The present invention relates generally to the field of fluid leakage detection. More particularly, the present invention relates to devices useful for the monitoring and evaluation of fluid flow rates. The present invention is more particularly, through not exclusively, useful as a non-invasive leak detection system capable of detecting even the smallest fluid leakage within a fluid conduit system, terminating fluid flow in response to the leak, and providing other indication, alert, and control functions.
In the process of residential or commercial building construction, builders will frequently pre-plumb water supply pipes, and then encase the foundation level plumbing within a concrete mixture creating a floor slab. The plumbing will remain in use for the existence of the structure until it fails and leaks. Slab leaks typically start when a pinhole size rupture forms in a pipe or fitting from a period of constant pressure, friction with the slab material, and thermal expansion and contraction. As more water passes through the opening, in time, the size of the rupture increases. Undetected, the escaping water will eventually flood the foundation, damage floors and walls and ultimately undermine the ground beneath the structure due to erosion.
The control of water has challenged man since the beginning. The world today benefits and suffers from the conveyance and containment of this life giving fluid. No matter the culture, the class, or the location, similar issues are considered, such as materials, installation, pressures, maintenance, effects of internal and external conditions, including water quality, climactic conditions, electrolysis, etc. Issues with any one of these may result in undesirable effects and damages.
Leaks can be slow and gradual, taking years to detect until significant property damage occurs, or there can be large leaks that quickly produce a variety of damaging results. Significant costs are expended everyday all over the world from these water-related damages. The costs are so extensive and pervasive, that nearly everyone in our modern world has been personally affected.
Leaks occur at all phases of water system function, both during and after construction. During construction leaks result from improper installation, faulty materials, testing, unintentional trade damage, and vandalism—to name a few. Once a water system is installed, leaks are often a daily occurrence. Costs are spread between responsible parties, insurance companies and often to those not responsible who cannot prove otherwise, or because responsible parties have no ability to pay the frequently large damages. Virtually anyone in the construction industry can tell you horror stories about water damage during their most recent project. Most in the industry accept these damages simply as part of the construction world and never consider there may actually be a solution to eliminate or minimize these damages.
Once a building, home or facility becomes occupied, the risks of leaks may shift, but still remain as a liability, as any insurance underwriter can attest. The repair and refurbishment resulting from leaks is an enormous industry, most recently exacerbated by the scares and realities of mold. Slow, hard to detect leaks within walls, ceilings or concealed areas often result in the most damage, as they introduce moisture into a warm, stable atmosphere of a controlled environment, resulting in mold growth that can cause extensive damage and may include condemnation of the home or building.
Large leaks or ruptures can be catastrophic within a very short amount of time, sometimes within minutes. In commercial structures, leaks can damage computer systems resulting in untold losses of computer data. These risks are not simply limited to property damage, but include personal injury and even death. Toxic mold has verifiably taken a number of lives. Leaks also substantially increase the risk of electrical shock, not to mention medically sensitive risks caused by leaks. Leaks are indiscriminate of time, occurring when occupants are present or away.
Until recently the prevention of leaks and/or mitigation of leak damages have been very limited. The “Loss Prevention” programs of insurance companies have focused primarily on minimizing the underwriting of clients with a history of previous leak claims rather than providing any true measure of “Loss Prevention”.
It is known that existing water meters are capable of detecting and reporting water consumption, but these systems, which employ paddle wheels, turbines, or other such impellers, suffer from mechanical limitations which allow for small flow amounts to slip past the meter undetected.
In a preferred embodiment of the present invention, the leak detection system is a water flow monitor and alarm system for detecting water leaking from the pressurized pipes or fixtures in residential and commercial building structures. The sensor probes have no moving parts to wear out and can detect water flow as lithe as a few ounces of water per hour. If water flows continuously for a preset time without stopping, it triggers an alarm. It may also trigger other functions associated with the system such as a display change and valve control. The alarm function can be set to alert the homeowner or a surveillance company monitoring the premises. Integrated into the system are user guides and features to aid the homeowner or a professional in detecting a leak.
Such an alarm condition could indicate a faulty valve or a more serious condition known as a “slab leak”. An undetected slab leak (a broken pipe in or under a concrete slab floor) can cause extreme structural damage in excess of thousands of dollars, and render the property uninsurable from the resulting insurance claim.
In the preferred embodiment, two separate sensor probes are clamped directly onto the outside of a pipe or thermally conductive heat transfer medium between the fluid and the system to allow detection of all flow conditions. Not just water loss under the hot water heater or dishwasher or an icemaker like other point of leak detection competitive devices, but water loss for the entire structure. A comprehensive system may include moisture sensors together with the leak detection system. This will ensure both immediate and long-term protection of the structure and its contents and detect leaks from the pressurized supply side as well as the drain and waste systems, appliances, and water intrusion from the outside environment. Resource conservation and water cost savings are also promoted by detecting unknown water loss long before thousands of gallons escape down the drain or into the structure's foundation.
The preferred embodiment works by measuring the temperature at the upstream and downstream clamps. The downstream clamp contains both a temperature sensor and a heating element. The two temperature sensors form part of the sensing portion of a Wheatstone Bridge where the amount of heat energy added by the heating element to keep the bridge circuit in balance is proportional to the flow rate of fluid in the pipe.
In an alternative embodiment, a single temperature sensor and a separate heating element are clamped onto a pipe. The heating element is located a few inches downstream from the temperature sensor. The sensor and the heating element are both wrapped with insulation thereby isolating the sensor and heating element from ambient conditions and increasing the accuracy of the measurements and the sensitivity of the system. This embodiment works by measuring temperature before the heater is energized, then energizing the heater for a predetermined period of time. The temperature is continuously monitored to determine the amount of time for the heat energy added by the heater to propagate to the temperature sensor. That amount of time is used to determine the flow rate in the pipe. The longer the time for the heat energy to reach the sensor, the higher the flow rate is within the pipe. The shorter the time for the heat energy to reach the sensor, the lower the flow rate is within the pipe. After the propagation time is determined, the heater is deenergized to allow it and the sensor to return to ambient conditions so a new test can be performed.
The control panel is easy to use and attractive. Its display provides real-time system and flow status. The Panel will indicate an alarm condition; the flow level when the alarm occurred, and sound a built-in beeper, then if no action is taken it will activate an industrial quality motor-driven ball valve to shut off the water to the structure. The control panel will then display information to guide the homeowner through the process of detecting simple leaks such as a dripping faucet. The panel can also be used to select other operating modes or select other features of the leak detection system.
When the leak detection system is connected to an auto-dialer telephone device, it can alert anyone with a telephone that a problem exists. When connected to an electric water valve, which is the design for the initial product, it can shut-off the water automatically until the system is manually reset. Other devices may be connected to the leak detection system to coordinate moisture and over-pressure sensors and leak detection throughout the entire structure.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which reference characters refer to similar parts, and in which:
This invention relates to an electronic thermal monitor system intended to measure fluid flow within a conduit or pipe, by clamping directly to the outside of a pipe or onto a thermally conductive heat transfer medium between the fluid and the system. Referring to
In an exemplary embodiment, this invention is discussed in conjunction with a typical thin wall copper pipe section commonly found in commercial and residential plumbing systems that form the water supply line. Since copper is an excellent conductor of temperature, this meter infers the water temperature by measuring the outside skin temperature of the pipe section. Another embodiment is to measure fluid flow within a confined conduit whereby the thermally conductive transfer medium is embedded within the conduit and allows for unimpeded and low heat measurements of fluids such as gasoline, diesel oil, liquid slurries, as well as gases such as air or nitrogen.
The thermal conduction means in the exemplary embodiment are clamps which mount to the pipe and form not only a mechanical connection between the meter and the pipe, but a thermal connection as well. The clamps are designed to transfer heat to and from the meter and the water within the pipe. The pipe may be any shape to contain the fluid and allow a thermal conduction means to the fluid within.
In the exemplary embodiment there is one upstream temperature reference clamp that contains an integrated temperature sensing element, such as a thermistor, thermocouple, or resistance temperature detector (“RTD”), which reads the current temperature of the pipe and fluid within. A second sensor clamp, mounted downstream from the reference, also contains an integrated temperature sensing element and a resistive heater which transfers heat energy into the pipe and the water within. This clamp performs the actual flow rate measurement.
Referring to
While
Additionally,
Referring to
Referring to
If the temperature has been calibrated 258, then the system will check for the presence of a time delay 266. If the delay time value has not been reached, the system will return to step 256 to continue heating the RTD. If the delay time value has been reached 266, the system will add time to the accumulator and record flow 268. If the accumulator has not reached its maximum value 270, the system will return to step 256 where it will continue to heat the RTD. If the accumulator has reached its maximum value 270, the system will compare the calculated flow to the flow trip point 272. If the trip point has not been reached 272, the system will return to step 268 where it will add time to the accumulator and record flow. If the trip point has been reached 272, the system will activate functions such as an alarm, an indicator, and automatic valve closure 274. It should be appreciated by someone skilled in the art that many different functions may be controlled by the system and the functions listed above are not the exclusive functions of the system.
Now referring to
This alternative embodiment uses heat conduction, propagation, and time to determine if there is liquid flow within an enclosed metallic conduit 524.
In normal operation, this embodiment works in an intermittent operation. After a calibrated time has elapsed, the heater 518 becomes energized, which forces heat energy into the conduit 524. The controller 502 would read the temperature sensor 520 just prior to heater 518 activation, and stored that value for further calculations. Conducted heat from the metallic conduit 524 will readily propagate from the center of the heat source 518 and outward eventually reaching the temperature sensor 520. The amount of time it takes for the heat to propagate to the temperature sensor 520 is recorded in the controller 502 and is a direct function of the liquid flow 534 within the conduit 524. Long propagation times reflect large effective flow rates.
The heater power is removed after a predetermined “no-flow” condition timer expires. The controller 502 will continue to read the temperature sensor 520 to continually analyze the heat propagation and lock onto a value that represents the peak temperature attained. This value is also a direct function of the liquid flow 534 within the conduit 524. Higher peak temperatures represent low effective flow rates, as the heater 518 is simply creating a no flow “pocket” of liquid, with little to no convective forces to carry away the applied heat energy.
Finally, after a predetermined amount of time has elapsed, the controller 502 acquires one final reading from the temperature sensor 520 and compares it to the previously saved value before the heater 518 was activated. The ratio of the before and after temperature readings is also a direct function of the liquid flow 534 within the conduit 524. The closer the two values are, the greater the effective flow rate is within the conduit 524 as the flowing liquid 534 is restoring the ambient fluid temperature to nullify the effects of the previously added heat energy.
All of the calculated temperature and time variables are scored within an algorithm that normalizes the effective flow rate with respect to ambient temperature and conduit/heater 524/518 thermal conductivity. The calculated score determines the liquid flow 534 rate, then the controller 502 records that rate, powers down for a short period of time as determined by the Master Time value 526, and allows the heater 518 and temperature sensor 520 to return to ambient conditions through natural convection.
As the system continues to move through heating and cooling cycles, the running status is accumulated. If the flow rate over all the cycles has not provided a single “no-flow” score, the system will enter an alarm state where it will either activate a relay 514, create an audible alert 512, or do both. The alarm may be cancelled by stopping the fluid flow or by switching to another mode of operation 510, either HOME or AWAY, which effectively resets all timers and scoring status results.
The heater 518 and temperature sensor 520 must be properly affixed to the conduit 524 to ensure consistent results over a long period of time measured in years. The heater 518 is a flexible silicone band which can wrap around the conduit 524 and be held in place with a self adhesive vulcanizing wrapping tape specifically designed to seal out moisture and provide continuous pressure on the heater 518 ensuring optimal thermal conductivity over time. It is to be appreciated by someone skilled in the art that many heater 518 designs exist that will satisfy the requirements of the system. The temperature sensor 520 also requires the same treatment during installation to ensure that the conduit 524 temperature is properly reported. It is also imperative that the entire heater/sensor 518/520 section, and a few inches beyond, be enclosed in thermal insulation 516. This prevents ambient or environmental air currents from affecting the calibrated flow readings by heating or cooling effects that are not the direct result of the fluid flow 534 within the conduit 524.
Intermittent operation of the heater 518 is required to provide the extended “no-flow” time period with an opportunity equilibrate with ambient conditions. Otherwise, the heater 518 and temperature sensor 520 would create a localized “hot water heater” within the test section of the conduit 524. Therefore, this device may not be used to measure flow rate or flow total as do other technologies, such as Thermal Mass Flow Meters. While this system is currently described to operate through a closed section of copper tubing/pipe 524, it may also operate through plastic conduit provided that the test section has in-molded metal plates or “shoes” within. The heater 518 and temperature sensor 520 requires direct thermal conduction of the fluid within in order to perform the same operation of an all-metal design.
An AC/DC power supply 504 may be used since the heater 518 requires significant energy output (>12 Watts) to perform its tests accurately and reliably. Alarm panel interfacing may also be expanded to include both wired and/or wireless operation for command/control facilities.
Installation and Calibration
This alternative embodiment of the present invention requires about 8″-10″ of clean copper pipe 524 to properly assemble the test section. The section of water pipe 524 selected should pass all incoming supply to the entire structure and should not be located outside where protecting the heater 518 and temperature sensor 520 elements would be impossible.
Once the heater 518 and temperature sensor 520 have been properly installed and the wiring and power have been completed, the device must be calibrated to the particular installation. Before activating the calibration function, all water flow in the test section must be halted.
The calibration function can be activated by an on-board switch, or wireless command, or a unique mode selection. During calibration, the unit will activate the heater 518. When the temperature sensor 520 records a temperature increase of 4° F.-10° F., the time which passes during this test is recorded by the controller 502 and stored for all future heater timing variables. Calibration finishes automatically and the system will be able to alert the installer if there is a problem or start performing normal operations if all is well.
This invention is a fluid flow meter with many applications and embodiments incorporating a unique method of flow measurement utilizing noninvasive thermal anemometry. The use of a Wheatstone Bridge greatly increases the system sensitivity and accuracy allowing it to be used in many applications.
While there have been shown what are presently considered to be preferred embodiments of the present invention, it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope and spirit of the invention.
The application is a patent application and claims priority to U.S. Provisional Patent Application Ser. No. 61/429,242 filed Jan. 3, 2011 entitled “Noninvasive Thermal Dispersion Flow Meter with Chronometric Monitor for Fluid Leak Detection”, and currently co-pending, and to U.S. Provisional Patent Application Ser. No. 61/542,793 filed on Oct. 3, 2011 entitled “Direct Pipe Clamp on Flow Meter Leak Detector”, and currently co-pending.
Number | Name | Date | Kind |
---|---|---|---|
3874222 | Ladd et al. | Apr 1975 | A |
4036053 | Jenkins | Jul 1977 | A |
4180088 | Mallett | Dec 1979 | A |
4255968 | Harpster | Mar 1981 | A |
4264961 | Nishimura et al. | Apr 1981 | A |
4319483 | Durham et al. | Mar 1982 | A |
4335605 | Boyd | Jun 1982 | A |
4336708 | Hobgood et al. | Jun 1982 | A |
4450719 | Nishimura et al. | May 1984 | A |
4480467 | Harter et al. | Nov 1984 | A |
4487213 | Gates et al. | Dec 1984 | A |
4518955 | Meyer | May 1985 | A |
4529974 | Tanaka et al. | Jul 1985 | A |
4589435 | Aldrich | May 1986 | A |
4648271 | Woolf | Mar 1987 | A |
4658855 | Doyle | Apr 1987 | A |
4911200 | Ben-Arie | Mar 1990 | A |
4926901 | Waltenburg | May 1990 | A |
5000224 | Olson, Jr. et al. | Mar 1991 | A |
5004014 | Bender | Apr 1991 | A |
5056554 | White | Oct 1991 | A |
5062446 | Anderson | Nov 1991 | A |
5090436 | Hoch, Jr. et al. | Feb 1992 | A |
5119674 | Nielsen | Jun 1992 | A |
5177696 | Bonne | Jan 1993 | A |
5228329 | Dennison | Jul 1993 | A |
5267587 | Brown | Dec 1993 | A |
5299594 | Lord et al. | Apr 1994 | A |
5363689 | Hoffmann et al. | Nov 1994 | A |
5373737 | Hwang | Dec 1994 | A |
5461910 | Hodson et al. | Oct 1995 | A |
5568825 | Faulk | Oct 1996 | A |
5637789 | Lawson | Jun 1997 | A |
5764539 | Rani | Jun 1998 | A |
5771920 | Jewett et al. | Jun 1998 | A |
5794653 | Desmet et al. | Aug 1998 | A |
5966076 | Cantrell et al. | Oct 1999 | A |
6085588 | Khadkikar et al. | Jul 2000 | A |
6147613 | Doumit et al. | Nov 2000 | A |
6209576 | Davis | Apr 2001 | B1 |
6310555 | Stern et al. | Oct 2001 | B1 |
6370950 | Lammerink | Apr 2002 | B1 |
6374846 | Desmet et al. | Apr 2002 | B1 |
6397673 | Kanke et al. | Jun 2002 | B1 |
6435023 | Kobayashi et al. | Aug 2002 | B1 |
6474155 | Berkcan et al. | Nov 2002 | B1 |
6481265 | Weber et al. | Nov 2002 | B1 |
6536273 | Schrittenlacher | Mar 2003 | B2 |
6568416 | Tucker et al. | May 2003 | B2 |
6628202 | McQueen et al. | Sep 2003 | B2 |
6696961 | Uhler et al. | Feb 2004 | B2 |
6725878 | Nawa et al. | Apr 2004 | B1 |
6769299 | Forster et al. | Aug 2004 | B2 |
6804990 | Weber et al. | Oct 2004 | B2 |
6860288 | Uhler et al. | Mar 2005 | B2 |
7000464 | McMillan et al. | Feb 2006 | B2 |
7054767 | Eldridge | May 2006 | B2 |
7278309 | Dmytriw et al. | Oct 2007 | B2 |
7283913 | Garnaes | Oct 2007 | B2 |
7308824 | Trescott et al. | Dec 2007 | B2 |
7536908 | Wang et al. | May 2009 | B2 |
7565836 | Sukegawa et al. | Jul 2009 | B2 |
7613582 | Kanke | Nov 2009 | B2 |
7752909 | Kamiunten et al. | Jul 2010 | B2 |
8342018 | Huang et al. | Jan 2013 | B2 |
20040225458 | Sherikar | Nov 2004 | A1 |
20050092078 | Ellis et al. | May 2005 | A1 |
20050109121 | Kanke et al. | May 2005 | A1 |
20060108003 | Bradford et al. | May 2006 | A1 |
20070017285 | Wang et al. | Jan 2007 | A1 |
20070169541 | Norbeck et al. | Jul 2007 | A1 |
20070204688 | Dmytriw et al. | Sep 2007 | A1 |
20080236273 | Dmytriw et al. | Oct 2008 | A1 |
20080271525 | Wang et al. | Nov 2008 | A1 |
20090025473 | Imai et al. | Jan 2009 | A1 |
20090084177 | Ao et al. | Apr 2009 | A1 |
20090164163 | Wang et al. | Jun 2009 | A1 |
20100170335 | Nakano et al. | Jul 2010 | A1 |
20100305465 | Ricks et al. | Dec 2010 | A1 |
20110023597 | Nakano et al. | Feb 2011 | A1 |
20110030468 | Chen et al. | Feb 2011 | A1 |
20110247696 | Zolock et al. | Oct 2011 | A1 |
20110296910 | Lopez et al. | Dec 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20120180877 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61429242 | Jan 2011 | US | |
61542793 | Oct 2011 | US |