This invention relates to optical measurement of total hemoglobin, and more particularly to in vivo non-invasive measurement of total hemoglobin.
In vivo non-invasive optical measurement of total hemoglobin (or closely-related hematocrit) is complicated by the need for light to travel through the skin before passing into the vasculature, where the desired measurement is to be made. Proposed methods of overcoming this obstacle have taken an approach in a manner analogous to pulse oximetry: by measurement of the photoplethysmograph due to arterial pulsation. In pulse oximetry, the amplitude of the plethysmograph at two different wavelengths (e.g., 660 nm and 890 nm) is ratioed and related to arterial oxygen saturation. Proposed methods directed toward non-invasive total hemoglobin measurement have suggested extension of this idea to include wavelengths at which total hemoglobin (e.g., 805 nm) and water (e.g., 1310 nm) absorption can be estimated. In this way, ideally, a ratio of plethysmographic amplitudes at two wavelengths could be related to the total hemoglobin concentration in the blood. The feasibility of this approach has been demonstrated using whole blood in vitro. However, in vivo studies have so been far less accurate and not reliable. One likely reason for the poor performance of plethysmographic total hemoglobin estimation in vivo is due to the fact that water, unlike hemoglobin, is not located primarily within the vasculature, but is instead present in high concentration in all living tissues and fluids. As a result, the plethysmographic signal at water-absorbing wavelengths is probably indicative of the difference between the water within the vasculature and that in the surrounding tissues.
This Summary is provided to introduce in a simplified form a selection of concepts that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The present approach overcomes the limitations described above by depth-targeting the optical measurement within a blood vessel by using Optical Coherence Tomography (“OCT”). This depth-targeting optical measurement technique is referred to as Spectral Optical Coherence Tomography (“SOCT”). OCT achieves depth resolution by the use of optical interferometry. As the path length of the reference arm of the interferometer is varied, the penetration depth at which maximum interference occurs (zero phase difference) in the sample is correspondingly increased. OCT is capable of achieving two μm depth resolution at penetrations depths up to several mm. However, such high depth resolution requires the use of a very broad spectral source (100 nm or more). In the present approach, lower depth resolution may be tolerated (in the range of 10 μm to 100 μm), so that measurements may be made within more narrow spectral regions (in the range of 1 to 50 nm) in multiple regions of the visible and near infrared spectrum. By comparing the OCT signal at these different spectral positions, the absorption due to tissue and blood analytes may be measured. The light source emits light centered on three different wavelengths enabling the measurement of total hemoglobin and water concentrations within the blood vessel, independent of the oxygen saturation of the hemoglobin.
Optical coherence tomography is an interferometric, non-invasive optical tomographic imaging technique offering millimeter penetration (approximately two to three mm in tissue) with micrometer-scale axial and lateral resolution. OCT is capable of achieving sub-micrometer axial resolution due to wide bandwidth light sources (sources emitting wavelengths over a ˜100 nm range).
OCT is based on low-coherence interferometry. In conventional interferometry with long coherence length (laser interferometry), interference of light occurs over a distance of meters. In OCT, this interference is shortened to a distance of micrometers, thanks to the use of broadband light sources (sources that can emit light over a broad range of frequencies). Light with broad bandwidths can be generated by using super luminescent diodes (super-bright LEDs) or lasers with extremely short pulses (femto-second lasers). White light is also a broadband source with lower powers.
Referring now to the Figures, in which like reference numerals refer to structurally and/or functionally similar elements thereof,
In one embodiment of taking SOCT measurements, Light Source 102 is configured for three spectral regions centered at 805 nm, 980 nm, and 1050 nm wavelengths. The sensor of Sample Arm 110 is positioned over a superficial vascular structure, such as Skin 122 with Vein 124. Reference Arm 108 of Interferometer 100 is free to move back and forth in the direction indicated by Arrow 126 and is positioned so as to achieve maximum interference with Sample Arm 110 of Interferometer 100 when the sample beam is located in the interior of the vascular structure (Vein 124). At this depth, measurements at the three wavelengths may be combined to determine the relative concentrations of total hemoglobin and water within the vessel, independent of the oxygen saturation of the hemoglobin.
The blood absorption coefficient at 805 nm only depends on hematocrit. The blood absorption coefficient at 980 nm and 1050 nm depends on hematocrit and water. Therefore, in addition to determining the relative concentration of total hemoglobin and water within the vessel, the oxygen saturation can also be determined from the measurements at the three wavelengths.
The present invention takes advantage of the known attenuation of the OCT measurement as a function of sample depth. In order to compensate for this attenuation, multiple SOCT measurements may be compared at more than one depth. For example, by comparing SOCT measurements at two or more depths within the same vessel, the effect of the intervening tissue may be largely removed by subtracting the two (or more) signals from each other.
The multiple measurements would preferably be made within a relatively large vessel (>50 μm), under relatively low flow (such as in a vein), in order to maintain the homogeneity of the blood. In small vessels under high flow, red blood cells tend to be more concentrated at the center of the vessel. Another benefit in measuring blood within a large vessel is that it will likely be more reflective of the systemic total hemoglobin. This is due to the fact that total hemoglobin in the capillaries is typically significantly lower and less variant to hemoglobin variations than in larger vessels.
In step 208, with the sensor in the same position, the reference arm of the interferometer is moved to a second position so that the sample beam is located in the interior of the vascular structure at a second depth to achieve maximum interference with the sample arm, such as depth D2 and position P2 shown in
Having described the present invention, it will be understood by those skilled in the art that many changes in construction and circuitry and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the present invention. It will further be understood that the steps described and claimed herein are not limited in time to the order disclosed.
This claims the benefit of U.S. Provisional Patent Application No. 61/040,815, filed Mar. 31, 2008, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61040815 | Mar 2008 | US |