The source of the MOS transistor M501 is connected to a power source VDD, the drain thereof is connected to the emitter of the BJT transistor B501 (i.e., node Va5), and the gate thereof is connected to the output of the operation amplifier OP501 and the gates of the MOS transistors M502 and M503. The source of the MOS transistor M502 is connected to the power source VDD, the drain thereof is connected to the emitter of the BJT transistor B502 (i.e., node Vb5), and the gate thereof is connected to the output of the operation amplifier OP501 and the gates of the MOS transistors M501 and M503. The source of the MOS transistor M503 is connected to the power source VDD, the drain thereof is connected to the positive input terminal of the operation amplifier OP502 and one terminal of the resistor R504, and the gate thereof is connected to the output of the operation amplifier OP501 and the gates of the MOS transistors M501 and M502. The output of the operation amplifier OP501 is coupled to the gates of the MOS transistors M501˜M503. As the MOS transistors M501˜M503 have the same size, they generate the same current.
The positive input terminal of the operation amplifier OP501 is connected to the node Vb5, the negative input terminal thereof is connected to the node Va5, and the output terminal thereof is connected to the gates of the MOS transistors M501˜M503. The positive input terminal of the operation amplifier OP502 is connected to the drain of the MOS transistor M503 and the resistor R504, the negative input terminal thereof is coupled to the output terminal thereof, and the output terminal thereof is coupled to the reference voltage VBG5 via the resistor R505A. The positive input terminal of the operation amplifier OP502 is connected to the node Va5, the negative input terminal thereof is coupled to the output terminal thereof, and the output terminal thereof is coupled to the reference voltage VBG5 via the resistor R505B. Therefore, the voltage VNTC5 is equal to the VBE5A of the transistor B501. As known from
The emitter of the BJT transistor B501 is connected to the node Va5, and the collector and the base thereof are both grounded. The emitter of the BJT transistor B502 is connected to the node Vb5 via the resistor R506, and the collector and the base thereof are both grounded.
The resistor R504 is coupled between the drain of the MOS transistor M503 and the ground terminal. The resistors R505A and R505B function as a voltage divider circuit to divide VBG5 from the output voltages of the operation amplifiers OP502 and OP503. The resistors R505A and R505B have the same resistance. The resistor R506 is coupled between the node Vb5 and the emitter of the BJT transistor B502.
The source of the MOS transistor M504 is coupled to the power source VDD, the gate thereof is coupled to its drain and the gate of the MOS transistor M505, and the drain thereof is coupled to the drain of the MOS transistor M506. The source of the MOS transistor M505 is coupled to the power source VDD, the gate thereof is coupled to the gate and the drain of the MOS transistor M504, and the drain thereof is coupled to the emitter of the BJT transistor B503.
The source of the MOS transistor M506 is coupled to the negative input terminal of the operation amplifier OP504 and the resistor R503, the gate thereof is coupled to the output terminal of the operation amplifier OP504, and the drain thereof is coupled to the drain and the gate of the MOS transistor M504.
The positive input terminal of the operation amplifier OP504 is coupled to the reference voltage VBG5, the negative input terminal thereof is coupled to the source of the MOS transistor M506 and the resistor R503, and the output terminal thereof is coupled to the gate of the MOS transistor M506.
The emitter of the BJT transistor B503 is coupled to the drain of the MOS transistor M505 and the resistors R501 and R502, and the base and the collector thereof are both grounded.
The resistor R501 is coupled between the emitter of the BJT transistor B501 and the emitter of the BJT transistor B503. A current INL5 flows through the resistor R501, and the voltage drop across the resistor is VNL5. The resistor R502 is coupled between the node Vb5 and the emitter of the BJT transistor B503. The current INL5 also flows through the resistor R502, and the voltage drop across the resistor R502 is also VNL5. The resistors R501 and R502 are coupled to each other and have the same resistance. The resistor R503 is coupled between the source of the MOS transistor M506 and the ground terminal.
The output voltage of the operation amplifier OP501 adjusts the MOS transistors M501 and M503, such that Va5=Vb5, which further causes a voltage drop ΔVBE5 across the resistor R506. The voltage drop ΔVBE5 across the resistor R506 is represented by the following equation:
ΔVBE5=VT*ln(n) (8)
wherein n is the size ratio of the BJT transistor B502 to the BJT transistor B501 (n:1).
To facilitate the explanation, the current generated by the MOS transistors M501˜M503 is defined as IPTAT5+INL5 hereinafter, wherein IPTAT5 represents the current proportional to absolute temperature, and INL5 represents the non-linear dependent current.
As the output voltage of the MOS transistor M503 is IPTAT5+INL5, a voltage drop across occurs on the resistor R504 is R504*(IPTAT5+INL5)=VPTC5+VN5, wherein VPTC5 represents the voltage proportional to absolute temperature, and VNL5 represents the non-linear dependent voltage. Therefore, the positive input voltage of the operation amplifier OP502 is VPTC5+VNL5.
Moreover, as the positive input terminal voltage VNTC5 of the operation amplifier OP503 is equal to VBE5A, the following equation can be obtained through the operation of the operation amplifiers OP502 and OP503:
V
BG5=0.5*(VPTC5+VNTC5+VNL5) (9)
As the transistors B501 and B502 are biased by the PTAT current, α=1. Therefore, VBE5A and VBE5B can be represented by the following equation:
V
BE5A
=V
BE5B
=V
G0−(VG0−VBE0)*T/T0−(η−1)*VTln(T/T0) (10)
VBE5A and VBE5B are negative temperature coefficient dependent voltages. The non-linear voltage VNL5 still exists in equation 9, so a non-linearity compensation circuit 510 is used to estimate and compensate the non-linear VNL5 in this embodiment.
As shown in
V
BE5C
=V
G0−(VG0−VBE0)*T/T0−(η)*VTln(T/T0) (11)
Subtract equation (11) from equation (10), and the following equation can be obtained:
As known from equation (7), the non-linear term of the reference voltage is VTln(T/T0)=VNL5. To estimate the value of the non-linear voltage, in this embodiment, let the resistor R501 across between the emitter of the BJT transistor B501 and the emitter of the BJT transistor B503. Therefore, the voltage drop across the resistor R501 (and the resistor R502) is the non-linear voltage VNL5.
Therefore, the following equation is obtained by rearranging the equations described above,
The definition of η and VBE0 are as described above. By selecting appropriate resistance of R504 and R502, the (η−1) is made to be equal to or very close to the ratio of (R504/R502), thus the equation (13) can be simplified into the following equation.
As known from equation 14, after being compensated by the non-linearity compensation circuit 510, the non-linear effect of the reference voltage VBG5 is well compensated, and can be considered as almost temperature independent.
The non-linearity compensation circuit 510 generates the temperature independent current IBG5 by using the fed back reference voltage VBG5 that can be considered as temperature independent. In addition, the two resistors R501 and R502 in the non-linearity compensation circuit 510 are across the transistors B501/B502 (α=1, biased by the current proportional to absolute temperature) and the temperature independent transistor B503(α=0, biased by the temperature independent current), so as to estimate the non-linear voltage VNL5.
With the concept of
In
As known from the architectures shown in
To sum up, the non-linearity compensation circuit according to the present invention can improve the precision of the reference voltage. In addition, the circuit cost of the non-linearity compensation circuit is not high, thus it can be widely applied.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.