change the temperature of target tissue to a predetermined temperature value is measured. The measured time, the thermal model (e.g., the BHTE), and the previously determined value for K are used to determine Q′. Q′ can thus be determined non-invasively. If it is acceptable to determine Q′ invasively, a thermocouple or other temperature sensor can simply be introduced into the target tissue, and the time required to reach a specific temperature is measured. To determine Q′ non-invasively presents a greater challenge. The predetermined temperature is selected such that some physical change in the target tissue can be detected non-invasively. For example, the boiling point of water can be selected as the predetermined temperature, because the onset of boiling in tissue can be detected non-invasively. If an imaging modality can detect the onset of freezing (i.e., the generation of ice crystals) non-invasively, then the freezing point of water in tissue can be used as the predetermined temperature.
In one exemplary embodiment, the time is measured for a thermal source, such as a HIFU transducer, to bring the focal zone to the boiling point. The onset of boiling can be detected in several different ways. A first exemplary technique to detect the onset of boiling is to use an audio range hydrophone (or microphone, or some other acoustic sensor) to detect the onset of popping sounds associated with boiling in the tissue. A second exemplary technique to detect the onset of boiling is to use B-mode ultrasound imaging to detect the sudden appearance of a bright echogenic spot at the HIFU focus. The time required to bring the sample to boiling is used to estimate Q′ by iteration of the numerical BHTE (using the value for K that was previously determined). This technique to estimate Q′ has been verified by comparing non-invasively estimated Q′ values generated as indicated above, with Q′ values obtained using invasively disposed thermocouples; the results compare favorably. This non-invasive technique to estimate Q′ also compares favorably with linear acoustic calculations using independently measured HIFU and tissue medium parameters.
Although such techniques were developed as an integral component of estimating temperature during HIFU therapy, such techniques can be independently employed in therapy planning and dosimetry applications, where information about local tissue thermal parameters is required to accurately predict the applied thermal dose and to plan the therapy protocol. Such techniques can also be utilized as a general tissue characterization technique and are applicable in other thermally ablative treatment modalities, such as RF ablation, and microwave therapy, which also relies on rapid heating for tissue necrosis. The techniques can also be applied to cryosurgery, in which tissue is destroyed by freezing. Finally, such techniques may be useful in other methods that modify tissue properties, for example, using alcohol injection.
This Summary has been provided to introduce a few concepts in a simplified form that are further described in detail below in the Description. However, this Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Various aspects and attendant advantages of one or more exemplary embodiments and modifications thereto will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Exemplary embodiments are illustrated in referenced Figures of the drawings. It is intended that the embodiments and Figures disclosed herein are to be considered illustrative rather than restrictive. No limitation on the scope of the technology and of the claims that follow is to be imputed to the examples shown in the drawings and discussed herein.
The following definitions should be used to interpret the disclosure and claims that follow. The term “temperature dependence curve” is intended to refer to a relationship between some determinable parameter (the speed of sound in tissue, the change in the speed of sound in tissue, or strain, as will be discussed in greater detail below) and the temperature of the tissue.
The Description is organized as follows. First, several high level flow charts describing the overall concepts encompassed herein are described.
Second, high level functional block diagrams of exemplary apparatus that can be used to implement the techniques disclosed herein will be provided.
Third, a detailed description of an empirical system used to develop the disclosed techniques is provided. The operation of the system is discussed along with a description of exemplary operating modes and exemplary performance specifications. The empirical system was used in all subsequently described experiments.
Fourth, a mathematical model defining the relationship between temperature and ultrasound backscatter related to changes in speed of sound and thermal expansion is presented. Two signal processing-based algorithms designed to extract information from the ultrasound backscatter related to change in tissue properties associated with therapy are described. Results obtained by applying these non-invasive techniques to in vitro tissue-mimicking phantoms and animal tissue experiments are presented.
Fifth, exemplary non-invasive quantitative temperature estimation techniques based on using calibration experiments and the BHTE are described in detail. The calibration procedures designed to non-invasively estimate local thermal parameters, specifically, thermal diffusivity (K) and heating rate (Q′) in situ during HIFU exposures are described, followed by empirical results from validation experiments performed in tissue-mimicking phantom experiments.
Sixth, the use of the K and Q′ parameters in calibrating a temperature dependence curve, and temperature monitoring during therapy, are presented.
High Level Flowcharts:
In a block 3, the empirical values determined in the calibration experiments are used along with the generic thermal model to calibrate the thermal model to the specific mass of tissue and the specific thermal source. In a block 4, the calibrated thermal model and ultrasound data collected during the calibration experiments are used to generate a temperature dependence curve unique to the specific mass of tissue and the specific thermal source. Note that blocks 2, 3, and 4 are encompassed in a block 8, because once the thermal model is calibrated and the temperature dependence curve is determined, the calibrated model and temperature dependence curve can be used for several different purposes. The calibrated thermal model/temperature dependence curve can be used to generate spatio-temporal temperature maps for pre-therapy planning and can also be used to calculate the time required for the thermal source to deliver a desired thermal dose to the mass of tissue, as indicated in an optional block 5.
In a block 6, the thermal source is used to deliver therapy to the mass of tissue, while ultrasound data are collected. The ultrasound data collected during therapy are used along with the calibrated temperature dependence curve to estimate the temperature of the mass of tissue while the therapy is in progress. In a block 7, the calibrated thermal model, the ultrasound data collected during therapy, and the thermal diffusivity (K) of the tissue mass are used to determine if the magnitude of the thermal source (Q′) has changed. If so, the revised value for Q′ is used to revise the temperature dependence curve. The revised temperature dependence curve can then be used to provide a more accurate temperature estimation during therapy, and/or to determine what effect the revised temperature dependence curve has on the time required to achieve the desired thermal dose.
Note that
Exemplary Apparatus:
Significantly, the ultrasound machine is configured to utilize backscattered ultrasound collected during therapy and the calibrated thermal model/temperature dependence curve to estimate tissue temperature during therapy. The estimated tissue temperature can be output and presented to a user on display 254. In at least one exemplary embodiment, the estimated tissue temperature is integrated into an ultrasound image provided to the user on the display. In other exemplary embodiments, separate displays are employed to provide ultrasound images and temperature estimations to the user. It should be noted that means 206 sometimes requires input from an operator. Where means 206 comprises a thermal sensor, the sensor can be logically coupled to the controller to automatically indicate that the predetermined temperature has been reached. Where means 206 comprises an audio sensor configured to detect the popping sounds associated with boiling, the audio sensor can be logically coupled to the controller to automatically indicate when the predetermined temperature has been reached (the controller monitors the audio sensor to determine that an increase in an ambient sound level indicates the onset of boiling). In other exemplary embodiments, the audio sensor can be monitored by the operator, such that the operator actuates a trigger or other user input (such as a switch, a button, or a key on a keyboard or numeric keypad, where such elements are logically coupled to the controller) to indicate to the controller that the predetermined temperature value has been reached. Where means 206 corresponds to a bright hyperechoic spot in an ultrasound image, the operator will generally monitor the ultrasound image, and actuate such a trigger or switch to indicate to the controller that the predetermined temperature value has been reached. It should further be recognized that such user inputs can be considered to be part of the controller, where the controller is implemented using a computing device, as described below in greater detail.
Where a method or apparatus described herein requires means or elements for determining an empirical value for any of the parameters employed in the thermal models discussed herein, for calibrating a thermal model and determining a calibrated temperature dependence curve unique to a particular tissue mass and a particular thermal source, to use data collected during therapy and the calibrated temperature dependence curve to estimate tissue temperature during therapy, or to update the empirical value of the magnitude of the thermal source (Q′) and use the updated empirical value to modify the temperature dependence curve during therapy (to increase an accuracy of the temperature estimations), it will be understood that such means or elements will typically require processing and manipulation of ultrasound data, which can be carried out using hardware (such as an ASIC, as discussed above) or a computing device, such as illustrated in
An exemplary computing system 150, suitable for incorporation into the ultrasound machine (or use as a separate device), includes a processing unit 154 that is functionally coupled to an input device 152, and an output device 162, e.g., a display or monitor. Processing unit 154 can include a central processing unit (CPU 158) that executes machine instructions comprising a signal processing program for determining empirical values for parameters employed in the thermal model, defining a temperature dependence curve unique to the particular tissue mass and the particular thermal source, generating temperature estimates based on ultrasound data collected during therapy and the unique temperature dependence curve, and updating the magnitude of the thermal source parameter for the thermal model based on data collected during therapy, as generally described above. In at least one exemplary embodiment, the machine instructions implement all of these functions, although as noted above, the concept discussed herein also encompasses exemplary embodiments in which no updating of the parameters is performed during therapy. Additional signal processing can enable either an ultrasound image, a thermal map of the tissue, and/or some combination thereof to be displayed to a user. CPUs suitable for this purpose are available, for example, from Intel Corporation, AMD Corporation, Motorola Corporation, and from other sources, as will be know to those of ordinary skill in this art.
Also included in processing unit 154 are a random access memory (RAM) 156 and non-volatile memory 160, which typically includes read only memory (ROM) and some form of memory storage, such as a hard drive, an optical drive, a floppy drive, etc. These memory storage devices are bi-directionally coupled to CPU 158. Such memory storage devices are well known in the art. Machine instructions and data are temporarily loaded into RAM 156 from non-volatile memory 160. Also stored in memory are the operating system software and ancillary software. While not separately shown, it will be understood that a generally conventional power supply will be included to provide the electrical power needed to energize computing system 150.
Input device 152 can be any device or mechanism that facilitates user input into the operating system, and into application programs running under the operating system, including, but not limited to, a mouse or other pointing device, a keyboard, a microphone, a modem, or other device to receive and respond to a user input. In general, the input device will be used to initially configure computing system 150, to achieve the desired signal processing, and for input of control decisions by the user. While not specifically shown in
Having discussed the exemplary techniques and apparatus in broad terms, a more detailed disclosure follows, beginning with a detailed description of the empirical apparatus employed to develop the concepts disclosed herein. The operation of the empirical system is discussed, along with a description of exemplary operating modes and exemplary performance specifications. The empirical system was used in all subsequently described experiments. Note that while the empirical system employs a HIFU transducer as a thermal source, it should be recognized that the concepts disclosed herein are not limited to temperature estimations of HIFU thermal sources, but other thermal sources as well.
Empirical Apparatus (the ATL HDI 1000™): It has been recognized that ultrasound data signal processing can greatly benefit from the ability to apply processing algorithms directly to beam-formed but otherwise unprocessed ultrasound backscatter data (commonly referred to as the “RF” data) that contain amplitude information, as well as phase information.
To achieve the signal processing required to implement the concepts disclosed herein, a commercially available ATL HDI 1000™ ultrasound machine (available from Philips Medical Systems, Bothell, Wash.) was modified to enable its software to do the required signal processing. The modifications enabled access to demodulated RF data (see block 33) at relatively high frame rates. Such data are useful for tracking the rapid yet subtle changes in tissue during thermal treatment. Custom modes of operation enabled trade-off of acquisition frame rate and lateral image widths, as described below. All of the algorithms described below were performed using this exemplary system on ultrasound data collected with the system during HIFU experiments.
The ATL HDI 1000™ diagnostic ultrasound scanner system, schematically illustrated in
In the default mode of operation, I and q channels are processed by signal processing block 54 to obtain B-mode, Color flow or Doppler data, depending on the acquisition mode selected by the user. When RF data access is desired, the summed quadrature base-band data follows the path indicated by dotted lines 58a and 58b. The data are temporarily stored in a pre-allocated memory block within volatile RAM on the system computer (e.g., on ATL HDI 1000™ CPU RAM 52). After the desired number of frames have been acquired and stored, the frames are copied as a binary file to hard disk 50, with additional fields containing information about the acquisition parameters necessary to interpret the RF data during offline processing. Since most of the system operation is controlled by software, modifications to meet data acquisition requirements for research purposes can be made relatively easily. In an exemplary implementation, RF data access was supported for standard echo imaging (i.e., the same transmitter configuration as for B-mode imaging), but modifications of the software to store RF data for Doppler and M-mode can be achieved with modest additional effort.
The maximum size of the memory block reserved in the ATL HDI 1000™ CPU RAM for storing the acquired frames temporarily is 75 MB. The memory block used in this device is based on a circular addressing scheme. Hence, once the entire memory block is full after a series of sequential frame writes, the address counter is reset, causing the buffer to wrap around, and any frames acquired thereafter replace those stored earlier, starting from the first in the current acquisition sequence. For a given set of acquisition parameters, the total number of frames that can be stored in the allocated memory block can be approximately calculated using the following formula, which takes into account the dependence of acquisition depth and frequency on frame size:
where M=Allocated memory block (maximum 75 MB), D=Acquisition depth, f=Center Frequency of transducer, and k=scaling constant to be determined through a calibration test. For an acquisition depth of 4.5 cm with the ATL CL 10-5™ (available from Philips Medical Systems, Bothell, Wash.) linear scan-head, approximately 300 frames can be temporarily stored in the ATL HDI 1000™ CPU RAM.
The ATL HDI 1000™ system is based on a processor running a UNIX-like operating system (actually based on the Commodore Amiga computer operating system software). The software-dominant architecture on which the ATL HDI 1000™ is built allows for extensive external control of its operation, including front panel controlled acquisition parameters (imaging depth, focus positions, number of foci, TGC, etc). In addition, the start of RF frame acquisition can be initiated from an external source, with latency and jitter times on the order of a few milliseconds. Thus, RF data acquisition can be well synchronized with other instruments that are part of an experimental setup. Control commands from another computer can be issued via Telnet, and acquired RF data can be transferred via file transfer protocol (FTP) to another computing device for off-line processing. A software master control program using LabVIEW™ (available from National Instruments, Austin, Tex.) was employed to control the ATL HDI 1000™ system, as well as other devices and instruments.
Referring to
The performance of algorithms used for motion and velocity estimation are greatly improved by acquiring data at high frame rates. In addition, high frame rate data acquisition allows speckle noise to be reduced, by employing temporal averaging, without compromising temporal resolution. Typically, there is a trade-off between the number of scan lines per frame (the default in this exemplary system is maximum of 128 scan lines, corresponding to a lateral width of 2.5 cm for the CL10-5™ compact linear probe, which is available from Philips Medical Systems, Bothell, Wash.) and the frame rate (the latter also depends on the maximum depth of the image). Two data acquisition schemes for increasing the frame rate, using a reduced number of scan lines per frame, have been empirically implemented. These schemes are referred to as: (1) reduced sector width mode; and, (2) sparse scan-line mode. Considerable improvements in frame rate are achieved in each of these modes, by controlling the beam-former firing sequence, to capture only the desired number of lines, thus reducing the amount of data processing within the system.
In reduced sector width mode, a contiguous subset of the 128 lines making up the complete image is used to form a narrower 2-D image.
In the sparse scan-line mode, the total lateral field of view is the same as for the default mode. However, a sparse subset of the total 128 scan-lines is used to acquire the frame, with inter-scan-line spacing set to 2, 4, or 8 line widths.
While the concepts presented herein can be used to non-invasively estimate tissue temperature using ultrasound during thermal therapy implemented using a wide variety of heat sources, as noted above, HIFU therapy represents a particularly useful type of thermal based therapy. One of the important requirements of an ultrasound RF data acquisition system for use in HIFU therapy monitoring is proper synchronization between HIFU therapy ON times and RF data acquisition, since interference between the HIFU beam and the imaging system would otherwise degrade the RF data quality significantly. A monochromatic version of a B-mode image reconstructed from the RF data acquired during HIFU is shown in
The RF data acquisition system based on the modified HDI 1000™ was first tested during an in vitro experiment to study the formation of HIFU-induced lesions in bovine liver tissue. The schematic diagram for the in vitro experiments is presented in
A compact linear scan-head (CL 10-5™, available from Philips Medical Systems, Bothell, Wash.) was used for imaging, along with a single PZT element HIFU transducer (Model SU107, available from Sonic Concepts, Woodinville, Wash.), nominally operating at 3.5 MHz, with an aperture diameter of 33 mm, and a focal depth (radius of curvature) of 35 mm. The ATL HDI 1000™ was set to acquire the full lateral width of 2.5 cm (128 scan-lines). As shown in
The results of these initial HIFU experiments, shown in the B-mode images of
As noted above, a software-based system was employed to synchronize the RF data acquisition with the HIFU therapy delivery. To quantify the software timing latency between issuing a control command from the master control program and observing the instrument response, a timing analysis was performed. Specifically, the latency in the frame acquisition after a control command has been issued from the PC was experimentally measured. The ATL HDI 1000™ ultrasound scanner was controlled over the Telnet port from the master-controller PC. At the same instant that a software control command to initiate RF frame acquisition was sent to the ultrasound scanner, a TTL high signal (+5 V) was output on the parallel port of the PC, and recorded on the oscilloscope on Channel 1. After a brief delay (about 5 ms), the TTL pulse was set low. The transmit pulse recorded by a needle hydrophone placed at the focus of the imaging transducer (indicated by the focus markers on the B-mode image) along the edge of the first scan-line was recorded on Channel 2. The time delay between the signals recorded on Channel 1 and 2 was measured to obtain an estimate of the system latency. The measured latency was approximately 17 ms. This value includes the internal PC latency in sending the control command over the Telnet port, delays along the Telnet link, and the system delay internally within the ATL HDI 1000™ associated with parsing the Telnet command, activating the beam-former, and initiating frame acquisition.
Although an exemplary application for this system is used for acquisition of RF data during HIFU experiments, the system can easily be adapted to meet the data acquisition needs for other emerging ultrasound imaging modalities requiring access to RF data, such as elastography.
A tissue-mimicking phantom with an inclusion loaded with scatterers (7% polyacrylamide was used for the background and 15% for the inclusion, making it stiffer) was subjected to external compression in the axial direction in steps of 0.1 mm using a mechanical fixture for holding the imaging probe (L11-5™, available from Philips Medical Systems, Bothell, Wash.) attached to a 1-D motion stage. The Young's modulus of the background and inclusion were measured using a mechanical indenter and were determined to be 16.3 kN/m2 and 33.4 kN/m, respectively. A schematic representation of the experimental setup for this determination is shown in
The software program for temperature estimation and thermal modeling was modified for use in this application to control the movement of the motion stage and to initiate acquisition of RF data frames, essentially replacing the HIFU system with the mechanical compression system. The acquisition sequence begins with a command sent to the ATL HDI 1000™ to acquire an RF data frame (via Telnet). After the frame has been acquired, a command is dispatched to the motion stage (via an ISA bus interface) to move the transducer to compress the phantom by 0.1 mm (out of a total phantom height of about 9 cm). The above sequence was repeated until the phantom was compressed by the desired total displacement of 10 mm, and RF data frames were collected between each displacement step, resulting in a total of 100 RF data frames. This data set permitted exploration of various algorithms and parameter choices for determining strain, and assessing the noise in the system.
To determine the suitability of the ATL HDI 1000™ for freehand elastography, it was assumed that choosing a minimum displacement (external compression) of five times the displacement error would provide a reasonable signal-to-noise ratio. Thus, at least 2 μm compression between frames would be desirable. Assuming a freehand acquisition frame rate of 10 frames per second, a compression rate of at least 20 μm/s would be adequate. However, to avoid speckle de-correlation as a result of large external strains, it is desirable to limit the maximum applied external compression rate to less than 10 mm/s. Consequently, freehand elasticity imaging for externally applied compressions in the range 20 μm/s to 10 mm/s on simple objects should be feasible using this exemplary system. In vivo elasticity imaging is typically much more difficult, but the results of the phantom test indicate that the ATL HDI 1000™ system is a promising tool for freehand elastographic data acquisition.
Model for Temperature and Ultrasound Backscatter: A mathematical model defining the relationship between temperature and ultrasound backscatter related to changes in speed of sound and thermal expansion is described next, along with signal processing-based algorithms designed to extract information from the ultrasound backscatter related to change in tissue properties associated with therapy. Results obtained by applying these non-invasive techniques to in vitro tissue-mimicking phantoms and in animal tissue experiments are also discussed below.
A significant milestone in developing the techniques disclosed herein was the recognition that tracking changes in the raw ultrasound backscatter (commonly referred to as “ultrasound RF”) provide improved visualization of lesion formation induced by HIFU, compared to standard fundamental ultrasound B-mode images. Two signal processing approaches to track changes in the ultrasound backscatter were applied, including one designed to track temperature related information, and the other designed to detect changes in local tissue scattering properties.
When a region of tissue is heated, the backscattered ultrasound signal experiences echo location shifts. These shifts are due to changes in the effective location of the scatterers due to changes in the local speed of sound and thermal expansion. The change in the local speed of sound causes an apparent shift in the scatterer location, while the thermal expansion effect causes a physical shift.
Experimentally measured speed of sound versus temperature (c(T)) curves, which are typically represented by a second order polynomial for water-based tissue media, have been reported. Specific trends can be noted in the c(T) curve for biological tissue with low fat content. Typically, for temperatures near body temperature, the speed of sound increases rapidly with temperature. The speed of sound commonly peaks at temperatures between 50 and 70 degrees C., depending on tissue type, and then decreases with further increase in temperature.
In the mathematical formalism relating the echo shifts observed on the backscattered ultrasound signals to temperature change, the model employed assumes that the effect of thermal expansion is negligible, that the relationship between speed of sound and temperature is spatially invariant, and that the initial baseline temperature is constant throughout the medium before heating commences. Note the relationship between temperature and the local acoustic travel time change (due to the speed of sound change, i.e., δ(T)), is explicitly derived. The mapping between speed of sound change and temperature is assumed to be linear in this analysis.
Consider a 2-D arrangement of discrete acoustic scatterers. The sound propagates through the medium along y and x in the direction of scanning. The received echo signal is spatially sampled with a spacing Ay. The ultrasound imaging transducer that sends out the sound pulses and detects the echoes is located at y=0. The analysis below is for a fixed location x, without any loss of generality. For a uniform speed of sound at the baseline temperature of T0° C., c0, the round-trip travel time, ti, to the ith element in depth, is:
The new round-trip travel time to a depth location I due to the temperature induced change in speed of sound is:
where ck is the speed of sound value for the kth sample volume in the intervening acoustic path between the transducer and the region of tissue under consideration. Therefore, the travel time change (δti) of the ith tissue sample volume in the heated tissue relative to the unheated tissue is:
For an imaging system that displays echo information, assuming that distance is linearly related to propagation time via an assumed uniform speed of sound, csystem, the travel time change due to local changes in speed of sound manifests as an apparent echo shift in the backscattered signal, given by:
Eq. (6) illustrates how changes in the local speed of sound of the medium caused by local temperature rise results in shifts in the echo location in the backscattered ultrasound signal. It may be noted from Eq. (6) that merely tracking the echo shift (δyi) does not provide unique information related to the local speed of sound change. In order to extract local changes in speed of sound that could be directly related to local change in temperature, the derivative along the depth direction must be computed. The simplest approach is to assume that the size of the 1-D window used in least squares strain estimation is 2 samples, which would be equivalent to calculating strain using the finite difference technique. Thus, from Eq. (6), the temperature induced strain εi of the ith pixel in the displacement image is given by:
The speed of sound εi can be expressed in terms of the change in speed of sound relative to c0 as:
ci+1=c0+δci+1 (8)
Since δci+1<<c0, Eq. (7) becomes:
For a linear change in speed of sound as a function of temperature (valid in the range from room temperature to about 50° C.), the speed of sound (cT) at temperature T at any spatial location can be expressed in terms of the initial speed of sound c0 as:
δc=cT−c0=βδT (10)
where δ is the temperature coefficient for speed of sound, and δT is the change in temperature relative to the initial temperature T0.
Combining Eqs. (9) and (10), it can be seen that the temperature induced strain (ε) is directly proportional to the induced temperature change:
The constants csystem, β, and c0 are combined together to form a new scalar constant γ. Eq. (11) can thus be rewritten as:
εi+1=γδTi+1 (12)
Eq. (12) shows that to convert the temperature induced strain values computed from the backscatter data to quantitative temperature change, accurate knowledge of the scalar constant γ is required. This quantity, however, is highly tissue dependent, since it depends on the relative proportion of tissue constituents such as fat, collagen, and water. If accurate knowledge of this parameter is available, the strain estimates derived by processing the ultrasound backscatter can be mapped to temperature.
To estimate the echo shifts and temperature induced strain (ε) from backscattered ultrasound data collected during HIFU therapy, a time domain cross-correlation based algorithm was developed. The algorithm operates on pairs of RF data frames acquired sequentially during the HIFU exposure experiment. The organization of the RF data set collected using the ATL HDI 1000™ ultrasound scanner is illustrated in
where si represents a RF segment on line i, si+1 represents a RF line segment on line i+1, j represents the time shift between si and si+1, m represents the window length, n represents the search range on line i+1 and c represents the cross-correlation coefficient. The segments si+1 and si are normalized to unit energy. In this case, c represents the normalized cross-correlation coefficient, with values ranging from −1 to 1.
The RF lines (typically 128 in number) in each frame are divided into a series of segments of 1 mm in length with a 20% overlap. For each segment in a given frame (i), a search region is defined around the same spatial location on a temporally adjacent frame (i+1). The segment selected in frame i (say si) is multiplied by a window at the top of the search region (si+1) in frame i+1 point-by-point, summed, and the value stored as a variable c. This operation is repeated until the end of the search region is reached, keeping si the same but choosing a new segment si+1 in each iteration, each iteration beginning one sample below the previous choice of si+1. The time shift j between si and the window choice si+1 that maximizes c is the estimated shift, and j is converted to seconds by multiplying by the RF sampling period, to obtain travel time change between adjacent frames, δtadjacent. This operation is repeated for all the overlapping segments defined in frame i to generate a δtadjacent, 2-D matrix corresponding to frame si and is then repeated for all of the frames, taking 2 frames at a time and computing a δtadjacent matrix for each set of frames. A 3-D matrix of δtadjacent of size N−1 (where N is the total number of acquired RF data frames) is thus obtained. A cumulative sum of the time shifts (δtadjacent) is computed along the temporal direction (slow time) to obtain the cumulative travel time change map (δt) that represents the time shift change with reference to the initial frame before therapy commenced (i.e., before the ultrasound data are acquired). Computing δtadjacent between adjacent frames and then summing these results to obtain the cumulative change has been shown to reduce errors due to de-correlation. These estimates of δt are an integrated quantity in that travel time changes detected at a particular depth are influenced by changes along the acoustic path shallower than that depth. Thus, to obtain the estimates of local travel time change, δt is differentiated axially to obtain a map of ε. The differentiation is performed by fitting a straight line on the δt estimates over a length of 4 mm. The slope of the fitted line gives ε locally.
The magnitude of the time-shifts δtadjacent is typically very small. It varies from 1/10th of the RF data sampling interval to a few samples, which necessitates employing accurate sub-sample estimators that are capable of estimating time shifts equal to a fraction of an RF sampling period, to obtain the desired accuracy. The sub-sample estimator employed in this algorithm is based on a parabolic interpolation technique. The peak of the interpolation function is fitted to a parabola, and the maximum point on the parabola is estimated. This approach enables time-shifts less than a RF sampling period to be estimated. The parabolic interpolation technique does result in biased estimates, depending on the true value of the time shift, and the bias error function has a characteristic shape of a sine function. The maximum sub-sample estimate error occurs at time shifts 0.25-0.3 samples away from integer shifts, while zero bias error occurs at a time shift of 0.5 samples.
In vitro experiments were performed in a bovine liver and in tissue-mimicking phantoms to demonstrate that temperature-related changes during HIFU therapy can be visualized by tracking the temperature induced strain (ε) measured from the ultrasound backscatter data. Details of these experiments and the results obtained are provided below.
Experimental Therapy Protocols: Two clinically applicable experimental therapy protocols were employed. In the first protocol, point lesions were created by holding the HIFU transducer stationary while therapy was being delivered. The typical size of the lesion in this case was close to the physical dimensions of the focus of the HIFU therapy transducer employed in the tests (e.g., 5 mm along the HIFU beam propagation path, and 0.5 mm transverse to that path). The second experimental protocol is referred to as the scanned lesion protocol. In this approach, the therapy transducer was translated along the circumference of a circle of a radius of 7.5 mm, while emitting the acoustic beam at a fixed intensity. The lesion extends over the entire circumference of the circle. These protocols require synchronization between HIFU therapy delivery, the ATL HDI 1000™ and the transducer scanning to ensure that HIFU interference-free RF data are obtained.
The experimental setup of
Fresh whole beef liver was obtained on the day of the experiment and chilled in phosphate buffered saline (PBS) solution. Pieces of liver were carefully cut to select nearly homogenous tissue by avoiding large blood vessels. The pieces were sized to fill specially-designed tissue holders that enable the imaging and therapy transducers to be registered to the tissue block, and oriented such that the longitudinal axis of the therapy beam was in the plane of the imaging probe and perpendicular to it. The liver samples were degassed in PBS, and warmed to 37° C. in a water tank filled with degassed PBS. The in situ therapeutic intensity (ISAL) used was calculated to be 1250 W/cm2, based on measurements made in water using a radiation force balance, and assuming an attenuation coefficient of 0.7 dB/cm/MHz for liver. For the results presented in this section, the total integrated HIFU exposure time was 2 seconds. The intensity and duration of exposure to HIFU were determined based on comprehensive dosimetry studies conducted in-house to observe the bioeffects under well controlled conditions for a range of experimental parameters. RF frames (each RF frame being a collection of A-lines over a lateral extent of 2.5 cm and with a lateral spacing of ˜0.2 mm) were collected every 0.2 s during a 0.1 s interruption of HIFU delivery. A single frame was acquired before HIFU therapy commenced to serve as the reference frame. After HIFU exposure, RF data frames were acquired at intervals of 10 seconds for 2 minutes to visualize the cool down period.
These results indicate that very soon after the HIFU was turned on (0<t<0.4 seconds), apparent motion towards the imaging transducer (located at the top of image) is observed over a large region surrounding the focal zone, and such apparent motion appears before any hyper-echogenicity develops on the B-mode image. This result is related to the rapid increase in temperature in the focal region, which causes a decrease in acoustic travel time. Similarly, during the cool-down period (after t=2.2 seconds), apparent motion appears in the opposite direction, due to recovery of speed of sound values. In the time interval 1.8<t<2.2 seconds, a hyper-echogenic spot is seen on the B-mode image, while in the corresponding apparent displacement image, the area around the focal spot is delineated by an oval zone with colors indicating maximum positive and negative apparent motions in a random pattern, largely masked by the gray color. This result is most likely due to the rapid generation of bubbles producing de-correlation of the RF data. The bottom row in
The point lesion bovine liver experiment demonstrated that estimates of temperature induced strain (δt) computed from the RF data provides useful information for tracking the temperature rise during HIFU therapy. In addition, on a qualitative basis, since changes were seen on the maps before appreciable changes occurred on B-mode images, they provide a method of improved visualization of the lesion location and in guiding the therapy beam.
The scanned lesion protocol was employed because in clinical applications, the volume of tissue being treated is increased by scanning the focal point through a volume of tissue. In the scanned lesion experiments, temperature induced strain (ε) maps were generated using the algorithm described above, using data collected during scanning of the HIFU focal point. Changes were made to the master control program so that the HIFU transducer attached to a 3-D motion stage could be translated along a circle during the experiment. The imaging transducer was oriented perpendicular to the HIFU beam propagation axis. The relative orientation of the HIFU transducer, imaging transducer, and the plane of lesion formation is illustrated in
Maps of temperature induced strain (ε) during therapy were generated by analysis of the RF data using the algorithm described above. The ε maps at four different time instants are shown in
To quantify the temperature induced strain over time, the amplitude and width of the strain profiles laterally along a test segment (R) were measured by fitting it to a Gaussian function. This test segment corresponded to the start of the HIFU transducer scanning path. The 1-D strain profiles are along segment R at five different time instants soon after HIFU therapy commenced were computed. The measured Gaussian radius and amplitude are shown in
The empirical results show that analysis of the raw ultrasound backscatter provides improved visualization of lesion evolution by tracking the temperature rise compared to standard B-mode images. However, these techniques are qualitative in nature. Additional studies were performed to quantitatively compare temperatures estimated from the non-invasive ultrasound based technique with independent measurements made using thermocouples inserted in a tissue-mimicking phantom, in close proximity to the heat source, as described. A phantom was chosen instead of tissue for this preliminary experiment, so that the technique could be evaluated in a controlled setting. This experiment also served as a means for validating the strain estimation algorithm. The quantitative comparison was made in the temperature range 23-29° C. For this temperature range, the temperature induced strain is primarily due to the change in the speed of sound with the temperature, and the effect of thermal expansion can be ignored. To be able to invert the temperature induced strain data to obtain temperature, a separate experiment was performed to explicitly measure the relation between speed of sound and temperature. A detailed description of the experimental setup and the results is provided below.
An electrical heating element was employed in this experiment (instead of an acoustic heat source (i.e., HIFU)) to induce the temperature rise in the phantom. The main motivation in doing so for this preliminary experiment was to avoid the possibility that bubbles would be induced by acoustic cavitation, causing de-correlation artifacts in the RF data, and to focus on demonstrating the feasibility of obtaining quantitative temperature information from the ultrasound backscatter during heating with a controlled heat source. A tissue-mimicking gel made with polyacrylamide (and loaded with plastic microspheres to ensure scattering) was used as the phantom material for this experiment. Pre-gel polyacrylamide solution was prepared and poured into a custom-made sample holder (approximately a cube of 5 cm edges). A nichrome-chromium heating wire (available from Omega Engineering Inc., Stamford, Conn.) with a resistance of 1.6 Ohm/ft, was pulled taut through the center of the measurement cell. Four needle T-type thermocouples (available from Omega Engineering Inc., Stamford, Conn.) were carefully inserted into the gel, parallel to the heating wire. The thermocouples were placed at different radial distances from the wire, ranging from 4-11 mm. The exact distances of the thermocouples from the heating wire were measured using the ATL HDI 1000™ ultrasound scanner operating in the B-mode. The L11-5™ HDI 1000™ scan-head was rigidly mounted on the top of the measurement cell to acquire RF data during heating and cooling.
A DC voltage (supplied by “D” cell alkaline batteries, supplying ˜6 V) was connected to the heating element, with a relay switch in series, to allow the heating circuit to be turned on and off remotely. The 4 thermocouples were connected to a data acquisition module (HP 34970™, available from Hewlett Packard Inc., Palo Alto, Calif.) to store the temperature readings in digitized form. The master control program for the ATL HDI 1000™ was modified for this experiment, to control the operation of the relay switch, to acquire temperature readings from the thermocouples using the data acquisition module, and to acquire the RF data using the ATL HDI 1000™. Such a data acquisition scheme ensured time-alignment between the invasive thermocouple measurements and non-invasive temperature estimation. A reference RF data frame was acquired before heating commenced. The relay switch was closed, and the heating circuit was activated. Instantaneously, the data acquisition module was initialized to begin acquisition of readings from the four thermocouples. RF data frames were acquired at intervals of 1 frame/sec during the heating phase. The relay switch was opened after 30 seconds to stop the heating phase. Acquisition of thermocouple readings continued at the same rate during the cooling phase, while RF data frames were acquired at a slower rate (a frame every 20 seconds) for an additional 2 minutes. The power dissipated in the heating element was constantly monitored by measuring the voltage and current in the circuit. The total power dissipation was approximately 15 W. The RF data were post-processed to obtain estimates of temperature induced strain, and the results were mapped to temperature, using the independently measured c(T) curves.
For the processing scheme employed in this validation experiment, it was necessary to obtain independent estimates of the c(T) curve, so that the measured temperature induced strain could be related to the c(T) mapping to temperature. It should be noted that since the contribution of thermal expansion is ignored, the c(T) mapping is the primary contribution to the mapping between strain and temperature. Furthermore, it should be recognized that the independent estimates of the c(T) curve were obtained for validation purposes only, and are not required for actual implementation of non-invasive techniques disclosed herein. Starting from an initial temperature of 22° C., speed of sound measurements were made using the sample substitution method, for every 10° C. rise in temperature. The experimental setup for the measurement is shown in
where Fref(f) represents the FFT of the signal in the reference measurement, and Fsample(f) represents the FFT of the signal in the sample measurement.
The attenuation versus frequency curve was used to equalize the signal received after propagation through the sample for use in the speed of sound calculation. By estimating the time shift between the signals received in the reference and sample, the speed of sound of the sample was calculated using the formula,
where d=width of the sample, cw=speed of sound in water at the temperature of measurement (known from reference data), and ct=speed of sound in sample.
Before making a measurement at a given temperature, care was taken to ensure that thermal equilibrium was reached, by noting the readings of the thermocouples in the water bath and within the sample.
The discussion above shows that signal processing of raw ultrasound backscatter data can be used to generate maps of travel time changes (or temperature induced strain) for extracting temperature-related information. Direct inversion of travel time change to obtain quantitative temperature information requires explicit knowledge of the relationship between temperature induced strain (ε) and temperature over the entire temperature range of interest. However, lack of sensitivity of speed of sound change to temperature near the tissue coagulation threshold (55°-60° C.) makes temperature estimation by direct inversion of the measured travel time shifts a challenging task. A solution to overcoming this problem of lack of sensitivity is to incorporate information about the underlying heat diffusion into the temperature estimation technique. The heat diffusion can be represented mathematically using the bio-heat transfer equation, parameterized with two constants, heating rate and the thermal diffusivity (for in vitro experimental conditions).
A model-based approach provides two direct advantages compared to a solely signal processing-based method relying on direct mapping of temperature induced strain (ε) to temperature (T). First, by estimating the bio-heat transfer equation parameters using RF data collected immediately after HIFU therapy is turned on, only the region of high sensitivity in the ε(T) curve is used in the parameter estimation. After the bio-heat equation parameters have been estimated, the temperature field during the therapy can be computed numerically. Second, the spatial and temporal constraints imposed by the bio-heat equation can be used to regularize the temperature induced strain estimates, which avoids artifacts in the temperature maps due to smoothing and false peaks induced by processing the RF data.
Variability in the ε(T) relationship between tissue types and possibly between patients further complicates the inversion of temperature induced strain. For example, the speed of sound increases as a function of temperature for water-bearing tissues. However, for fatty tissue, the speed of sound actually decreases with temperature. It would therefore be desirable to have a non-invasive method of estimating this mapping in the treatment zone for use in clinical situations. Incorporating information about the underlying heat diffusion process using the bio-heat transfer equation enables the non-invasive estimation of the ε(T) relationship. Specifically, the temperature distribution at a calibration point (within the region of interest for HIFU therapy) can be first computed from the bio-heat equation using independently measured values for thermal diffusivity and heat source. The computed temperature distribution at this location can then be compared with the measured RF data to obtain the ε(T) curve. Thus, it can be seen that a heat transfer model-based temperature estimation approach can potentially overcome drawbacks associated with the low sensitivity and high variability of the ε(T) curve in the therapeutic temperature range. Much of the disclosure that follows focuses on the development and implementation of this non-invasive model-based temperature estimation technique. A detailed description of the technique and experimental results obtained in tissue-mimicking phantoms is provided below. Application of the methods to excised animal tissue is also described below.
The BHTE and Non-Invasively Measuring Two Parameters: The novelty of this concept that is disclosed herein lies in the ability to combine an underlying physical model based on the bio-heat equation (that describes the temperature evolution with non-invasive measurements of the ultrasound backscatter) to overcome the limitations associated with direct inversion of the ultrasound backscatter data, and thereby provide the capability to estimate tissue temperature over the entire therapeutic temperature range (i.e., from about (40°-80° C.). Thus, the techniques disclosed herein can be used as a tool for monitoring the progress of HIFU therapy. Combining the bio-heat equation with the backscattered ultrasound measurements for estimating temperature makes the technique robust. Previous methods have either been limited in their applicability to temperature ranges below the temperature range of interest for HIFU, or are based on simplifying presumptions regarding (δ(T)), which introduces errors in the temperature estimation procedure.
As discussed above with respect to the high level flowcharts, the model-based temperature estimation algorithm disclosed herein is based on: (1) estimating the bio-heat equation parameters in situ using ultrasound backscatter data during a set of probe exposures performed before therapy begins in the region of interest; (2) non-invasive estimation of the relationship between acoustic travel time and temperature by combining forward computations of the bio-heat equation and the acoustic backscatter data acquired during the probe exposures; and, (3) during the therapy sessions, running forward computations of the model and adaptively updating the model parameters based on the received ultrasound backscatter. Additional details of this technique are provided below.
Bio-Heat Transfer Equation (BHTE): The basic law that relates the heat flow and the temperature gradient based on experimental observation was derived by Joseph Fourier around 1822. The general differential form of the heat transfer law is,
where C is the specific heat capacity, k is the thermal conductivity, f represents the distributed source term, and T is the temperature.
In biological media, Eq. (16) cannot be applied directly, due to the complexity and the dynamics of the biological system. However, f can be expressed as a linear combination of heat sources and heat sinks. The internally generated heat sources that contribute to f include those related to metabolism, while the cooling processes are conduction, advection, and convection. The modified equation is referred to as the bio-heat transfer equation (BHTE). For the in vitro experimental procedures performed in developing the technology disclosed herein, the contribution of metabolism as a heat source, and convection and advection as heat sinks have been ignored. Hence the modified form of the BHTE becomes,
where K is the thermal diffusivity (m2/sec), given by K=k/ρC, Q(° C./s) represents the local in situ heating rate due to ultrasound energy absorption, I(r,z) is the normalized spatial acoustic intensity distribution profile, r represents the axis perpendicular (transverse) to the direction of beam propagation, and z represents the beam propagation axis (longitudinal). The heating rate Q(° C./s), and the heat energy deposition rate Q′ (W/cm3) are related by the following equation,
Q′=QρC (18)
In developing the techniques disclosed herein, the following assumptions are made regarding the parameters of the BHTE:
It should be noted that for a HIFU heat source, Q′ is a lumped quantity (referred to as the scaled local heat source) that is influenced by the attenuation along the beam path, local tissue absorption, and non-linear acoustic propagation effects. As used in the techniques disclosed herein, the emphasis is on estimating the lumped quantity, rather than the individual components.
The parameters K and Q′ are individually estimated during two probe exposures immediately before the ablative therapy session begins. K is estimated during probe experiment 1, in which the sample is heated for a few seconds at a low intensity (sub-ablative), and then allowed to cool. The estimated value of K is then used in probe experiment 2, where the sample is quickly heated until a hyperechoic spot appears on the image. The time taken for the hyperechoic spot to appear is incorporated into the model to estimate the local heat source (Q′). Note that as discussed above, there are alternate techniques to conduct the Q′ experiment, including using a thermal sensor and hydrophone to detect noise associated with the onset of boiling.
Essential to the process are the two pre-therapy calibration steps that determine in situ values for BHTE parameters, K and Q. These two parameters can be measured at single points anywhere in the treatment region of interest and provide the characterization of local tissue and acoustic path properties necessary for accurate therapy planning and execution. The estimated parameters are then input into the BHTE to obtain temperature maps at the current location. The temperature estimates are related to strains estimated from the ultrasound backscatter during the calibration experiment, to obtain the non-invasive ε(T) mapping. It should be noted that once the BHTE parameters have been estimated at a given location using the calibration experiments, the temperature maps for that location can be obtained by computing the BHTE. It might thus appear that the estimation of ε(T) is not required, and the ultrasound backscatter information during monitoring is not needed either. However, such a technique is best suited for locations where the thermal parameter estimates are accurately known. The need for monitoring arises because tissue homogeneities result in local variation in the thermal parameters. Specifically, the present technique models the tissue heterogeneity variation in Q′. This assumption is based on prior dosimetry studies that demonstrated the variability in lesion widths while HIFU was applied to a uniform block of tissue, as the transducer was scanned along a circle at a constant velocity. The goal of the monitoring step is thus to accurately track these changes in Q′. The lower block in
The estimation of thermal diffusivity (K) is based on the principle of thermal clearance. In this approach, a short HIFU heating pulse is applied, and the resulting temperature distribution is measured. Sub-ablative HIFU intensities are employed, to ensure that the maximum temperature rise is no more than about 10°-15° C. The orientation of the HIFU transducer, the ultrasound imaging probe, and the geometric focus of the HIFU beam is schematically illustrated in
where:
R(t)=4K(t+β) (19b)
In Eqs. (19a) and (19b), T(r,t) is the temperature distribution at distance r and time t, after the heating pulse was turned off, Tmax (° C.) represents the maximum temperature rise at time t, T0 is the initial ambient temperature (typically 37° C.), R(t) (m2) is the Gaussian radius, K (m2/s) is the thermal diffusivity, and β(s) represents the diffusion time constant.
It has been demonstrated that in biological media, the temperature induced strain (ε), measured from the ultrasound radio-frequency (RF) backscatter (due to changes in speed of sound) for temperature rises in the range of 10°-15° C. above ambient temperature, is directly proportional to the induced temperature change (ΔT(r,t)):
ΔT(r,t)=k ε(r,t) (20)
where k is a scalar constant.
From Eqs. (19a) and (20), the following relationship can be obtained:
ε(r,t)=εmax(t)e−r
where εmax=k Tmax.
Integrating Eq. (21) along r, the cumulative shift in the ultrasound RF echo locations s(r,t) along the imaging beam has the form of the error function (erf(x)):
where Amax(t) is the peak displacement at time t. From Eq. (22), it can be seen that the parameter R(t) can be measured from the Gaussian width of s(r,t) profiles for all times t. Differentiating Eq. (19b) with respect to t, yields:
Eq. (23) shows that by computing the rate of change of R(t) versus t, the thermal diffusivity (K) can be estimated. The estimation procedure is non-invasive. It may be noted from Eq. (22) that errors introduced in the estimation of s(r,t) will affect the estimated R(t), and consequently, the thermal diffusivity K. The estimated value of K is used as a known quantity to then estimate the local heating rate Q, as described below.
Eq. (22) indicates that the echo location shifts s(r,t) can be represented by a closed functional form, and parameterized in terms of Amax and R. In developing the technology disclosed herein, a novel parametric estimation approach is employed to estimate Amax and R in Eq. (22) from the RF backscatter data collected during the HIFU experiment. A schematic representation of the estimation technique is presented in
This procedure is repeated for all the RF frames collected during the cool down phase (after HIFU has been turned off), with respect to the frame acquired before heating commenced, to obtain values of R(t) corresponding to each frame. The optimization algorithm was implemented using the MATLAB™ (The Mathworks Inc., Natick, Mass.) function fminsearch, which is based on the Nelder-Mead Simplex search technique. The estimated values of R(t) are then fitted to a straight line, to obtain the local thermal diffusivity K, which is the thermal parameter of interest.
Experiments to validate the thermal diffusivity estimation algorithm were performed in a tissue-mimicking phantom made of alginate-based hydrogel, containing 95% water by weight. An experimental setup similar to that illustrated in
The thermal diffusivity (K) was also independently measured for the phantom samples using the transient hot-wire technique, a standard method for measuring the thermal properties of solids. The estimates obtained by this method were compared with those obtained using the non-invasive ultrasound-based estimation procedure.
The spatio-temporal temperature distribution radially outward from the heating wire is described by the following equations:
and where q represents the power (w) delivered per unit length of the wire, krepresents the thermal conductivity (W/m/° C.), K is the thermal diffusivity (m2/s), r represents the radial distance away from the wire (m), and t represents the time (s) after heating commenced. Eq. (25) assumes that the heat source is infinitely long, with a negligible diameter, surrounded by an infinite solid. Eq. (26) was evaluated using the inbuilt function “expint” in MATLAB™ (The Mathworks Inc, Natick, Mass.). The thermocouple data were fitted to Eq. (25), and the unknown parameter A and thermal diffusivity K were estimated.
This procedure is repeated for all the RF frames collected during the cool down phase (after HIFU has been turned off) with respect to the frame acquired before heating commenced to obtain values of R(t) corresponding to each frame. The optimization algorithm was implemented using the MATLAB™ (The Mathworks Inc., Natick, Mass.) function finsearch, which is based on the Nelder-Mead Simplex search technique. The estimated values of R(t) are then fitted to a straight line to obtain the local thermal diffusivity K which is the thermal parameter of interest.
The estimated R(t) values are plotted as a function of time t in a least squares linear fit to the data points, based on Eq. (19b), as shown in
To validate the ultrasound RF-based estimation technique for the non-invasive estimation of K, simulation experiments were performed by generating RF A-lines during a HIFU heating experiment, and applying the iterative estimation technique described above. A random scatterer distribution was first generated with Gaussian distributed amplitudes, while the spacing between the scatterers was derived from a uniform distribution. Twenty scatterers per wavelength were generated to guarantee fully developed speckle. The temperature distribution due to ultrasonic absorption of HIFU energy over a 3 cm×2 cm 2-D region around the HIFU focus was computed using an axisymmetric finite element representation of the bio-heat equation (Eq. (17)), implemented in FEMLAB™ (Comsol AG, Sweden). A single element transducer with a geometric focal length of 35 mm and active diameter of 16 mm operating at 5 MHz was used as the HIFU therapy device. The normalized beam profile of the transducer simulated under linear acoustic conditions was used to represent the spatial distribution of the heat source. The HIFU therapy ON time was 5 s, while the cool-down phase was visualized for 15 s. The simulation parameters are listed in Table 1.
The HIFU exposure intensity was chosen such that the maximum temperature reached after heating was not greater than 15° C. above ambient temperature (37° C.). The temperature maps were converted to equivalent speed of sound profiles using the mapping in
For the estimation of K, signal analysis was performed along an RF A-line passing through the center of the HIFU focal zone (
The following provides yet another derivation for the estimation of K. The bio-heat equation for in vitro conditions can also be considered to be given by:
The model parameters in the equation are the thermal diffusivity, represented by
(m2/sec), and scaled local heat source, given by Q′, where
Again, note that for a HIFU heat source, Q′ is a lumped quantity that is influenced by the attenuation along the beam path, local tissue absorption and non-linear acoustic propagation effects.
In Eq. (27), setting the heat source to zero (representing tissue cooling), results in:
To solve the above equation numerically, a finite difference implementation will be adopted with forward differences used for the time derivative and central differences for the spatial derivatives.
2-D Cartesian coordinate geometry is chosen as an exemplary case for further simplifications. For this geometry, Eq. (28) can be represented in finite difference form as,
where x and z represent the lateral and axial dimensions respectively, Δx and Δz represent the grid spacing, Δt represents the time step, and k is the time index. Typically, k and k+1 represent time instants when RF data was collected. Re-writing the equation for the next time step k+1 and subtracting Eq. (29) from it, a differential form of the equation that can be written as:
where ΔTk(x,z)=Tk+1(x,z)−Tk(x,z).
In the temperature range near body temperature (37°-50° C.), it has been shown that the change in temperature is proportional to the axial derivative of the echo location shifts, and can be represented by the following equation,
Here, ΔTk (i.e., DTk) represents the change in temperature between frame k and k+1, while δtinc represents the corresponding integrated travel time change, and z is the depth direction. Substituting Eq. (31) into Eq. (30), and since
Eq. (30) can be expressed in terms of local travel time shifts (dtlocal) with the subscriptlocal deleted for clarity, as:
From Eq. (32), it can be seen that the only unknown to solve for is the thermal diffusivity K. Since the local travel time change maps are typically 2-D matrices, Eq. (32) can be expressed in terms of a matrix equation as:
Time Derivative=K*Laplacian (33)
with the terms in italics being 2-D matrices, where:
Time Derivative=δtk+1(x,z)−δtk(x,z) (34)
and:
are both known matrices. A least squares fitting approach is then applied to estimate the unknown parameter K. It is proposed that where the thermal source is HIFU, the finite difference equations will be computed using the axisymmetric 2-D geometry commonly employed. Thus, the procedure to estimate K for where the thermal source is HIFU includes the following steps: (1) heat the sample at sub-ablative intensities and allow the sample to cool down; (2) acquire ultrasound backscatter data at a frame rate of about 10 frames per second, and estimate travel time change maps from the backscatter data; and, (3) use Eq. (33) to estimate the thermal diffusivity using the travel time change data for the cooling phase.
Significantly, for the estimation of K, a first criteria is that a spatial temperature gradient must exist. Also, the source must approximate an impulse in both space and time. The sub-millimeter transverse beam width of the HIFU beam conveniently satisfies both requirements. In the empirical studies relating to K, the imaging scan-lines were oriented transverse to the HIFU beam. It is advantageous to image the temperature evolution in this direction, since the thermal gradients are greater, and hence, greater sensitivity to thermal diffusion exists in the ultrasound backscatter data.
Simulation results demonstrated that under realistic signal-to-noise conditions, K can be estimated with a variation of less than 10%. The estimates of K independently obtained using the invasive transient hot-wire method and the non-invasive method showed a difference of approximately 15%. A major source of uncertainty in the hot wire method is the distance between the thermocouples and the heating wire, and the orientation of the thermocouples. Significantly, other studies relating to thermal diffusivity indicate an expected uncertainty in thermal diffusivity measurements on the order of 30%. It should also be noted that the signal processing parameters employed in the empirical testing related to K, such as RF data sampling rate, transverse beam width of a HIFU transducer, cross-correlation window length (N in the equation) and thresholds in the optimization routines, were manually selected based on a priori knowledge and published literature values for similar signal analysis. A detailed error analysis could be performed to understand how the choice of these parameters affects the s(r,t) estimates, and consequently, K. Even without performing such optimization studies, the empirical data indicate the technique for estimating K non-invasively using RF data acquired during brief HIFU exposures at sub-ablative intensities is valid.
Note the A-line based RF processing scheme was adopted to estimate K, with the scan plane of the imaging transducer being oriented parallel to the HIFU beam propagation direction, to minimize the acoustic thermal lens effect (de-correlation in the RF signal due to refraction and refocusing of the beam during heating), because the thermal gradients laterally across the imaging beam are smaller at the center of the HIFU focal zone as compared to its edges. Extension of the A-line (1-D) based approach to a 2-D estimation technique performed over multiple adjacent scan lines in the heated region might benefit from incorporating the thermal lens effect in an appropriate numerical model to minimize model inconsistencies.
Estimation of Q′: In this section, a novel non-invasive approach for estimating the local in situ heating rate Q′ at the HIFU focus is described. The methodology is motivated by the fact that in HIFU treatments, focal heating rates on the order of 10° C. or more per second are commonly observed, and temperatures nearing boiling (100° C. at atmospheric pressure) have been reported. From Eq. (17), it can be observed that by measuring the rate of temperature rise at the therapeutic focus from ambient temperature to boiling (i.e., the term on the left side of Eq. (17)), and accounting for the temperature decay due to thermal conduction loss (the first term on the right side of Eq. (17)), the heating rate (Q′) due to ultrasonic absorption can be estimated for a known spatial HIFU beam profile, I(x,y). In this technique, I(x,y) is computed a priori for the experimental HIFU transducer configuration, using a linear acoustic wave propagation tool, and is a constant throughout the procedure.
For a given known transducer geometry and spatial intensity beam profile, the time tboil required to raise the temperature of the tissue sample from ambient temperature to its boiling point can be non-invasively detected using a passive acoustic sensor sensitive to characteristic acoustic emissions (crackling and popping sounds related to the violent bursting of bubbles) in the audible frequency range (<20 KHz) that accompany boiling. Of course, a thermal sensor could be invasively disposed within the tissue mass; however, a non-invasive procedure is preferable, since HIFU therapy itself can be provided non-invasively. In this approach, starting with an initial estimated value for Q′ and using the value of K estimated using the method described above, T(r,z,t) is computed iteratively using a finite element implementation of Eq. (17) to find the best estimate Qest, such that T(r=0, z=0, t=tboil)=100° C., where (r, z)=(0,0) represents the location of the HIFU focal spot.
For an independent validation, Q for the HIFU thermal source was also calculated using the following equation derived from HIFU parameters for linear acoustic propagation in an attenuating medium:
Qcal=2αf ISPe−(2αfx)W/cm3 (36)
where α is the acoustic attenuation coefficient (Np/cm/MHz), ISP is the normalized spatial peak temporal average intensity (W/cm2), f is the HIFU frequency (MHz), and x represents the beam propagation distance (cm). Experimentally measured values for α and ISP were used to determine Q with Eq. (36). It was assumed that the absorption coefficient was equal to the attenuation coefficient, and losses due to scattering were negligible. The quantity ISP in Eq. (36) was determined using the following equation:
and where ISAL represents the spatial average intensity (linear) (W/cm2), ISP represents the spatial peak intensity (W/cm2), W represents the electrical power input to the transducer (Watts), d represents the full width half maximum (FWHM) of the transducer (measured from the acoustic pressure profile (cm)), and η represents the electro-acoustic efficiency of the HIFU transducer. The parameters W, d, and η were measured during independent calibration experiments performed before the parameter calibration experiments.
To compare Qcal calculated using Eq. (36) to Q′ determined using the non-invasive technique discussed above (i.e., the second calibration experiment), each value must be expressed in the same units, preferably (W/cm3) Qest was multiplied by the product of density (ρ) and specific heat (C), to ensure both values for the magnitude of the heat source were expressed in equivalent units.
A set of experiments was performed in alginate-based phantoms to validate the non-invasive technique for the estimation of Q′ during HIFU exposures by measuring tboil. A commercially available stethoscope was used as a passive sensor to detect the acoustic emissions in the audible frequency range (up to a few KHz) that are characteristic of the onset of boiling. The diaphragm of the stethoscope was attached to a microphone and placed against the alginate sample, on the far side from the HIFU transducer. The microphone output was sampled (using a sound card in the computing device being used for the system controller) at 44.1 KHz, and the samples were stored for offline processing. The total HIFU ON time was approximately 50 seconds, with brief interruption of the HIFU delivery (for 100 ms) every 0.5 s to enable acquisition of interference free B-mode images. The experiments were performed at in situ intensities (ISAL) of 406 W/cm2 and 523 W/cm2. For each HIFU intensity, exposures were performed at five different spatial locations in a given sample, by translating the HIFU transducer along y and z directions using a 3-D motion stage. The treatment locations were separated by at least 1 cm, to avoid influence from sites already treated. For each of the exposures, the HIFU beam propagation was entirely within the sample. Bulk speed of sound and attenuation were measured for each of the samples.
Prior to the HIFU experiments, the operating characteristics of the HIFU transducer were measured and recorded. The full width half maximum (FWHM) distance (d) was determined to be approximately 0.91 mm. The electro-acoustic efficiency of the HIFU transducer was measured using a radiation force balance setup and was determined to be about 72.2%.
The preceding disclosure describes novel non-invasive acoustical methods for estimating the in situ local thermal diffusivity (K) and the in situ heating rate (Q′). In the analysis described above, the medium being thermally treated was considered to be spatially homogenous and isotropic. In heterogeneous media, spatial variations in the thermal properties can be expected. To account for these spatial variations, measurements of K and Q′ at a number of spatial locations within the region of interest can be repeated, and a spatial map of the thermal properties can be constructed. Significantly, the same transducer used for delivering the therapy dose can be used to determine the thermal parameters non-invasively. Application of the techniques to homogenous tissue-mimicking phantoms demonstrated the proof of principle.
The estimation of the heating rate Q′ was based on first experimentally measuring the time required to raise the temperature of the focal point from ambient to boiling (assumed to be 100° C. in aqueous media), and applying the BHTE iteratively to compute the heating rate. The time series output of the stethoscope and the corresponding power spectrum in
Note that a linear acoustic propagation model was employed to compute the in situ beam profile I(r,z) used in Eq. (17), and Qcal in Eq. (36). However, the presence of acoustic nonlinearities has been previously reported for the intensity levels typically used in HIFU. The influence of the non-linearities in the magnitude of the local heating rate and its spatial intensity profile depend not only on the applied acoustic intensity, but also, on the intervening path attenuation. If the effect of non-linearities were only to influence the magnitude of the heating rate, while still maintaining the spatial profile close to the linear approximation, the estimated Qest would include this effect, since it is a free parameter in the fitting process. If the effect of non-linearities were strong enough to modify the local heat source spatial profile due to increased absorption of higher harmonics, Qest would be biased, since the estimation would be performed using an incorrect spatial heat source distribution profile. The effect of non-linearities can be explicitly included by employing a non-linear acoustic wave propagation model to compute the spatial intensity profile I(r,z) and the corresponding heating rate.
Alternate techniques for estimating Q′ are briefly described below. It must be recognized that while the empirical studies disclosed herein emphasized HIFU therapy, the estimations of K and Q′ as disclosed are also applicable to other thermal therapies, and to profiling tissue characteristics using different thermal sources (such as hot wires and cryogenic or other temperature sources). Thus, the HIFU application is intended to be exemplary, rather than limiting. With respect to estimating Q′, where therapy is applied non-invasively, such as with HIFU, it is desirable to estimate Q′ non-invasively. However, where the need for a non-invasive technique is not present, a thermal sensor can be inserted into the tissue mass (or placed adjacent to the tissue, to measure temperature directly, while recording the time required to reach a specific temperature). With respect to non-invasively estimating Q′, in addition to using an acoustic sensor to detect the noise associated with the onset of boiling, an ultrasound image can be monitored to detect a hyperechoic spot that is also associated with the onset of boiling.
Thus, in one embodiment for estimating Q′ for HIFU therapy, the tissue sample is heated rapidly so that boiling temperatures (˜100° C.) are reached within 2-3 seconds. Ultrasound backscatter data are continuously acquired during the heating experiment, at about 10 fps. The time (t100) measured since the start of heating, at which instant a hyperechoic spot (bright white region) on the B-mode image becomes visible (indicating boiling is occurring and the temperature in the tissue at the focal point of the HIFU beam is 100° C.) is thus determined. The ATL HDI-1000™ system discussed above provides a time stamp on each acquired frame relative to the start of the acquisition sequence. Thus, the onset of the hyperechoic spot can be accurately determined with good temporal resolution (˜30 ms), enabling t100 to be measured and used as an input parameter in an iterative algorithm used to estimate the heat source.
The iterative algorithm has been discussed above (with respect to estimating Q′ by detecting noise associated with the onset of boiling).
Although the motivation for developing non-invasive methods to estimate the thermal diffusivity and the heat source was to be able to uniquely estimate the mapping between temperature and temperature induced strain (ε) as shown in
Using the BHTE, K, and Q′: After the thermal properties (K and Q′) have been estimated, temperature maps obtained by simulating the BHTE are related to the temperature induced strain c measured from the ultrasound backscatter to non-invasively obtain the mapping between temperature induced strain and temperature, referred to as ε(T). Then, using the estimated ε(T) mapping as a known quantity, temperature estimation is performed, as illustrated in
The relation between temperature induced strain (ε) and temperature (T) incorporates the effect of the change of speed of sound versus temperature c(T) and thermal expansion. In the estimation procedure described herein, only the lumped quantity ε(T) is estimated. The goal is not to separate the contribution due to the speed of sound change and thermal expansion. The ε(T) relation is non-monotonic with temperature, and can be represented by a second-order polynomial of the form:
ε(T)=bT2+aT (38)
where a,b represent scalar coefficients and T represents the temperature rise above the ambient value (typically 37 degrees C.). However, for a relatively small temperature rise of up to 10°-15° C. from ambient temperature, Eq. (38) can be approximated by a linear relation of the form:
ε(T)=aT (39)
In the context of the techniques disclosed herein, ε(T) corresponds to Eq. (39), because the parameter estimation for therapy monitoring is performed immediately (typically within 1 s) after HMFU therapy commences, while the maximum temperature rise is less than 15° C. Thus, the focus during the ε(T) estimation step is only on estimating the slope of the linear fit (parameter a). This parameter is determined by relating the echo shift between the first two RF frames acquired immediately after therapy commences, with simulated temperature maps at that location obtained using the BHTE. The flowchart of
The technique is implemented as an iterative optimization problem with the goal being to estimate the optimum value of parameter a for the given RF data set. An initial estimated value for parameter a is first selected. The BHTE equation is then evaluated using the values of K and Q′ estimated from the calibration experiments, which provides the predicted temperature profiles for that particular location. The predicted temperature profiles are mapped into strain using ε(T), and then integrated along the depth direction to obtain the predicted echo shift. These echo shift estimates are then used to shift the samples of RF line RF(i). The RF lines RF(i) obtained after applying the echo shift and RF(i+1) are divided into a number of non-overlapping segments (typically each segment is 0.75 mm in length). The zero lag correlation p between corresponding segments on these RF lines is then computed as discussed above. The minimization function is computed as (1−ρ)2 for each of the segments, and then summed to obtain the cumulative estimate. Parameter a is updated after each iteration, until the minimization function value is below a pre-defined threshold. It may be noted that although the temperature profiles for the current location can be directly evaluated based on knowledge of K and Q′ without the need for explicit estimation of ε(T), this approach would not enable adaptively tracking changes in Q′ during the therapy monitoring step. In order to be able to relate the BHTE predicted temperature maps with the RF backscatter data collected during therapy, ε(T) must be estimated, and thus, there is a need to carry out the steps outlined in
The experimental data used to validate the techniques for independent estimation of ε(T) were determined as part of the calibration procedures for K and Q′ presented above. RF data were acquired and processed offline, based on the flowchart of
For independent validation of ε(T), the relationship was also measured using an invasive technique widely reported in the literature. The invasive estimates are considered ground truth measurements. These measurements are performed by tracking the echo shifts in the backscattered ultrasound when a sample is uniformly heated over the temperature range of interest, and ε(T) is computed from these echo shift estimates. A temperature-controlled water bath heating experiment was performed in order to uniformly characterize the ε(T) relationship of the alginate phantom sample. The sample was placed in a temperature-controlled water bath, with one thermocouple inserted into the phantom, and another immersed in the water bath. An electric heater with a built-in thermostat and circulator was immersed in the water bath, to uniformly heat the water bath and the sample. A commercial ultrasound imaging probe (L11-5™, Philips Medical Systems, Bothell, Wash.) was immersed in the water bath and oriented such that it imaged the sample. Care was taken to ensure that the imaging probe was not rigidly placed against the sample, so that the sample was free to expand. The water bath was heated in increments of approximately 10° C., and the thermostat on the water heater turned the heater off automatically, when a given preset temperature was reached. An RF data frame was collected using the ATL HDI-1000™ scanner at each temperature increment after ensuring that difference in the temperature readings between the two thermocouples was no greater than ±0.2° C.
Having performed the strain estimation, that relationship can be used to perform non-invasive temperature estimations. The temperature estimation technique is based on non-invasive estimation of BHTE parameters. The non-invasive estimates of ε(T) obtained as indicated above are used as a known quantity in this step. A block diagram representation of the estimation technique is presented in
The technique is implemented as an iterative optimization problem as illustrated in
The non-invasive temperature estimation technique was tested during in vitro experiments performed in the alginate tissue-mimicking phantom. Independent validation of the technique was performed by comparing the non-invasive temperature estimates with measurements from implanted thermocouples. A fixture enabling precise positioning of the HIFU probe and thermocouples was used. The thermocouples were precisely positioned around the geometric focus of the HIFU transducer, such that the thermocouples were located around the HIFU beam, where the temperature rises are significant, but yet not within the main lobe of the HIFU beam. This approach minimizes thermocouple artifacts caused by viscous heating effects in an ultrasound field that would affect the thermocouple readings. With this exemplary arrangement, the thermocouples are typically at transverse distances of 1, 3, and 4 mm from the HIFU beam propagation axis.
The master control program previously developed to collect RF data from the ATL HDI-1000™ commercial ultrasound scanner during HIFU therapy was modified so that the thermocouple readings could also be acquired simultaneously during the HIFU heating experiment. The thermocouples were connected to separate analog input channels on a computer controlled data acquisition unit (for example, an HP 34970™, available from Hewlett Packard, Palo Alto, Calif.). The sampling rate on each of the analog input channels was set to 10 Hz. Acquisition of thermocouple data was initiated at the start of HIFU therapy delivery, and continued during the cool-down period after HIFU delivery had been turned off. The total HIFU therapy delivery time was 7 seconds, with brief interruptions of 100 ms for acquiring RF data every 500 ms as described above. The in situ HIFU intensity for the exposures was 265 W/cm2. The first two RF frames acquired immediately after therapy commenced (within the first 1 second) were used in the iterative estimation algorithm to determine the parameter Q′. The estimated values of Q′ were then input in the BHTE to obtain the temperature maps. The experiments were performed starting at an initial baseline temperature of 29° C.
A comparison of the non-invasively estimated temperatures at the thermocouple locations (1, 3, and 4 mm from the HIFU beam propagation axis) and the corresponding thermocouple estimates is graphically illustrated in
A key difference between the current temperature estimation approach and previously reported methods is the coupling of the BHTE with echo shift information from the RF backscatter, to obtain the temperature information non-invasively. This approach enables estimation of temperatures in regions of low sensitivity of the ε(T) curve. Previously reported methods relied on direct inversion of ε via the ε(T) mapping to obtain temperature. However, since the ε(T) does not provide high sensitivity throughout the therapeutic temperature range, these prior art methods were only applicable in the low temperature range, where the sensitivity of the ε(T) curve was the greatest. In the current novel approach, the initial high sensitivity linear region of the ε(T) curve is used to non-invasively estimate the BHTE parameters. Once the BHTE parameters have been estimated, the BHTE is used to compute the temperature information throughout the HIFU exposure.
The estimation technique used in the novel approach assumes that the local in situ heat source Q′ does not change as a function of temperature, and that the value estimated at the beginning of treatment is valid throughout the exposure. The close agreement between the thermocouple measurements and the non-invasive temperature estimates appears to confirm this assumption. The local in situ heat source Q′ is a function of the local ultrasonic absorption coefficient and the intervening path attenuation.
An integral part of the temperature estimation technique is the non-invasive estimation of the mapping between temperature induced strain ε and temperature T. In previous studies, this mapping parameter was invasively determined prior to the therapy experiment. Such an invasive approach would not be effective in an in vivo clinical setting. Moreover, due to large scale variability in this parameter as a function of tissue type, it would be useful to estimate it for a given region of interest in the patient before the treatment commences. The non-invasive method proposed herein could be used for this purpose.
A related embodiment estimates temperatures by using the RF data to generate the δ(T) curve, rather than the strain curve. Such an embodiment is based on using the RF data to estimate the δ(T) curve. The calibration or probe experiments provide the necessary data, which are combined with the numerically computed temperature maps obtained by inserting the values for K and Q′ that were estimated during probe experiments 1 and 2, respectively, into Eq. (27), at the time instants when RF data were acquired. Travel time shifts are estimated from ultrasound backscatter data collected during probe experiment 2 (to estimate Q′). The travel time change data are then fitted against the simulated temperature maps to obtain an estimate of the δ(T) curve. This estimate of δ(T), obtained non-invasively, is assumed to be spatially invariant.
During therapy, temperature maps are obtained from forward computations of the bio-heat equation with the model parameters values initially set to the values for K and Q′ estimated in probe experiments. Because sample heterogeneities (especially in tissue) can result in changes to the local heat source (Q′), due to changes in attenuation caused by variations in beam propagation path and changes in local absorption, the technique to adaptively change the value of Q′ based on the backscatter data received is incorporated into therapy monitoring. The flowchart of
The noninvasive temperature algorithm for HIFU therapy monitoring described above and empirically tested using alginate phantoms, was also tested using four different excised samples of turkey breast muscle. The K values determined for the samples were 1.42×10−7, 1.18×10−7, 1.3×10−7, and 1.55×10−7 m2/s. The variation diffusivity values is likely due to the local heterogeneities, and inter-sample variability that would be expected between independent samples. For comparison, the reported value for thermal diffusivity in the literature for muscle is 1.4×10−7 m2/s. With respect to estimating Q′, a difference of approximately 18 percent between calculated values (using a priori measured parameters of the HIFU beam) and estimated values (based on detecting noise associated with the onset of boiling), closely matches the 20% variation discussed above, with respect to the alginate phantom validation, and can be explained by the similar range of uncertainties in the measured values of attenuation, electromechanical transducer efficiency, and applied electrical power. Comparing non-invasively determined temperature estimates during therapy with measurements obtained using thermocouples (generally as described above) yielded results similar to those graphically illustrated in
The studies discussed above were based on in vitro conditions. The effect of tissue perfusion as a heat transport mechanism was therefore not considered, nor was external motion considered. To extend these techniques to in vivo conditions, the following potential complications should be considered: the effect of patient breathing, bulk motion of the transducer assembly (especially for freehand scanning), and the effect of perfusion. Given the short treatment times typically used in HIFU therapy, it can be expected that the effect of perfusion would likely be insignificant over the treatment duration. In cases where the effect is deemed to be significant enough (especially for highly perfused organs such as the liver) to be of concern, quantitative knowledge of the perfusion rate could be incorporated into the heat diffusion model, and determined during the calibration step. A non-invasive technique for determining perfusion has been recently proposed in the MRI imaging literature, and this approach can be extended to ultrasound data and used to estimate the perfusion rate as part of the calibration step. Potential techniques that could be applied for effective motion compensation are noted below.
The processing methods discussed above were based on 1-D analysis of the RF data. The echo shifts and temperature induced strain estimates were computed by processing a pair of RF lines from adjacent frames at the same lateral location. For model fitting, only the computed temperature estimates along a single axial scan line passing through the HIFU focal region were used. The techniques discussed above can be extended to 2-D processing. Thus, 2-D temperature maps obtained from the BHTE could be related to RF echo shifts determined using a 2-D cross-correlation algorithm, to estimate the thermal and acoustic parameters. If the 2-D data are properly pre-conditioned and filtered, such an approach can result in robust estimates of the parameters, since more independent data are used in the estimation analysis. However, care must be taken to properly account for the effect of acoustic beam-forming. Beam-forming errors could occur due to local thermal gradients within the width of the imaging beam, which could introduce artifacts distal to the heating zone and cause de-correlation effects in the RF signals. This effect is most severe at the extremities of the focal zone along the HIFU beam propagation direction, and less severe around the center of the heated region, where the thermal gradients are less severe. Methods for correcting the thermal lens artifact have been proposed and could be incorporated in the heat transfer model.
As discussed above, estimation of thermal and acoustic parameters were performed only over the initial portion of the ε(T) curve that could represented by a straight line (ε=aT). These estimates were then used with the BHTE to compute the temperature maps. The limitation of such an approach is that the model does not permit the thermal parameters to change over time. Instead, once the thermal parameters have been estimated during the initial heating phase, they are assumed to be constant throughout the treatment. By modeling the ε(T) curve as a second order polynomial (ε=aT2+bT), information from the ultrasound backscatter can be related to the BHTE throughout the exposure, and the therapy parameters can also be updated throughout the exposure. This technique requires that all coefficients of the second order polynomial of the ε(T) curve be estimated accurately during the calibration step. For a single point lesion, only the region around the focal peak can be used to resolve the parameter a, since the higher temperatures only occur around a small region at the focus. This limitation introduces uncertainty in the estimates of a. However, if instead of a point lesion, a scanned lesion protocol is adopted, then the spatial extent of the temperature change will be greater, and will provide more spatial data to estimate a, thus improving its accuracy. This change also requires modification of the experimental protocol. However, the motivation to create scanned lesions in clinical HIFU practice is manifold, since the treatment throughput is greater and more cost effective. Modification of the estimation techniques to incorporate these changes could result in valuable improvement in the applicability of this non-invasive temperature estimation technique.
In clinical scenarios, bulk motion due to respiration and movement of the transducer during therapy, especially with freehand scanning, can influence the performance of time shift estimation techniques, such as those used herein to estimate the echo shifts and the temperature induced strain ε. These motion effects typically include bulk translation, deformation, and rotation of tissue over regions much greater than the spatial extent of the heated zone. A possible technique for separating the artifacts would be to approach the concern as a two-step motion tracking problem. In the first step, block matching algorithms could be employed over regions of an RF image, to compensate for the motion effects. An appropriate signal-deformation model would need to be employed in this step. After the global bulk motion has been compensated, the BHTE model-based approach can be employed to estimate the temperature induced echo shifts, and inversely estimate the temperature. The advantage of using a BHTE model-based approach in such a scenario is that if bulk motion artifacts were not properly compensated, the iterative model-based approach would not converge, and the residuals of the minimization function would remain significant.
As noted above, it was assumed that the thermal and acoustic parameters are locally homogenous and isotropic. Hence, K, Q′ in the BHTE equation, and ε(T) were scalars. It was further assumed that once K and ε(T) have been estimated during the calibration step, they can be assumed to be constant throughout the entire treatment region. Therefore, the results of the calibration step were used as known quantities during the monitoring step. In regions of large scale heterogeneity, as might be encountered in tissue regions with dense vasculature, it might be necessary to perform the calibration experiments at a number of different regions within the treatment volume to generate a spatial map of K and ε(T). This spatial map could then be used in the BHTE during the therapy monitoring step to obtain the non-invasive temperature information.
From the in situ measured temperature estimates during therapy, the applied thermal dose can be computed. This variable provides the ability to evaluate therapy progress and efficacy during the treatment, since the thermal dose has been shown to be a clinically effective indicator of the endpoint of ablative thermal therapy. The quantitative thermal dose estimates can be used to adaptively update the therapy delivery parameters, so that treatment efficacy is maximized. A feedback controller can be designed to update the applied heating rate, using information from the therapy monitoring system. Such control mechanisms have been previously applied for MRI thermometry-based dose optimization techniques. With the advent of ultrasound-based temperature estimation techniques, these adaptive control mechanisms can be applied on temperature information derived from ultrasound. Since the ultrasound data are acquired with greater temporal resolution, the approach can provide capability for improved therapeutic dose control in real-time.
Although the concepts disclosed herein have been described in connection with the preferred form of practicing them and modifications thereto, those of ordinary skill in the art will understand that many other modifications can be made thereto within the scope of the claims that follow. Accordingly, it is not intended that the scope of these concepts in any way be limited by the above description, but instead be determined entirely by reference to the claims that follow.
This application is based on a prior copending provisional application, Ser. No. 60/722,491, filed on Sep. 30, 2005, the benefit of the filing date of which is hereby claimed under 35 U.S.C. § 119(e).
This invention was funded at least in part with grants (No. N00014-01-G-0460 and No. N00014-99-1-0982) from the Office of Naval Research (ONR). This invention was further funded at least in part with an award (No. DAMD17-02-2-0014) from the Department of the Army (U.S. Army Medical Research Acquisition Activity), and the U.S. government may have certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60722491 | Sep 2005 | US |