The present invention relates to an air-launched reusable carrier rocket mounted on a mid-line pylon of a supersonic fighter or bomber fuselage, and more particularly to a non-legged reusable air-launched carrier rocket of which the rocket head can be advanced to the front of the front undercarriage of the carrier aircraft.
By using an active or retired supersonic fighter or bomber, the satellite carrier system is realized by mounting an air-launched carrier rocket on its mid-line pylon, without the need to separately develop a carrier aircraft, which is low in cost. The carrier rocket is separated supersonic at high altitude, which is high in performance. However, for the existing air-launched carrier rocket mounted on the mid-line pylon of the supersonic fighter or bomber fuselage, the head of the rocket body must be arranged behind the front undercarriage of the carrier aircraft, otherwise the front undercarriage of the carrier aircraft cannot be put down and thus the carrier aircraft could not normally take off. Such an air-launched carrier rocket is short in length, and has a small fuel load and a low carrying capacity. The reusable carrier rocket of the existing Roton configuration that is not disclosed in any corresponding patent adopts a long round table-shaped rocket body tapering upwards. Since the bottom of the rocket body is wide, the legs that are deployed when landing can be relatively small. However, this long round table shape is obviously not available for air-launched carrier rockets. If cylindrical rocket is otherwise adopted, in order to stand firm during landing, it is necessary to ensure that the expanded legs have a large width, only long and large legs can be used. But such legs have a lot of weight resistance. The load referred to in the following text means the satellite or satellite/upper stage combination. In addition, the Roton rocket is single-staged, and the load can be placed at the rear of the rocket. It is deployed into the track through a large-sized hatch. For a cylindrical air-launched rocket body, the diameter of the rear part is extremely limited and is not much larger than the diameter of the load and thus a large-sized hatch cannot be opened, so the load must be placed at the front end of the rocket. A problem arises that a load adapter tail would interfere with the rotor paddle pivot.
The first technical problem to be solved by the present invention is to prevent an extremely long rocket body from interfering with the retraction of the front undercarriage of the carrier aircraft. In order to solve the above technical problem, the rocket body described in the present invention has two elongated openings opposite to each other in the vertical direction positioned just below a front undercarriage of the carrier aircraft. A cover of the upper opening is opened downwards to the rocket body, and a cover of the lower opening is opened upwards to the rocket body. When the carrier aircraft with the rocket body is parking on the ground and is in normal take-off run, the upper cover and the lower cover are opened, so that the front undercarriage can be normally lowered. A vertical passage formed by the upper opening and the lower opening is supported on the ground. After the take-off run of the carrier aircraft, subsequent to retracting of the front undercarriage of the carrier aircraft, the upper cover is closed upwards and the lower cover is closed downwards, so that an outer surface of the rocket is streamliner and forms a cavity in the rocket body with rear walls of a storage tank of the rocket body. Then a liquid tank in the carrier body supplements fuel or oxidant or elemental propellant into the cavity formed in the rocket body by a pipe on a hanger through an exit on a rear wall of the storage tank of the rocket body, and then the full rocket body is placed to perform a carrying task. The air-launched carrier rocket of the present invention can be long and bulky, and has high carrying capacity. A large-volume air-launched carrier rocket can conditionally use a carrier rocket having an engine with higher specific impulse.
The second technical problem to be solved by the present invention is how to completely remove the legs. Because there is no leg, the bottom of the engine must be directly grounded, so it is impossible to use a bell-shaped nozzle that cannot be stressed. A plug nozzle must be used. To ensure that the plug nozzle is not damaged when it is dropped, a Stewart platform must be placed at the drop point to offer a cushioning effect otherwise provided by the legs. The shape of the bottom surface of the plug nozzle must match the surface of the stewart platform. If the bottom surface of the plug nozzle is a convex spherical surface, the surface of the stewart platform must be a concave spherical surface or both are planar surfaces. When the rocket returning from high altitude is briefly suspended above the Stewart platform under the action of the rotor, the Stewart platform is aligned with and touched the bottom surface of the plug nozzle under the control of the internal six-degree-of-freedom software to complete the task of bearing its weight. At the same time, the Stewart platform must have equipment that contacts the middle of the rocket body and holds the rocket body to prevent it from falling over. There are many devices that can play such a role, and they are all in the public knowledge category, and therefore do not belong to the content of the present application. For example, said equipment may be 4 movable robot arms arranged circumferentially, and so on.
A third technical problem to be solved by the present invention is how to prevent the tail of the load adapter from interfering with the rotor paddle pivot. The rotor paddle pivot is located at the central axis of the rocket body, and 2 or 4 or 6 short branch arms radially protrude from the paddle pivot to the edge of a circumferential section of the rocket body, and then 2 or 4 or 6 rotors are hinged at the end by flapping hinge. Therefore, the tail of the round table-shaped load adapter must have stack-shaped concave notches, and the number of the notches is equal to the number of rotors. Thus, the short branch arms can extend through the concave notches to the circumferential edge. When the load is separated from the load adapter, the load adapter and the rocket are also separated, and the rotor is free to rotate.
The present invention will be further described in detail below in conjunction with the drawings and specific embodiments. Since the rotor of the rocket head is not what is claimed in the present invention and in order to avoid unnecessary obscuration and to keep it simple, the rotors are not shown in
The air-launched carrier rocket shown in
Of course, the air-launched carrier rocket of which the length is not limited by the front undercarriage of the carrier body can also adopt other structures, such as a soft oil tank, in which the lining is removed, and which completely depends on the sealing strip at the edges of the upper cover and lower cover to achieve the sealing of the storage tank. Such variations also fall within the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201610413162.7 | Jun 2016 | CN | national |
This application is a continuation of International Application No. PCT/CN2017/087009 with a filing date of Jun. 2, 2017, designating the United States, now pending, and further claims priority to Chinese Application No. 201610413162.7 with a filing date of Jun. 14, 2016. The contents of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4802639 | Hardy | Feb 1989 | A |
5402965 | Cervisi et al. | Apr 1995 | A |
5667167 | Kistler | Sep 1997 | A |
6454216 | Kiselev et al. | Sep 2002 | B1 |
6616092 | Barnes et al. | Sep 2003 | B1 |
7753315 | Troy | Jul 2010 | B2 |
8403254 | Ustinov | Mar 2013 | B2 |
10106273 | Burgener | Oct 2018 | B2 |
Number | Date | Country |
---|---|---|
101995193 | Mar 2011 | CN |
103025611 | Apr 2013 | CN |
103224028 | Jul 2013 | CN |
106043705 | Oct 2016 | CN |
205819572 | Dec 2016 | CN |
0778200 | Jun 1997 | EP |
Number | Date | Country | |
---|---|---|---|
20190039753 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2017/087009 | Jun 2017 | US |
Child | 16152449 | US |