The present disclosure relates to piezoelectric devices, and more particularly to a nonlinear piezoelectric generator that generates electrical power from a mechanical input.
Piezoelectric devices are presently being employed in greater numbers of applications and in a wide ranging area of technologies. Piezoelectric devices make use of one or more piezoelectric ceramic wafers that are adapted to bow or deform in response to an electric current applied to the wafer. Such piezoelectric wafers also produce an electrical output when they are flexed or deformed from an initial, non-flexed configuration. Thus, piezoelectric wafers are especially useful in applications involving actuators and vibration energy harvesting apparatuses. The following U.S. patents and applications involve various implementations of piezoelectric materials, and are each hereby incorporated by reference into the present application: U.S. Pat. No. 6,858,970 and U.S. Ser. No. 10/909,784, filed Jul. 30, 2004.
Another device which has only recently achieved practicality is a Stirling engine. Stirling engines have existed in various forms for many years, however, it has been recent breakthroughs in the design of engine chamber seals that has made these devices practical. A Stirling engine utilizes temperature gradients to convert thermal energy into mechanical energy. Typically, the Stirling engine includes one or more pistons that are driven in a reciprocating fashion by converting thermal energy into mechanical energy. Recently, Stirling engines have shown promise as a low cost, high efficiency solar powered generator for U.S. power grid and spacecraft electric power generation systems. The ability of the Stirling engine to meet or exceed the performance of concentrated photovoltaics has been recently recognized by engineers and researchers interested in exploring alternative power generation systems for use in spacecraft.
One drawback with a typical Stirling engine is that the mechanical energy is typically converted to electrical energy using a very large AC electromagnetic generator. A large electromagnetic generator, however, can be a serious drawback for spacecraft applications, where weight is an important consideration.
Thus, it would be highly desirable to provide some means for generating electric power from a mechanical input device, for example, from one or more pistons of a Stirling engine. It would further be highly desirable if such a device formed a small, lightweight, and highly efficient apparatus for converting mechanical energy to electrical power. Such a device would significantly enhance the utility of other components, such as Stirling engines. Such a device could enable a Stirling engine to be used in various power generating applications which, at the present time, are not feasible because of the size and weight of typical electromagnetic generators presently employed for use with Stirling engines in power generating applications.
In one aspect the present disclosure relates to a non-linear power generator system that may include: a flexible beam for receiving a mechanical input, the flexible beam being supported in a bowed configuration; an electrically responsive member supported adjacent one end of the flexible beam so as to be under a compressive force exerted by the flexible beam; and the flexible beam being adapted to move towards a flattened shape from the bowed shape in response to the mechanical input, to transmit the mechanical input to the electrically responsive member, to cause a compression of the electrically responsive member that results in an electrical output signal being generated by the electrically responsive member.
In another aspect the present disclosure relates to a non-linear, mechanical-to-electrical power generator that may include: a flexible beam secured at a first end to a first structure, and at a second end to a coupling assembly, and being held between the first structure and the coupling assembly in a compressed, non-linear orientation; an electrically responsive member supported adjacent the flexible beam and to a second structure; and the flexible beam adapted to receive a mechanical input force at a point along its length that flexes the flexible beam, and concurrently causes the electrically responsive member to be compressed and to generate an electrical output signal.
In another aspect the present disclosure relates to a method for generating electrical power from a mechanical input signal. The method may include: using a flexible beam secured under compression to assume a bowed orientation, to receive the mechanical input signal; using the flexible beam to transmit the mechanical input signal to an electrically responsive member; supporting the electrically responsive member such that the member experiences a compressive stress from the flexible beam when the flexible beam moves from the bowed orientation to a flattened orientation; and using the flexible beam to alternatively compress and decompress the electrically responsponsive member, in response to the mechanical signal, to generate electrical output signals from the electrically responsive member.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
Referring to
The apparatus 10 includes a flexible beam 16 having a first end 18 and a second end 20. An electrically responsive member 22 in one form comprises a piezoceramic stack (i.e., a unitary stack of piezoelectric wafers), and has a first end 24 and a second end 26. Alternatively, the electrically responsive member 22 may be formed by a magnetostrictive material. The use of a piezoceramic stack or magnetostrictive material for the electrically responsive member 22 are both viewed as being equally applicable for use with the apparatus 10. Accordingly, while the following description will reference the electrically responsive member as “piezoceramic stack 22”, it will be appreciated that a magnetostrictive material could readily be substituted in place of the piezoceramic material.
The flexible beam 16 may be formed from spring steel having a planar shape, as shown in
The flexible beam 16 and the piezoceramic stack 22 are also arranged such that their opposing free ends (i.e., ends 18, 20, 24 and 26) are all generally aligned along a common longitudinal axis extending through the piezoceramic stack 22. The Stirling engine 12 is preferably supported so that its piston 14 extends generally normal to the longitudinal axis extending through the piezoceramic stack 22. It will be appreciated that the stroke length of the piston 14 will be a factor that needs to be considered in determining the precise dimensions, and particularly the length, of the flexible beam 16.
With brief reference to
Referring now to
With reference specifically to
A significant advantage of the bowed configuration of the flexible beam 16 is that the flexible beam effectively operates as a “strain amplifier”. By this it is meant that a relatively small mechanical motion (i.e., short mechanical stroke) applied at the midpoint of the flexible beam 16 will cause the beam 16 to generate a significantly large compressive pressure on the piezoceramic stack 22. For example, the compressive pressure generated on the second end 26 of the piezoceramic stack 22 may be up to or greater than 100 times the compressive pressure that would otherwise be generated by a linear linkage applying a force to the second end 26 of the piezoceramic stack 22. Obviously, the degree of amplification achieved will depend on the stiffness of the flexible beam 16, the length of the beam 16 and other design criteria. The stiffness and length of the flexible beam 16 can be tailored to meet the needs of a particular application.
The change in length of the piezoceramic stack 22, as a result of a compressive pressure from the flexible beam 16, is represented by dimension 38 in
where “D” represents the distance separating a line bisecting the free ends of the flexible beam 16, and a line tangent to the midpoint of the beam 16 (
The “critical” force required to move the flexible beam 16 between its two stable positions described above may also vary to suit the needs of a specific application. The critical force is also sometimes referred to as the “critical buckling load”. In the exemplary embodiment being discussed, the critical force “Pcr” can be expressed by the formula:
where “E” is the elastic modulus of the material of the flexible beam 16;
The apparatus 10 can also be used in connection with a Stirling engine to form a “refrigerator”, by intermittently applying and removing an electric current to the piezoceramic stack 22 that causes intermittent bowing and unbowing of the stack 22. The apparatus 10 is also expected to find utility in other applications where an electrical power output signal is desired in response to linear movement of a mechanical member.
Referring to
The apparatus 100 is substantially similar to the apparatus 10, and includes an electrically responsive member 122 which is installed under compression by a bowed flexible beam 116, which itself is also installed under compression to assume a slightly bowed or buckled shape. Again, the electrically responsive member 122 may be formed by a piezoceramic stack or by magnetostrictive material. For convenience, component 122 will be referred to as the “piezoceramic stack”. The principal difference between apparatus 10 and apparatus 100 is that with apparatus 100, an electrical signal (e.g., a voltage) is alternately applied to and removed from the piezoceramic stack 122, which causes a corresponding alternating expansion (i.e., lengthening) and contraction (i.e., shortening lengthwise) of the stack 122. However, the flexible beam 116 in this embodiment does not flatten or move over center, as with the apparatus 10.
When the piezoceramic stack 122 lengthens, it urges coupling assembly 132 to move to the left, as indicated in
An advantageous feature of the apparatus 100 is that the piezoceramic stack 122 provides a maximum available force at the beginning of its lengthening stroke, where the apparatus provides maximum stroke multiplication. At the end of the piezo stack 122 motion where available force is minimum, the motion amplification is minimum resulting in the ability of the apparatus to transfer more energy to a spring-like load than would be possible if the motion multiplication has a linear relationship.
The following equation shows the relationship between piezoceramic stack 122 motion and beam 116 center motion:
where “D” is the distance separating a line bisecting the free ends of the beam 116 (
Referring to
While various embodiments and/or implementations have been described for the subject matter of the present disclosure, it will be appreciated that these are merely exemplary, and that other forms of transducers could be implemented from the teachings presented herein.
This application is a continuation of U.S. patent application Ser. No. 11/551,515 filed on Oct. 20, 2006.
Number | Name | Date | Kind |
---|---|---|---|
6858970 | Malkin et al. | Feb 2005 | B2 |
7388321 | Hattori et al. | Jun 2008 | B2 |
7436104 | Clingman et al. | Oct 2008 | B2 |
7439657 | Clingman et al. | Oct 2008 | B2 |
7521841 | Clingman et al. | Apr 2009 | B2 |
20080092354 | Clingman et al. | Apr 2008 | A1 |
20080100179 | Ruggeri et al. | May 2008 | A1 |
20080100180 | Clingman et al. | May 2008 | A1 |
20080150395 | Clingman et al. | Jun 2008 | A1 |
20080191584 | Malkin et al. | Aug 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080315722 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11551515 | Oct 2006 | US |
Child | 12203382 | US |