The invention relates generally to electrostatic mirror arrays used in optical switches and optical networks. More particularly, the invention relates to a method of stabilizing a position control system for an electrostatic mirror.
Electrostatic micro-mirror arrays are becoming more attractive for use in optical communication networks. For example, they can be used in optical switching to actively route optical signals between input and output channels. The overall performance of the optical switch is determined, in part, by the performance of the micro-mirror arrays. At large deflection angles, an array mirror can be unstable, that is, the mirrors cannot be accurately maintained at the desired angle of deflection.
Mirror instabilities are typically reduced using a sensor based feedback system. For two-axis systems, substantial interactions between the rotation axes often occur. Consequently, when using a linear or quasi-linear control system, instabilities are apparent if the mirror is deflected through a large angle on each axis. Thus the mirror is restricted to applications requiring only a limited range of rotation. For systems utilizing such mirrors, other system design parameters can be adjusted to accommodate the limited range. Unfortunately, the result is often a larger package size or reduced system performance.
In one aspect, the invention features a method for controlling the angular position of a mirror. The angular position of the mirror is sensed and a first linear control signal is generated in response to the angular position. A first non-linear control signal is generated to control the angular position of the mirror. The first non-linear control signal is responsive to the linear control signal.
In another aspect, the invention features a system for controlling the angular position of a mirror. The system includes a linear control module for generating a linear control signal in response to the angular position. The system also includes a non-linear mapping module that converts the linear control signal into a non-linear control signal for angularly positioning the mirror. In one embodiment, the system includes a position sensor for determining the angular position of the mirror about at least one axis. In another embodiment, the system includes a coefficient adaptation module in communication with the non-linear mapping module.
In another aspect, the invention features a method for adapting a non-linear mirror control system for a mirror. A linear control value is determined for each of three angular positions. Quadratic coefficients are determined in response to the three angular positions and the three linear control values. An extrapolated linear control value based on the quadratic coefficient is determined and an adapted coefficient is calculated in response to the extrapolated linear control value.
The above and further advantages of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
Various feedback systems are used to control two-axis electrostatic mirrors. These feedback systems, however, are unable to eliminate mirror instabilities at large deflection angles due to interactions, or coupling, between the two axes of rotation. The present invention relates to a method and system for controlling mirrors that reduces or substantially eliminates this instability.
In brief overview, the present invention provides for controlling the angular position of a mirror. Because of the inherent non-linearities exhibited by the mirror at large deflection angles, linear control methods limit the useful angular range of operation. According to the present invention, a control parameter which linearizes a control system is determined. Conventional control modules implementing linear control methods, such as proportional-integral-derivative (PID) control or state space control are implemented with the control parameter. However, instead of directly controlling the mirror with the output signal provided by the linear control module, the output signal is used to determine a non-linear control signal. The non-linear control signal is then applied directly to the mirror system to control the angular position of the mirror. As a result, the mirror can be operated over a wider range of deflection angles.
Referring to
The angular position of the mirror 10 is determined according to the differences between the voltages of the electrode plates. For example, to position the mirror 10 at a new angle about the x-axis 18, the voltage applied to the two electrodes on one side of the x-axis 18 is increased above a bias voltage by a fixed value and the voltage applied to the electrodes on the other side of the x-axis 18 is decreased by approximately the same value. Consequently, the spatial variation in the electric field established between the electrodes and the mirror 10 causes the mirror 10 to rotate about the x-axis 18 to the new position. Similarly, to rotate the mirror 10 about the y-axis 26, the voltage applied to the electrodes on one side of the y-axis 26 is increased by a certain value and the voltage applied to the electrodes on the opposite side of the y-axis is decreased by the same value.
The dynamics of the electrostatic mirror 10 are described by the following equations:
in which x1 and x2 are the x-axis radian position and x-axis angular velocity, respectively, and y1 and y2 are the y-axis radian position and y-axis angular velocity, respectively. Jx and Jy represent the mirror moments of inertia about the x-axis 18 and y-axis 26, respectively, and kvx, ksx, kvy and ksy represent the velocity and position force constants for the x-axis 18 and y-axis 26, respectively, ux and uy are the control voltage signals applied to the electrodes to position the mirror 10 about the x-axis 18 and y-axis 26, respectively. The function fx(x1, y1, ux) represents the electrostatic torque for the mirror 10 about the x-axis 18 and includes the coupling effect from the y-axis 26 to the x-axis 18. The function fy(y1, uy) represents the electrostatic torque for the mirror 10 about the y-axis 26 and does not include any coupling effect from the x-axis 18 because this interaction is generally small and therefore is ignored.
The angle θx axis represents the angular position of the mirror 10 about the x-axis 18 in degrees and the voltage axis represents the voltage of the control signal ux used to drive the mirror in rotation about the x-axis 18. The torque axis represents the torque applied to the mirror 10 to maintain its angular position θx. As evident by the electrostatic torque “surface” 28, the torque increases rapidly in a non-linear manner beyond approximately ±2°.
Prior art control methods implementing linear systems with constant gains are stable only in the region in which the torque relationship is substantially planar. Consequently, for the illustrated relationship, the range of rotation for each axis for such prior art control systems is typically limited to approximately ±2°.
The response of the mirror 10 to the non-linear control signal ux (or uy) depends in part on the separation of the mirror 10 from its driving electrodes and the residual tilt angle defined between the mirror 10 and the underlying substrate. For micro-mirror arrays, structural variations in the individual mirrors resulting from the fabrication process are common, therefore, it is desirable to adapt, or tune, each mirror independently. The adaptation method of the present invention accounts for the variances in each mirror to thereby extend the rotation range of each mirror beyond what is generally achievable by treating all the mirrors identically. Moreover, because the response of each mirror is typically dependent on the polarity (i.e., sign) of the rotation about each axis, it is advantageous to apply the adaptation method to each angular quadrant of operation for each mirror.
For simplicity, the nonlinear control system and method described below are generally described with respect to the x-axis 18. It should be understood by those of ordinary skill that the principles of the present invention also apply to rotation about the y-axis 26.
Referring again to
in which T is the torque on the mirror 10, Kt is a proportionality constant, V is the mirror bias voltage and u is the control signal voltage which is applied in opposite polarity to the pairs of electrode plates. Variables x and y are the angular positions in radians about the x-axis 18 and y-axis 26, respectively, do is the gap, or separation, between the electrodes and the mirror 10 when the voltage control signal u is zero. Lx and Ly are the influence coefficients that describe how the gap do varies when the mirror 10 is rotated about the x-axis 18 and y-axis 26, respectively. In the illustrated embodiment, the influence coefficients Lx and Ly are approximately 2do/L and 2do/W, respectively where L is the length of the mirror 10 along the y-axis 26 and W is the length of the mirror 10 along the x-axis 18. The mirror system dynamics are described by the following non-linear equation using equations (1a through 1d) and equation (2):
in which {umlaut over (x)} and {dot over (x)} are the angular acceleration and angular velocity, respectively, about the x-axis 18. The mirror system described by equation (3) is “input-linearized” using the following substitution:
in which ξ is a linear control variable in the linearized input space that is proportional to the computed torque and kg is a proportional gain constant. By substitution, equation (3) can now be expressed as a linear equation in the linearized input space as:
Thus, the mapping of the control variable ξ to the angular position x (or y) of the mirror 10 is linear. The linear control variable ξ is calculated using any linear systems technique. For example, the linear control module (i.e., the system controller) can implement methods such as PID, state estimation or discrete sliding mode control to generate the linear control variable ξ. In an exemplary embodiment using PID, the linear control module receives an error signal ε that represents the difference between a target angle value and an actual sensed angle value x (or y). Thus, ξ includes a component that is proportional to the error signal ε, a component that is proportional to the derivative of the error signal ε and a component that is proportional to the integral of the error signal ε.
The output control voltage u provided to the system for stable operation is determined from the following normalized equation derived from equations (3) and (5)
in which the coefficients kx and kxy are the influence coefficients Le and Ly described above divided by the gap do. The control voltage u is calculated each time the mirror position is determined (i.e., sampled) and used to maintain the desired angular position until the next sampling is completed.
The control system 30 also includes a linear control module 54 in communication with the differencing element 50, a non-linear mapping module 58 in communication with the ADCs 42, 46 and the linear control module 54, an adaptation module 62 in communication with the non-linear mapping module 58, and a digital-to-analog converter (DAC) 66 in communication with the non-linear mapping module 58 and the mirror 10′. A flowchart representation for a method of controlling the angular position of the mirror 10′ using the control system 30 of
Referring to both
The linear control module 34 generates (step 78) a linear control signal ξ having a value responsive to the difference signal ε. The non-linear mapping module 38 then determines (step 82) the appropriate value of the non-linear control signal u according to equation (6). In one embodiment, the non-linear mapping module 38 is a digital signal processor (DSP). Coefficients kx and ky corresponding to the given mirror 10 are provided by the adaptation module 62 to the non-linear mapping module 58. The function of the adaptation module 62 is described in more detail below. The non-linear control signal u is converted to an analog voltage signal by the DAC 66 and applied (i.e., added or subtracted) (step 86) to the bias voltage of the electrodes.
This process of sensing angular position, generating the difference signal ε, generating the linear control signal ξ and determining the non-linear control signal u is repeated each time the mirror angular position is sampled. The sampling frequency is typically determined according to the specific requirements of the application employing the mirror system.
In one embodiment, the control voltage u is determined for each sample period by calculating the following variables:
g1=(1−kx·x−kxy·|x·y|)2
g2=−(1+kx·x−kxy·|x·y|)2
c0=V2·(g1+g2)−ξ·g1·g2
c1=2·V(g1+g2)
c2=(g1+g2) (7a)
The control voltage u is then determined by solving the following equation:
co+c1·u+c2·u2=0 (7b)
As previously described, the performance of individual mirrors 10 in a micro-mirror array can differ due to variations in the mirror structures. For example, the separation d0 of each mirror 10 from the substrate typically varies slightly between mirrors, and particularly between micro-mirror arrays. Furthermore, the coefficients kx, kxy and ky vary at large angles because the actual gap between the mirror 10 and the substrate becomes small compared to do. In addition, any offset tilt for mirrors at rest and/or variations in the sensitivity of the angular position sensors 34, 38 affect kx, kxy and ky. If not addressed, these variations have a significant impact on the stability of the mirror system 30 and, therefore, the control parameters. In order to expand the useful range of angular motion, the coefficients kx, kxy and ky are adaptively determined.
Referring to
The adaptation procedure for the coefficient kx includes determining the initial control signal ξ for each of three angular positions: x=0, x=θ1 and x=θ2 as shown by line 98 in
a0a1·x+a2·x2=ξ (8)
Because a linear dependence is expected, the coefficients a0 and a1 resulting from the fit to equation (8) are then used to extrapolate the value of ξ at x=θ2 from the linear relationship ξ0=a0+a1 θ2. While the mirror is rotated to a position at x=θ2, the coefficient kx is adapted as follows:
in which σ is the adaptation parameter used in the relaxation. Thus, as the mirror is driven from x=0 to x=θ2, the value of the coefficient kx (i.e., kx(i+1)) is repeatedly calculated from a previously calculated value (i.e., kx(i)) and the current control parameter value ξ using equation (9). The adaptation of kx continues until the relationship between the control parameter and angle x is sufficiently linear. In one embodiment, the adaptation parameter σ is a fixed design constant and the calculation is repeated until a predetermined number of iterations is reached. In another embodiment, calculations continue until the difference kx(i+1)−kx(i) is less than a predetermined error value. The coefficient ky is adapted in the same manner as the adaptation of the coefficient kx. An example adaptation of coefficient kx and coefficient ky is shown in
To adapt the coefficient kxy, the value of the control parameter ξ is determined at (x=θ2, y=0). The mirror is then positioned at (x=θ2, y=θ2) (See line 102 of
in the same manner as described for the determination of the coefficient kx above. An example adaptation of coefficient kxy is shown in
The actual measurement of kx and ky can be interpreted as providing a more accurate value of the estimated gap do. Because the torque and loop servo gain is proportional to (1/do)2, the adapted values of the coefficients kx and ky can be used to adapt the loop gain of the control system for a given mirror 10. In particular, the loop gain can be adapted as follows using the “measured values” rather than the design values:
in which kx
In some applications, it is desirable to switch the various constants of derivative and integral feedback used in the mirror servo system 30. For example, one set of constants is optimized to achieve the minimum switching time during repositioning of the mirror 10. A different set of constants is preferred when the mirror 10 has reached its equilibrium position and in a tracking or lock mode. If parasitic capacitive coupling exists between the mirror 10 and its adjacent electrodes, it is often advantageous to select constants for the linear control module 54 (
While the invention has been shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the following claims. The method and apparatus of the present invention apply to both single mirror and multi-mirror systems. In addition, the method of the invention can be applied to any type of mirror system having a non-linear response to an applied control signal.
This application claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/368,212, filed Mar. 27, 2002, now abandoned, titled “Non Linear Technique for Large Angle Micro-Mirror Control”, the entirety of which provisional application is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5835251 | Toda et al. | Nov 1998 | A |
6396976 | Little et al. | May 2002 | B1 |
6480645 | Peale et al. | Nov 2002 | B1 |
6714338 | Oettinger et al. | Mar 2004 | B2 |
20030094914 | Yanagita et al. | May 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030185496 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60368212 | Mar 2002 | US |