Non-magnetic alloy forgings

Information

  • Patent Grant
  • 10337093
  • Patent Number
    10,337,093
  • Date Filed
    Tuesday, October 13, 2015
    9 years ago
  • Date Issued
    Tuesday, July 2, 2019
    5 years ago
Abstract
A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
Description
BACKGROUND OF THE TECHNOLOGY
Field of the Technology

The present disclosure relates to methods of processing high strength, non-magnetic corrosion resistant alloys. The present methods may find application in, for example, and without limitation, the processing of alloys for use in the chemical, mining, oil, and gas industries. The present invention also relates to alloys made by methods including the processing discussed herein.


Description of the Background of the Technology

Metal alloy parts used in chemical processing facilities may be in contact with highly corrosive and/or erosive compounds under demanding conditions. These conditions may subject metal alloy parts to high stresses and aggressively promote corrosion and erosion, for example. If it is necessary to replace damaged, worn, or corroded metallic parts of chemical processing equipment, it may be necessary to suspend facility operations for a period of time. Therefore, extending the useful service life of metal alloy parts used in chemical processing facilities can reduce product cost. Service life may be extended, for example, by improving mechanical properties and/or corrosion resistance of the alloys.


Similarly, in oil and gas drilling operations, drill string components may degrade due to mechanical, chemical, and/or environmental conditions. The drill string components may be subject to impact, abrasion, friction, heat, wear, erosion, corrosion, and/or deposits. Conventional alloys may suffer from one or more limitations that negatively impact their performance as drill string components. For example, conventional materials may lack sufficient mechanical properties (for example, yield strength, tensile strength, and/or fatigue strength), possess insufficient corrosion resistance (for example, pitting resistance and/or stress corrosion cracking), or lack necessary non-magnetic properties to operate for extended periods in the down-hole environment. Also, the properties of conventional alloys may limit the possible size and shape of the drill string components made from the alloys. These limitations may reduce the service life of the components, complicating and increasing the cost of oil and gas drilling.


It has been discovered that during warm working radial forging of some high strength, non-magnetic materials to develop a preferred strength, there may be an uneven deformation or an uneven amount of strain in the cross-section of the workpiece. The uneven deformation may be manifest, for example, as a difference in hardness and/or tensile properties between the surface and the center of the forging. For example, observed hardness, yield strength, and tensile strength may be greater at the surface than at the center of the forging. These differences are believed to be consistent with differences in the amount of strain developed in different regions of the cross-section of the workpiece during radial forging.


One method for promoting consistent hardness through the cross-section of a forged bar is to use an age hardenable material such as, for example, the nickel-base superalloy Alloy 718 (UNS N07718) in the direct aged or solution treated and aged condition. Other techniques have involved using cold or warm working to impart hardness to the alloy. This particular technique has been used to harden ATI Datalloy 2® alloy (UNS unassigned), which is a high strength, non-magnetic austenitic stainless steel available from Allegheny Technologies Incorporated, Pittsburgh, Pa. USA. The final thermomechanical processing step used to harden ATI Datalloy 2® alloy involves warm working the material at 1075° F. to an approximately 30 percent reduction in cross-sectional area on a radial forge. Another process, which utilizes a high grade alloy steel referred to as “P-750 alloy” (UNS unassigned), sourced from Schoeller-Bleckmann Oilfield Technology, Houston, Tex., is generally disclosed in U.S. Pat. No. 6,764,647, the entire disclosure of which is hereby incorporated by reference. The P-750 alloy is cold worked to about a 6-19 percent reduction in cross-sectional area at temperatures of 680-1094° F. to obtain relatively even hardness through the cross-section of a final 8-inch billet.


Another method for producing a consistent hardness across the cross-section of a worked workpiece is to increase the amount of cold or warm work used to produce a bar from the workpiece. This, however, becomes impractical with bars having finished diameters equal to or greater than 10 inches because the starting size can exceed the practical limits of ingots that can be melted without imparting problematic melt-related defects. It is noted that if the diameter of the starting workpiece is sufficiently small, then the strain gradient can be eliminated, resulting in consistent mechanical properties and hardness profiles across the cross-section of the finished bar.


It would be desirable to develop a thermomechanical process that could be used on high strength, non-magnetic alloy ingots or workpiece of any starting size that produces a relatively consistent amount of strain through the cross-section of a bar or other mill product produced by the process. Producing a relatively constant strain profile across the cross-section of the worked bar also may result in generally consistent mechanical properties across the bar's cross-section.


SUMMARY

According to a non-limiting aspect of the present disclosure, a method of processing a non-magnetic alloy workpiece comprises: heating the workpiece to a temperature in a warm working temperature range; open die press forging the workpiece to impart a desired strain to a central region of the workpiece; and radial forging the workpiece to impart a desired strain to a surface region of the workpiece. In certain non-limiting embodiments, the warm working temperature range is a range spanning a temperature that is one-third of the incipient melting temperature of the non-magnetic alloy up to a temperature that is two-thirds of the incipient melting temperature of the non-magnetic alloy. In a non-limiting embodiment, the warm working temperature is any temperature up to the highest temperature at which recrystallization (dynamic or static) does not occur in the non-magnetic alloy.


In certain non-limiting embodiments of the method of processing a non-magnetic alloy workpiece according to the present disclosure, the open die press forging step of the method precedes the radial forging step. In still other non-limiting embodiments of the method of processing a non-magnetic alloy workpiece according to the present disclosure, the radial forging step precedes the open die press forging step.


Non-limiting examples of non-magnetic alloys that may be processed by embodiments of methods according to the present disclosure include non-magnetic stainless steel alloys, nickel alloys, cobalt alloys, and iron alloys. In certain non-limiting embodiments, a non-magnetic austenitic stainless steel alloy is processed using embodiments of methods according to the present disclosure.


In certain non-limiting embodiments of a method according to the present disclosure, after the steps of open die press forging and radial forging, the central region strain and the surface region strain are each in a final range of from 0.3 inch/inch up to 1.0 inch/inch, with a difference in strain from the central region to the surface region of not more than 0.5 inch/inch. In a certain non-limiting embodiment of a method according to the present disclosure, after the steps of open die press forging and radial forging, the central region strain and the surface region strain are each in a final range of from 0.3 inch/inch to 0.8 inch/inch. In other non-limiting embodiments, after the steps of open die press forging and radial forging, the surface region strain is substantially equivalent to the central region strain and the workpiece exhibits at least one substantially uniform mechanical property throughout the workpiece cross-section.


According to another aspect of the present disclosure, certain non-limiting embodiments of a method of processing a non-magnetic austenitic stainless steel alloy workpiece comprise: heating the workpiece to a temperature in the range of from 950° F. to 1150° F.; open die press forging the workpiece to impart a final strain in the range of from 0.3 inch/inch up to 1.0 inch/inch to a central region of the workpiece; and radial forging the workpiece to impart a final strain in the range of from 0.3 inch/inch up to 1.0 inch/inch to a surface region of the workpiece, with a difference in strain from the central region to the surface region of not more than 0.5 inch/inch. In a certain non-limiting embodiment, the method includes: open die press forging the workpiece to impart a final strain in the range of from 0.3 inch/inch to 0.8 inch/inch.


In a non-limiting embodiment, the open die press forging step precedes the radial forging step. In another non-limiting embodiment, the radial forging step precedes the open die press forging step.


Another aspect according to the present disclosure is directed to non-magnetic alloy forgings. In certain non-limiting embodiments according to the present disclosure, a non-magnetic alloy forging comprises a circular cross-section having a diameter greater than 5.25 inches, and wherein at least one mechanical property of the non-magnetic alloy forging is substantially uniform throughout the cross-section of the forging. In certain non-limiting embodiments, the mechanical property that is substantially uniform throughout the cross-section of the forging is at least one of hardness, ultimate tensile strength, yield strength, percent elongation, and percent reduction in area.


In certain non-limiting embodiments, a non-magnetic alloy forging according to the present disclosure comprises one of a non-magnetic stainless steel alloy, a nickel alloy, a cobalt alloy, and an iron alloy. In certain non-limiting embodiments, a non-magnetic alloy forging according to the present disclosure comprises a non-magnetic austenitic stainless steel alloy forging.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of apparatus and methods described herein may be better understood by reference to the accompanying drawings in which:



FIG. 1 shows a simulation of the strain distribution in the cross-section of a workpiece of a non-magnetic alloy workpiece during radial forging;



FIG. 2 shows a simulation of the strain distribution in the cross-section of a workpiece of a non-magnetic alloy during an open die press forging operation;



FIG. 3 shows a simulation of the strain distribution in a workpiece processed by a non-limiting embodiment of a method according to the present disclosure including a warm work open die press forging step and a warm work radial forging step;



FIG. 4 is a flow chart illustrating aspects of a method of processing a non-magnetic alloy according to a non-limiting embodiment of the present disclosure;



FIG. 5 is a schematic illustration of surface region and central region locations in a workpiece in connection with a non-limiting embodiment according to the present disclosure; and



FIG. 6 is a process flow diagram illustrating steps used in processing Heat Number 49FJ-1,2 of Example 1 described herein, including an open die press forging step and a radial forging step as final processing steps, and also illustrating an alternate prior art process sequence including only a radial forging step as the final processing step.





The reader will appreciate the foregoing details, as well as others, upon considering the following detailed description of certain non-limiting embodiments according to the present disclosure.


DETAILED DESCRIPTION OF CERTAIN NON-LIMITING EMBODIMENTS

It is to be understood that certain descriptions of the embodiments described herein have been simplified to illustrate only those elements, features, and aspects that are relevant to a clear understanding of the disclosed embodiments, while eliminating, for purposes of clarity, other elements, features, and aspects. Persons having ordinary skill in the art, upon considering the present description of the disclosed embodiments, will recognize that other elements and/or features may be desirable in a particular implementation or application of the disclosed embodiments. However, because such other elements and/or features may be readily ascertained and implemented by persons having ordinary skill in the art upon considering the present description of the disclosed embodiments, and are therefore not necessary for a complete understanding of the disclosed embodiments, a description of such elements and/or features is not provided herein. As such, it is to be understood that the description set forth herein is merely exemplary and illustrative of the disclosed embodiments and is not intended to limit the scope of the invention as defined solely by the claims.


Any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of “1 to 10” or “from 1 to 10” is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations subsumed therein and any minimum numerical limitation recited herein is intended to include all higher numerical limitations subsumed therein. Accordingly, Applicants reserve the right to amend the present disclosure, including the claims, to expressly recite any sub-range subsumed within the ranges expressly recited herein. All such ranges are intended to be inherently disclosed herein such that amending to expressly recite any such sub-ranges would comply with the requirements of 35 U.S.C. § 112, first paragraph, and 35 U.S.C. § 132(a).


The grammatical articles “one”, “a”, “an”, and “the”, as used herein, are intended to include “at least one” or “one or more”, unless otherwise indicated. Thus, the articles are used herein to refer to one or more than one (i.e., to at least one) of the grammatical objects of the article. By way of example, “a component” means one or more components, and thus, possibly, more than one component is contemplated and may be employed or used in an implementation of the described embodiments.


All percentages and ratios are calculated based on the total weight of the alloy composition, unless otherwise indicated.


Any patent, publication, or other disclosure material that is said to be incorporated, in whole or in part, by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


The present disclosure includes descriptions of various embodiments. It is to be understood that all embodiments described herein are exemplary, illustrative, and non-limiting. Thus, the invention is not limited by the description of the various exemplary, illustrative, and non-limiting embodiments. Rather, the invention is defined solely by the claims, which may be amended to recite any features expressly or inherently described in or otherwise expressly or inherently supported by the present disclosure.


As used herein, the terms “forming”, “forging”, “open die press forging”, and “radial forging” refer to forms of thermomechanical processing (“TMP”), which also may be referred to herein as “thermomechanical working”. “Thermomechanical working” is defined herein as generally covering a variety of metal forming processes combining controlled thermal and deformation treatments to obtain synergistic effects, such as, for example, and without limitation, improvement in strength, without loss of toughness. This definition of thermomechanical working is consistent with the meaning ascribed in, for example, ASM Materials Engineering Dictionary, J. R. Davis, ed., ASM International (1992), p. 480. “Open die press forging” is defined herein as the forging of metal or metal alloy between dies, in which the material flow is not completely restricted, by mechanical or hydraulic pressure, accompanied with a single work stroke of the press for each die session. This definition of open press die forging is consistent with the meaning ascribed in, for example, ASM Materials Engineering Dictionary, J. R. Davis, ed., ASM International (1992), pp. 298 and 343. “Radial forging” is defined herein as a process using two or more moving anvils or dies for producing forgings with constant or varying diameters along their length. This definition of radial forging is consistent with the meaning ascribed in, for example, ASM Materials Engineering Dictionary, J. R. Davis, ed., ASM International (1992), p. 354. Those having ordinary skill in the metallurgical arts will readily understand the meanings of these several terms.


Conventional alloys used in chemical processing, mining, and/or oil and gas applications may lack an optimal level of corrosion resistance and/or an optimal level of one or more mechanical properties. Various embodiments of alloys processed as described herein may have certain advantages including, but not limited to, improved corrosion resistance and/or mechanical properties over conventionally processed alloys. Certain embodiments of alloys processed as described herein may exhibit one or more improved mechanical properties without any reduction in corrosion resistance, for example. Certain embodiments of alloys processed as described herein may exhibit improved impact properties, weldability, resistance to corrosion fatigue, galling resistance, and/or hydrogen embrittlement resistance relative to certain conventionally processed alloys.


In various embodiments, alloys processed as described herein may exhibit enhanced corrosion resistance and/or advantageous mechanical properties suitable for use in certain demanding applications. Without wishing to be bound to any particular theory, it is believed that certain of the alloys processed as described herein may exhibit higher tensile strength, for example, due to an improved response to strain hardening from deformation, while also retaining high corrosion resistance. Strain hardening or cold or warm working may be used to harden materials that do not generally respond well to heat treatment. However, the exact nature of the cold or warm worked structure may depend on the material, applied strain, strain rate, and/or temperature of the deformation.


The current manufacturing practice for making non-magnetic materials for exploration and drilling applications is to impart a specific amount of warm work into the product as one of the last thermomechanical processing steps. The term “non-magnetic” refers to a material that is not or is only negligibly affected by a magnetic field. Certain non-limiting embodiments of non-magnetic alloys processed as described herein may be characterized by a magnetic permeability value (μr) within a particular range. In various non-limiting embodiments, the magnetic permeability value of an alloy processed according to the present disclosure may be less than 1.01, less than 1.005, and/or less than 1.001. In various embodiments, the alloy may be substantially free from ferrite.


The terms “warm working” and “warm work” as used herein refer to thermomechanical working and deformation of a metal or metal alloy by forging at temperatures that are below the lowest temperature at which recrystallization (dynamic or static) occurs in the material. In a non-limiting embodiment, warm working is accomplished in a warm working temperature range that spans a temperature that is one-third of the incipient melting temperature of the alloy up to a temperature that is two-thirds of the incipient melting temperature of the alloy. It will be recognized that the lower limit of the warm working temperature range is only limited to the capabilities of the open die press forge and rotary forge equipment to deform the non-magnetic alloy workpiece at the desired forging temperature. In a non-limiting embodiment, the warm working temperature is any temperature up to the highest temperature at which recrystallization (dynamic or static) does not occur in the non-magnetic alloy. In this embodiment, the term warm working, as-used herein, encompasses and includes working at temperatures that are less than one-third of the incipient melting temperature of the material, including room or ambient temperature and temperatures lower than ambient temperatures. In a non-limiting embodiment, warm working, as used herein, comprises forging a workpiece at a temperature in a range that spans a temperature that is one-third of the incipient melting temperature of the alloy up to a temperature that is two-thirds of the incipient melting temperature of the alloy. In another non-limiting embodiment, the warm working temperature comprises any temperature up to the highest temperature at which recrystallization (dynamic or static) does not occur in the non-magnetic alloy. In this embodiment, the term warm working, as-used herein, encompasses and includes forging at temperatures that are less than one-third of the incipient melting temperature of the material, including room or ambient temperature and temperatures lower than ambient temperatures. The warm working step imparts strength to the alloy workpiece sufficient for the intended application. In the current manufacturing practice, the warm working thermomechanical processing of the alloy is carried out on a radial forge in a single step. In the single radial forging step, the workpiece is warm worked from an initial size to a final forged size using multiple passes on the radial forge, without removing the workpiece from the forging apparatus, and without annealing treatments intermediate the forging passes of the single step.


The present inventors have discovered that during warm work radial forging of high strength non-magnetic austenitic materials to develop a desired strength, it is often the case that the workpiece is deformed unevenly and/or the amount of strain imparted to the workpiece is not uniform across the workpiece cross-section. The uneven deformation may be observed as a difference in hardness and tensile properties between the surface and the center of the workpiece. Hardness, yield strength, and tensile strength were generally observed to be greater at the workpiece surface than at the workpiece center. These differences are believed to be consistent with differences in the amount of strain developed in different regions of the cross-section of the workpiece during radial forging. Differences in mechanical properties and hardness between the surface and central regions of warm worked radial forged-only alloy workpieces may be seen in the test data presented in Table 1. All test samples were non-magnetic austenitic stainless steels, and the chemical composition of each heat is provided in Table 2 below. All test samples listed in Table 1 were warm worked radial forged at 1025° F. as the last thermomechanical processing step applied to the samples before measuring the properties listed in Table 1.









TABLE 1







(Prior Art)
















Final




Ultimate





Anneal
Direction
Total
Final
Yield
Tensile

Percent


Heat
and Forge
and Test
Deformation
Diameter
Strength
Strength
Percent
Reduction


No.
Steps
Region
(percent)
(inch)
(ksi)
(ksi)
Elongation
in Area





47FJ-1
no anneal;
Long-MR
35
7.25
152.4
169.6
32.6
70.0



radial
Transverse
35
7.25
127.6
148.4
28.5
57.5



forge at



1025° F.


49FJ-2
no anneal;
Long-MR
35
7.25
167.7
183.2
23.8
71.8



radial
Transverse
35
7.25
114.8
140.1
26.9
61.0



forge at



1025° F.


47FJ-
annealed
Long-MR
45
7.25
172.7
188.9
18.0
62.5


1,2
at
Transverse
45
7.25
140.0
153.9
18.0
50.8



2150° F.;



water



quench;



radial



forge at



1025° F.


49FJ-4
annealed
Long-NS
45
7.25
156.9
170.1
30.6
67.3



at
Transverse
45
7.25
148.1
161.9
28.8
58.8



2150° F.;
Long-C



water



quench;



radial



forge



at 1025° F.


01FM-1
annealed
Long-NS
72
5.25
182.2
200.6
23.4
62.7



at 2150° F.;
Long-C
72
5.25
201.3
214.0
19.8
52.1



water



quench;



radial



forge



at 1025° F.



to



7.5 inch;



reheat



1025° F.;



radial



forge at



1025° F. to



5.25 inch





key:


Long-MR = long mid-radius; surface region


Transverse = Transverse, specimen gauge length across central region


Long-NS = Longitudinal near surface region


Long-C = long center; central region







FIG. 1 shows a computer-generated simulation prepared using commercially available differential finite element software that simulates thermo-mechanical working of metals. Specifically, FIG. 1 shows a simulation 10 of the strain distribution in the cross-section of a rod-shaped workpiece of a nickel alloy after radial forging as a final processing step. FIG. 1 is presented herein simply to illustrate a non-limiting embodiment of the present method wherein a combination of press forging and rotary forging is used to equalize or approximate certain properties (for example, hardness and/or mechanical properties) across the cross-section of the warm worked material. FIG. 1 shows that there is considerably greater strain in the surface region of the radial forged workpiece than at the central region of the radial forged workpiece. As such, the strain in the radial forged workpiece differs through the workpiece cross-section, with the strain being greater in the surface region than in the central region.


An aspect of the present disclosure is directed to modifying a conventional method of processing a non-magnetic alloy workpiece including warm work radial forging as the last thermomechanical step, so as to include a warm working open die press forging step. FIG. 2 shows a computer-generated simulation 20 of the strain distribution in a cross-section of a nickel alloy workpiece after an open die press forging operation. The strain distribution produced after open die press forging is generally the reverse of the strain distribution produced after the radial forging operation illustrated in FIG. 1. FIG. 2 shows that there is generally greater strain in the central region of the open die press forged workpiece than in the surface region of the open die press forged workpiece. As such, the strain in the open die press forged workpiece differs through the workpiece cross-section, with the strain being greater in the central region than in the surface region.



FIG. 3. of the present disclosure shows a computer-generated simulation 30 of strain distribution across a workpiece cross-section illustrating aspects of certain non-limiting embodiments of a method according to the present disclosure. The simulation shown in FIG. 3 illustrates strain produced in the cross-section of a nickel alloy workpiece by a thermomechanical working process including a warm work open die press forging step and a warm work radial forging step. It is observed from FIG. 3 that the distribution of strain predicted from the process is substantially uniform over the cross-section of the workpiece. Thus, a process including a warm work open die press forging step and a warm work radial forging step can produce a forged article in which strain is generally the same in a central region and in a surface region of the forged article.


Referring to FIG. 4, according to an aspect of the present disclosure, a non-limiting method 40 for processing a non-magnetic alloy workpiece comprises heating 42 the workpiece to a temperature in a warm working temperature range, open die press forging 44 the workpiece to impart a desired strain to a central region of the workpiece. In a non-limiting embodiment, the workpiece is open die press forged to impart a desired strain in the central region in a range of 0.3 inch/inch to 1.0 inch per inch. In another non-limiting embodiment, the workpiece is open die press forged to impart a desired strain in the central region in a range of 0.3 inch/inch to 0.8 inch per inch.


The workpiece is then radial forged 46 to impart a desired strain to a surface region of the workpiece. In a non-limiting embodiment, the workpiece is radial forged to impart a desired strain in the surface region in a range of 0.3 inch/inch to 1.0 inch per inch. In another non-limiting embodiment, the workpiece is radial forged to impart a desired strain in the surface region in a range of 0.3 inch/inch to 0.8 inch per inch.


In a non-limiting embodiment, after open die press forging and radial forging, the strain imparted to the central region and the strain imparted to the surface region are each in a range of from 0.3 inch/inch to 1.0 inch/inch, and the difference in strain from the central region to the surface region is not more than 0.5 inch/inch. In another non-limiting embodiment after the steps of open die press forging and radial forging, the strain imparted to the central region and the strain imparted to the surface region are each in a range of from 0.3 inch/inch to 0.8 inch/inch. Ordinary skilled practitioners know or will be able to easily determine open die press forging and radial forging parameters required to achieve the desired respective strains, and operating parameters of individual forging steps need not be discussed herein.


In certain non-limiting embodiments, a “surface region” of a workpiece includes a volume of material between the surface of the workpiece to a depth of about 30 percent of the distance from the surface to the workpiece center. In certain other non-limiting embodiments, a “surface region” of a workpiece includes a volume of material between the surface of the workpiece to a depth of about 40 percent, or in certain embodiments about 50 percent, of the distance from the surface to the workpiece center. It will be apparent to those having ordinary skill as to what constitutes the “center” of a workpiece having a particular shape for purposes of identifying a “surface region”. For example, an elongate cylindrical workpiece will have a central longitudinal axis, and the surface region of the workpiece will extend from the outer peripheral curved surface of the workpiece in the direction of the central longitudinal axis. Also for example, an elongate workpiece having a square or rectangular cross-section taken transverse to a longitudinal axis of the workpiece will have four distinct peripheral “faces” a central longitudinal axis, and the surface region of each face will extend from the surface of the face into the workpiece in the general direction of the central axis and the opposing face. Also, for example, a slab-shaped workpiece will have two large primary opposed faces generally equidistant from an intermediate plane within the workpiece, and the surface region of each primary face will extend from the surface of the face into the workpiece toward the intermediate plane and the opposed primary face.


In certain non-limiting embodiments, a “central region” of a workpiece includes a centrally located volume of material that makes up about 70 percent by volume of material of the workpiece. In certain other non-limiting embodiments, a “central region” of a workpiece includes a centrally located volume of material that makes up about 60 percent, or about 50 percent, by volume of the material of the workpiece. FIG. 5 schematically illustrates a not drawn to scale cross-section of an elongate cylindrical forged bar 50, wherein the section is taken at 90 degrees to the central axis of the workpiece. According to a non-limiting embodiment of the present disclosure in which the diameter 52 of forged bar 50 is about 12 inches, the surface region 56 and the central region 58 each comprise about 50 volume percent of the material in the cross-section (and in the workpiece), and wherein the diameter of the central region is about 4.24 inches.


In another non-limiting embodiment of the method, after the open die press forging and radial forging steps, strain within a surface region of the workpiece is substantially equivalent to strain within a central region of the workpiece. As used herein, strain within a surface region of the workpiece is “substantially equivalent” to strain within a central region of the workpiece when strain between the regions differs by less than 20%, or by less than 15%, or less than 5%. The combined use of open die press forging and radial forging in embodiments of the method according to the present disclosure can produce a workpiece with strain that is substantially equivalent throughout the cross-section of a final forged workpiece. A consequence of the strain distribution in such forged workpieces is that the workpieces may have one or more mechanical properties that are substantially uniform, through the workpiece cross-section and/or as between a surface region and a central region of the workpiece. As used herein, one or more mechanical properties within a surface region of the workpiece are “substantially uniform” to one or more properties within a central region of the workpiece when one or more mechanical properties between the regions differs by less than 20%, or by less than 15%, or less than 5%.


It is not believed to be critical to the strain distribution and subsequent mechanical properties whether the warm work open die press forging step 44 or the warm work radial forging step 46 is conducted first. In certain non-limiting embodiments, the open die press forging 44 step precedes the radial forging 46 step. In other non-limiting embodiments, the radial forging 46 step precedes the open die press forging 44 step. It will be understood that multiple cycles consisting of an open die press forging step 44 and a radial forging step 46 may be utilized to achieve the desired strain distribution and desired one or more mechanical properties across the cross-section of the final forged article. Multiple cycles, however, involve additional expense. It is believed that it is generally unnecessary to conduct multiple cycles of radial forging and open die press forging steps to achieve an substantially equivalent strain distribution across the cross-section of the workpiece.


In certain non-limiting embodiments of the method according to the present disclosure, the workpiece may be transferred from the first forging apparatus, i.e., one of a radial forge and an open die press forge, directly to the second forging apparatus, i.e., the other of the radial forge and open die press forge. In certain non-limiting embodiments, after the first warm work forging step (i.e., either radial forging or open die press forging), the workpiece may be cooled to room temperature and then reheated to a warm working temperature prior to the second warm work forging step, or alternatively, the workpiece could be directly transferred from the first forging apparatus to a reheat furnace to be reheated for the second warm work forging step.


In non-limiting embodiments, the non-magnetic alloy processed using the method of the present disclosure is a non-magnetic stainless steel alloy. In a certain non-limiting embodiments, the non-magnetic stainless steel alloy processed using the method of the present disclosure is a non-magnetic austenitic stainless steel alloy. In certain non-limiting embodiments, when the method is applied to processing a non-magnetic austenitic stainless steel alloy, the temperature range in which the radial forging and open die press forging steps are conducted is from 950° F. to 1150° F.


In certain non-limiting embodiments, prior to heating the workpiece to the warm working temperature, the workpiece may be annealed or homogenized to facilitate the warm work forging steps. In a non-limiting embodiment, when the workpiece comprises a non-magnetic austenitic stainless steel alloy, the workpiece is annealed at a temperature in the range of 1850° F. to 2300° F., and is heated at the annealing temperature for 1 minute to 10 hours. In certain non-limiting embodiments, heating the workpiece to the warm working temperature comprises allowing the workpiece to cool from the annealing temperature to the warm working temperature. As will be readily apparent to those having ordinary skill, the annealing time necessary to dissolve deleterious sigma precipitates that could form in a particular workpiece during hot working will be dependent on annealing temperature; the higher the annealing temp, the shorter the time needed to dissolve any deleterious sigma precipitate that formed. Ordinarily skilled practitioners will be able to determine suitable annealing temperatures and times for a particular workpiece without undue effort.


It has been noted that when the diameter of a workpiece that has been warm work forged according to the method of the present disclosure is on the order of 5.25 inches or less, a significant difference may not be observed in strain and certain consequent mechanical properties between material in a central region and material in a surface region of the forged workpiece (see Table 1). In certain non-limiting embodiments according to the present disclosure, the forged workpiece that has been processed using the present method is generally cylindrical and comprises a generally circular cross-section. In certain non-limiting embodiments, the forged workpiece that has been processed using the present method is generally cylindrical and comprises a circular cross-section having a diameter that is no greater than 5.25 inches. In certain non-limiting embodiments, the forged workpiece that has been processed using the present method is generally cylindrical and comprises a circular cross-section having a diameter that is greater than 5.25 inches, or is at least 7.25 inches, or is 7.25 inches to 12.0 inches after warm work forging according to the present disclosure.


Another aspect of the present disclosure is directed to a method of processing a non-magnetic austenitic stainless steel alloy workpiece, the method comprising: heating the workpiece to a warm working temperature in a temperature range from 950° F. to 1150° F.; open die press forging the workpiece to impart a final strain of between 0.3 inch/inch to 1.0 inch/inch, or 0.3 inch/inch to 0.8 inch/inch to a central region of the workpiece; and radial forging the workpiece to impart a final strain of between 0.3 inch/inch to 1.0 inch/inch, or 0.3 inch/inch to 0.8 inch/inch to a surface region of the workpiece. In a non-limiting embodiment, after open press die forging and radial forging the workpiece a difference in final strain in the central region and the surface region is no more than 0.5 inch/inch. In other non-limiting embodiment, strain between the regions differs by less than 20%, or by less than 15%, or less than 5%. In non-limiting embodiments of the method, the open die press forging step precedes the radial forging step. In other non-limiting embodiments of the method, the radial forging step precedes the open die press forging step.


The method of processing a non-magnetic austenitic stainless steel alloy workpiece according to the present disclosure may further comprise annealing the workpiece prior to heating the workpiece to the warm working temperature. In a non-limiting embodiment, the non-magnetic austenitic stainless steel alloy workpiece may be annealed at an annealing temperature in a temperature range of 1850° F. to 2300° F., and an annealing time may be in the range of 1 minute to 10 hours. In still another non-limiting embodiment, the step of heating the non-magnetic austenitic stainless steel alloy workpiece to the warm working temperature may comprise allowing the workpiece to cool from the annealing temperature to the warm working temperature.


As discussed above, it has been noted that when the diameter of a workpiece that has been warm work forged according to the method of the present disclosure is on the order of, for example, 5.25 inches or less, a significant difference may not be observed in strain and certain consequent mechanical properties between material in a central region and material in a surface region of the forged workpiece. In certain non-limiting embodiments according to the present disclosure, the forged workpiece that has been processed using the present method is a generally cylindrical non-magnetic austenitic stainless steel alloy workpiece and comprises a generally circular cross-section. In certain non-limiting embodiments, the forged workpiece that has been processed using the present method is a generally cylindrical non-magnetic austenitic stainless steel alloy workpiece and comprises a circular cross-section having a diameter that is no greater than 5.25 inches. In certain non-limiting embodiments, the forged workpiece that has been processed using the present method is a generally cylindrical non-magnetic austenitic stainless steel alloy workpiece and comprises a circular cross-section having a diameter that is greater than 5.25 inches, or is at least 7.25 inches, or is 7.25 inches to 12.0 inches after warm work forging according to the present disclosure.


Still another aspect according to the present disclosure is directed to a non-magnetic alloy forging. In a non-limiting embodiment, a non-magnetic alloy forging according to the present disclosure comprises a circular cross-section with a diameter greater than 5.25 inches. At least one mechanical property of the non-magnetic alloy forging is substantially uniform throughout the cross-section of the forging. In non-limiting embodiments, the substantially uniform mechanical property comprises one or more of a hardness, an ultimate tensile strength, a yield strength, a percent elongation, and a percent reduction in area.


It will be recognized that while non-limiting embodiments of the present disclosure are directed to a method for providing substantially equivalent strain and at least one substantially uniform mechanical property across a cross-section of a forged workpiece, the practice of radial forging combined with open press die forging may be used as to impart strain in a central region of a workpiece that differs to a desired degree from strain imparted by the method in a surface region of the workpiece. For example, with reference to FIG. 3, in non-limiting embodiments, after the steps of open die press forging 44 and radial forging 46, the strain in a surface region may intentionally be greater than the strain in a central region of the workpiece. Methods according to the present disclosure wherein relative strains imparted by the method differ in this way may be highly beneficial in minimizing complications in machining of a final part that may arise if hardness and/or mechanical properties vary in different regions of the part. Alternatively, in non-limiting embodiments, after the steps of open die press forging 44 and radial forging 46, the strain in a surface region may intentionally be less than the strain in a central region of the workpiece. Also, in certain non-limiting embodiments of a method according to the present disclosure, after the steps of open die press forging 44 and radial forging 46, the workpiece comprises a gradient of strain from a surface region to a central region of the workpiece. In such case, the imparted strains may increase or decrease as distance from the center of the workpiece increases. Methods according to the present disclosure wherein a gradient of strain is imparted to a final forged workpiece may be advantageous in various applications.


In various non-limiting embodiments, a non-magnetic alloy forging according to the present disclosure may be selected from a non-magnetic stainless steel alloy, a nickel alloy, a cobalt alloy, and an iron alloy. In certain non-limiting embodiments, a non-magnetic alloy forging according to the present disclosure comprises a non-magnetic austenitic stainless steel alloy.


A broad chemical composition of one high strength non-magnetic austenitic stainless steel intended for exploration and production drilling applications in the oil and gas industry that may be processed by a method and embodied in a forged article according to the present disclosure is disclosed in co-pending U.S. patent application Ser. No. 13/331,135, filed on Dec. 20, 2011, which is incorporated by reference herein in its entirety.


One specific example of a highly corrosion resistant, high strength material for exploration and discovery applications in the oil and gas industry that may be processed by a method and embodied in a forged article according to the present disclosure is AL-6XN® alloy (UNS N08367), which is an iron-base austenitic stainless steel alloy available from Allegheny Technologies Incorporated, Pittsburgh, Pa. USA. A two-step warm work forging process according to the present disclosure can be used for AL-6XN® alloy to impart high strength to the material.


Another specific example of a highly corrosion resistant, high strength material for exploration and discovery applications in the oil and gas industry that may be processed by a method and embodied in a forged article according to the present disclosure is ATI Datalloy 2® alloy (no UNS assigned), a high strength, non-magnetic austenitic stainless steel, which is available from Allegheny Technologies Incorporated, Pittsburgh, Pa. USA. A nominal composition of ATI Datalloy 2® alloy in weight percentages based on the total alloy weight is 0.03 carbon, 0.30 silicon, 15.1 manganese, 15.3 chromium, 2.1 molybdenum, 2.3 nickel, 0.4 nitrogen, remainder iron and incidental impurities.


In certain non-limiting embodiments, an alloy that may be processed by a method and embodied in a forged article according to the present disclosure is an austenitic alloy that comprises, consists essentially of, or consists of chromium, cobalt, copper, iron, manganese, molybdenum, nickel, carbon, nitrogen, tungsten, and incidental impurities. In certain non-limiting embodiments, the austenitic alloy optionally further includes one or more of aluminum, silicon, titanium, boron, phosphorus, sulfur, niobium, tantalum, ruthenium, vanadium, and zirconium, either as trace elements or as incidental impurities.


Also, according to various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises, consists essentially of, or consists of, in weight percentages based on total alloy weight, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.


In addition, according to various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises, consists essentially of, or consists of, in weight percentages based on total alloy weight, up to 0.05 carbon, 1.0 to 9.0 manganese, 0.1 to 1.0 silicon, 18.0 to 26.0 chromium, 19.0 to 37.0 nickel, 3.0 to 7.0 molybdenum, 0.4 to 2.5 copper, 0.1 to 0.55 nitrogen, 0.2 to 3.0 tungsten, 0.8 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.


Also, according to various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure may comprise, consist essentially of, or consist of, in weight percentages based on total alloy weight, up to 0.05 carbon, 2.0 to 8.0 manganese, 0.1 to 0.5 silicon, 19.0 to 25.0 chromium, 20.0 to 35.0 nickel, 3.0 to 6.5 molybdenum, 0.5 to 2.0 copper, 0.2 to 0.5 nitrogen, 0.3 to 2.5 tungsten, 1.0 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises carbon in any of the following weight percentage ranges: up to 2.0; up to 0.8; up to 0.2; up to 0.08; up to 0.05; up to 0.03; 0.005 to 2.0; 0.01 to 2.0; 0.01 to 1.0; 0.01 to 0.8; 0.01 to 0.08; 0.01 to 0.05; and 0.005 to 0.01.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises manganese in any of the following weight percentages: up to 20.0; up to 10.0; 1.0 to 20.0; 1.0 to 10; 1.0 to 9.0; 2.0 to 8.0; 2.0 to 7.0; 2.0 to 6.0; 3.5 to 6.5; and 4.0 to 6.0.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises silicon in any of the following weight percentages: up to 1.0; 0.1 to 1.0; 0.5 to 1.0; and 0.1 to 0.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises chromium in any of the following weight percentage ranges: 14.0 to 28.0; 16.0 to 25.0; 18.0 to 26; 19.0 to 25.0; 20.0 to 24.0; 20.0 to 22.0; 21.0 to 23.0; and 17.0 to 21.0.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises nickel in any of the following weight percentage ranges: 15.0 to 38.0; 19.0 to 37.0; 20.0 to 35.0; and 21.0 to 32.0.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises molybdenum in any of the following weight percentage ranges: 2.0 to 9.0; 3.0 to 7.0; 3.0 to 6.5; 5.5 to 6.5; and 6.0 to 6.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises copper in any of the following weight percentage ranges: 0.1 to 3.0; 0.4 to 2.5; 0.5 to 2.0; and 1.0 to 1.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises nitrogen in any of the following weight percentage ranges: 0.08 to 0.9; 0.08 to 0.3; 0.1 to 0.55; 0.2 to 0.5; and 0.2 to 0.3. In certain embodiments, the nitrogen content in the austenitic alloy may be limited to 0.35 weight percent or 0.3 weight percent to address its limited solubility in the alloy.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises tungsten in any of the following weight percentage ranges: 0.1 to 5.0; 0.1 to 1.0; 0.2 to 3.0; 0.2 to 0.8; and 0.3 to 2.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises cobalt in any of the following weight percentages: up to 5.0; 0.5 to 5.0; 0.5 to 1.0; 0.8 to 3.5; 1.0 to 4.0; 1.0 to 3.5; and 1.0 to 3.0. In certain embodiments of alloys processed by a method and embodied in a forged article according to the present disclosure, cobalt unexpectedly improved mechanical properties of the alloy. For example, in certain embodiments of the alloy, additions of cobalt may provide up to a 20% increase in toughness, up to a 20% increase in elongation, and/or improved corrosion resistance. Without wishing to be bound to any particular theory, it is believed that replacing iron with cobalt may increase the resistance to detrimental sigma phase precipitation in the alloy relative to non-cobalt bearing variants which exhibited higher levels of sigma phase at the grain boundaries after hot working.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises cobalt and tungsten in a cobalt/tungsten weight percentage ratio of from 2:1 to 5:1, or from 2:1 to 4:1. In certain embodiments, for example, the cobalt/tungsten weight percentage ratio may be about 4:1. The use of cobalt and tungsten may impart improved solid solution strengthening to the alloy.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises titanium in any of the following weight percentages: up to 1.0; up to 0.6; up to 0.1; up to 0.01; 0.005 to 1.0; and 0.1 to 0.6.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises zirconium in any of the following weight percentages: up to 1.0; up to 0.6; up to 0.1; up to 0.01; 0.005 to 1.0; and 0.1 to 0.6.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises niobium and/or tantalum in any of the following weight percentages: up to 1.0; up to 0.5; up to 0.3; 0.01 to 1.0; 0.01 to 0.5; 0.01 to 0.1; and 0.1 to 0.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises a combined weight percentage of columbium and tantalum in any of the following ranges: up to 1.0; up to 0.5; up to 0.3; 0.01 to 1.0; 0.01 to 0.5; 0.01 to 0.1; and 0.1 to 0.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises vanadium in any of the following weight percentages: up to 1.0; up to 0.5; up to 0.2; 0.01 to 1.0; 0.01 to 0.5; 0.05 to 0.2; and 0.1 to 0.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises aluminum in any of the following weight percentage ranges: up to 1.0; up to 0.5; up to 0.1; up to 0.01; 0.01 to 1.0; 0.1 to 0.5; and 0.05 to 0.1.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises boron in any of the following weight percentage ranges: up to 0.05; up to 0.01; up to 0.008; up to 0.001; up to 0.0005.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises phosphorus in any of the following weight percentage ranges: up to 0.05; up to 0.025; up to 0.01; and up to 0.005.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises sulfur in any of the following weight percentage ranges: up to 0.05; up to 0.025; up to 0.01; and up to 0.005.


In various non-limiting embodiments, the balance of an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure may comprise, consist essentially of, or consist of iron and incidental impurities. In various non-limiting embodiments, In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises iron in any of the following weight percentage ranges: up to 60; up to 50; 20 to 60; 20 to 50; 20 to 45; 35 to 45; 30 to 50; 40 to 60; 40 to 50; 40 to 45; and 50 to 60.


In various non-limiting embodiments, an austenitic alloy processed by a method according to the present disclosure comprises one or more trace elements. As used herein, “trace elements” refers to elements that may be present in the alloy as a result of the composition of the raw materials and/or the melting method employed and which are present in concentrations that do not significantly negatively affect important properties of the alloy, as those properties are generally described herein. Trace elements may include, for example, one or more of titanium, zirconium, columbium (niobium), tantalum, vanadium, aluminum, and boron in any of the concentrations described herein. In certain non-limiting embodiments, trace elements may not be present in alloys according to the present disclosure. As is known in the art, in producing alloys, trace elements typically may be largely or wholly eliminated by selection of particular starting materials and/or use of particular processing techniques. In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises a total concentration of trace elements in any of the following weight percentage ranges: up to 5.0; up to 1.0; up to 0.5; up to 0.1; 0.1 to 5.0; 0.1 to 1.0; and 0.1 to 0.5.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises a total concentration of incidental impurities in any of the following weight percentage ranges: up to 5.0; up to 1.0; up to 0.5; up to 0.1; 0.1 to 5.0; 0.1 to 1.0; and 0.1 to 0.5. As generally used herein, the term “incidental impurities” refers elements present in the alloy in minor concentrations. Such elements may include one or more of bismuth, calcium, cerium, lanthanum, lead, oxygen, phosphorus, ruthenium, silver, selenium, sulfur, tellurium, tin and zirconium. In various non-limiting embodiments, individual incidental impurities in an alloy that may be processed by a method and embodied in a forged article according to the present disclosure do not exceed the following maximum weight percentages: 0.0005 bismuth; 0.1 calcium; 0.1 cerium; 0.1 lanthanum; 0.001 lead; 0.01 tin, 0.01 oxygen; 0.5 ruthenium; 0.0005 silver; 0.0005 selenium; and 0.0005 tellurium. In various non-limiting embodiments, an alloy that may be processed by a method and embodied in a forged article according to the present disclosure, the combined weight percentage of cerium, lanthanum, and calcium present in the alloy (if any is present) may be up to 0.1. In various non-limiting embodiments, the combined weight percentage of cerium and/or lanthanum present in the alloy may be up to 0.1. Other elements that may be present as incidental impurities in alloys that may be processed by a method and embodied in a forged article according to the present disclosure will be apparent to those having ordinary skill in the art upon considering the present disclosure. In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure comprises a total concentration of trace elements and incidental impurities in any of the following weight percentage ranges: up to 10.0; up to 5.0; up to 1.0; up to 0.5; up to 0.1; 0.1 to 10.0; 0.1 to 5.0; 0.1 to 1.0; and 0.1 to 0.5.


In various non-limiting embodiments, an alloy that may be processed by a method and embodied in a forged article according to the present disclosure may be non-magnetic. This characteristic may facilitate use of the alloy in applications in which non-magnetic properties are important including, for example, certain oil and gas drill string component applications. Certain non-limiting embodiments of an austenitic alloy that may be processed by the methods and embodied in the forged articles described herein may be characterized by a magnetic permeability value (μr) within a particular range. In various non-limiting embodiments, the magnetic permeability value is less than 1.01, less than 1.005, and/or less than 1.001. In various embodiments, the alloy may be substantially free from ferrite.


In various non-limiting embodiments, an alloy that may be processed by a method and embodied in a forged article according to the present disclosure may be characterized by a pitting resistance equivalence number (PREN) within a particular range. As is understood, the PREN ascribes a relative value to an alloy's expected resistance to pitting corrosion in a chloride-containing environment. Generally, alloys having a higher PREN are expected to have better corrosion resistance than alloys having a lower PREN. One particular PREN calculation provides a PREN16 value using the following formula, wherein the percentages are weight percentages based on total alloy weight:

PREN16=% Cr+3.3(% Mo)+16(% N)+1.65(% W)

In various non-limiting embodiments, an alloy that may be processed by a method and embodied in a forged article according to the present disclosure may have a PREN16 value in any of the following ranges: up to 60; up to 58; greater than 30; greater than 40; greater than 45; greater than 48; 30 to 60; 30 to 58; 30 to 50; 40 to 60; 40 to 58; 40 to 50; and 48 to 51. Without wishing to be bound to any particular theory, it is believed that a higher PREN16 value may indicate a higher likelihood that an alloy will exhibit sufficient corrosion resistance in environments such as, for example, highly corrosive environments, high temperature environments, and low temperature environments. Aggressively corrosive environments may exist in, for example, chemical processing equipment and the down-hole environment to which a drill string is subjected in oil and gas drilling applications. Aggressively corrosive environments may subject an alloy to, for example, alkaline compounds, acidified chloride solutions, acidified sulfide solutions, peroxides, and/or CO2, along with extreme temperatures.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure may be characterized by a coefficient of sensitivity to avoid precipitations value (CP) within a particular range. The concept of a CP value is described in, for example, U.S. Pat. No. 5,494,636, entitled “Austenitic Stainless Steel Having High Properties”. In general, the CP value is a relative indication of the kinetics of precipitation of intermetallic phases in an alloy. A CP value may be calculated using the following formula, wherein the percentages are weight percentages based on total alloy weight:

CP=20(% Cr)+0.3(% Ni)+30(% Mo)+5(% W)+10(% Mn)+50(% C)−200(% N)

Without wishing to be bound to any particular theory, it is believed that alloys having a CP value less than 710 will exhibit advantageous austenite stability which helps to minimize HAZ (heat affected zone) sensitization from intermetallic phases during welding. In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure may have a CP in any of the following ranges: up to 800; up to 750; less than 750; up to 710; less than 710; up to 680; and 660-750.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure may be characterized by a Critical Pitting Temperature (CPT) and/or a Critical Crevice Corrosion Temperature (CCCT) within particular ranges. In certain applications, CPT and CCCT values may more accurately indicate corrosion resistance of an alloy than the alloy's PREN value. CPT and CCCT may be measured according to ASTM G48-11, entitled “Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution”. In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure has a CPT that is at least 45° C., or more preferably is at least 50° C., and has a CCCT that is at least 25° C., or more preferably is at least 30° C.


In various non-limiting embodiments, an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure may be characterized by a Chloride Stress Corrosion Cracking Resistance (SCC) value within a particular range. The concept of an SCC value is described in, for example, A. J. Sedricks, Corrosion of Stainless Steels (J. Wiley and Sons 1979). In various non-limiting embodiments, the SCC value of an alloy according to the present disclosure may be determined for particular applications according to one or more of the following: ASTM G30-97 (2009), entitled “Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens”; ASTM G36-94 (2006), entitled “Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution”; ASTM G39-99 (2011), “Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens”; ASTM G49-85 (2011), “Standard Practice for Preparation and Use of Direct Tension Stress-Corrosion Test Specimens”; and ASTM G123-00 (2011), “Standard Test Method for Evaluating Stress-Corrosion Cracking of Stainless Alloys with Different Nickel Content in Boiling Acidified Sodium Chloride Solution.” In various non-limiting embodiments, the SCC value of an austenitic alloy that may be processed by a method and embodied in a forged article according to the present disclosure is high enough to indicate that the alloy can suitably withstand boiling acidified sodium chloride solution for 1000 hours without experiencing unacceptable stress corrosion cracking, pursuant to evaluation under ASTM G123-00 (2011).


The examples that follow are intended to further describe certain non-limiting embodiments, without restricting the scope of the present invention. Persons having ordinary skill in the art will appreciate that variations of the following examples are possible within the scope of the invention, which is defined solely by the claims.


Example 1


FIG. 6 schematically illustrates aspects of a method 62 according to the present disclosure for processing a non-magnetic austenitic steel alloy (right side of FIG. 6) and a comparative method 60 (left side of FIG. 6). An electroslag remelted (ESR) ingot 64 having a diameter of 20 inches and having the chemistry of Heat Number 49FJ-1,2 shown in Table 2 below was prepared.














TABLE 2







Element
Heat 01FM-1
Heat 47FJ-1,2
Heat 49FJ-2,4





















C
0.014
0.010
0.010



Mn
4.53
4.50
4.55



Cr
21.50
22.26
21.32



Mo
5.01
6.01
5.41



Co
2.65
2.60
2.01



Fe
34.11
32.37
39.57



Nb
<0.01
0.010
0.008



Ni
30.40
30.07
25.22



W
0.89
0.84
0.64



N
0.365
0.390
0.393



P
0.015
0.014
0.016



S
<0.0003
0.0002
0.0003



Si
0.30
0.23
0.30



Cu
1.13
1.22
1.21



V
0.03
0.04
0.04



B
0.002
0.002
0.002



PREN16
44
50
47










The ESR ingot 64 was homogenized at 2225° F. for 48 hours, followed by ingot breakdown to about a 14-inch diameter workpiece 66 on a radial forge machine. The 14-inch diameter workpiece 66 was cut into a first workpiece 68 and a second workpiece 70 and processed as follows.


Samples of the 14-inch diameter second workpiece 70 were processed according to an embodiment of a method according to the present disclosure. Samples of the second workpiece 70 were reheated at 2225° F. for 6 to 12 hours and radial forged to a 9.84-inch diameter bar including step shaft 72 with a long end 74, and then water quenched. Step shaft 72 was produced during this radial forging operation to provide an end region on each forging 72,74 having a size that could be gripped by the workpiece manipulator for the open die press forge. Samples of the 9.84-inch diameter forgings 72,74 were annealed at 2150° F. for 1 to 2 hours and cooled to room temperature. Samples of the 9.84-inch diameter forgings 72,74 were reheated to 1025° F. for between 10 and 24 hours, followed by open die press forging to produce forgings 76. The forgings 76 were step shaft forgings, with the majority of each forgings 76 having a diameter of approximately 8.7 inches. Subsequent to open die press forging, the forgings were air cooled. Samples of the forgings 76 were reheated for between 3 to 9 hours at 1025° F. and radial forged to bars 78 having a diameter of approximately 7.25 inches. Test samples were taken from surface regions and central regions of the bars 78, in a middle section of the bars 78 between the bars' distal ends, and were evaluated for mechanical properties and hardness.


Samples of the 14-inch diameter first workpiece 68 were processed by a comparative method that is not encompassed by the present invention. Samples of the first workpiece 68 were reheated at 2225° F. for 6 to 12 hours, radial forged to 9.84-inch diameter workpieces 80, and water quenched. The 9.84-inch diameter forgings 80 were annealed at 2150° F. for 1 to 2 hours, and cooled to room temperature. The annealed and cooled 9.84-inch forgings 80 were reheated for 10 to 24 hours at 1025° F. or 1075° F. and radial forged to approximately 7.25-inch diameter forgings 82. Surface region and central region test samples for mechanical property evaluation and hardness evaluation were taken from the middle of each forging 82, between the distal ends of each forging 82.


Processing of other ingot heats were similar to those for Heat Number 49FJ-1,2, described above, except for the degree of warm working. The percent deformation and type of warm working used for other heats are shown in Table 3. Table 3 also compares the hardness profile across the 7.25-inch diameter forging 82 with that of the 7.25-inch diameter forging 78. As described above, the forgings 82 received only warm work radial forging at temperatures of 1025° F. or 1075° F. as a final processing step. In contrast, forgings 78 were processed using steps of warm work open press die forging at 1025° F., followed by warm work radial forging at 1025° F.














TABLE 3











Warm







Work


Heat

Dia.
%
Temp
Hardness (MRC)














No.
Process
(inch)
Def
(° F.)
Surface
Center
Surface





















47FJ-1
no anneal;
7.25
35
1075
40.0
35.0
33.0
31.4
31.9
35.0
40.0



comparative


radial






forge


49FJ-2
no anneal;
7.25
35
1075
41.6
38.0
35.0
33.0
34.1
36.0
40.0



comparative


radial






forge


47FJ-2
anneal
7.25
45
1025
43.9
41.6
35.0
33.4
36.2
40.3
42.9



2150° F.;


radial



WQ;


forge



comparative


49FJ-4
anneal
7.25
45
1025
38.5
35.2
32.4
32
32.4
38
39.2



2150° F.;


radial



WQ;


forge



comparative


49FJ-4
anneal
7.25
45
1025
40.1
36.8
39.6
40.8
41.8
42.0
42.6



2150° F.;


press



WQ;


forge;



inventive;


1025



press forge


radial



to radial


forge



forge


01FM-1
anneal
7.25
72
1025
38.0
38.2
39.9
40.0

40.0



2150° F.;
press

press



WQ;
forge;

forge;



comparative
5.25

1025



press forge;
press

press



air cooled;
forge

forge



reheated;



press forge









From Table 3, it is apparent that the difference in hardness from the surface to the center is significantly greater for the comparative samples than for the inventive samples. These results are consistent with the results shown in FIG. 3 from the modeling of the inventive press forge plus rotary forge process. The press forging process imparts the deformation mainly at the center region of the workpiece and the rotary forge operation imparts the deformation mainly at the surface. Since hardness is an indicator of the amount of deformation in these materials, it shows that the combination of press forging plus rotary forging provides a bar with a relatively even amount of deformation from surface to center. It is also seen from Table 3 that Heat 01FM-1, which is a comparative example that was only warm worked by press forging, but warm work press forged to a smaller diameter of 5.25 inches. The results for Heat 01 FM-1 demonstrate that the amount of deformation provided by press forging on smaller diameter workpieces, may result in relatively even cross-sectional hardness profiles.


Table 1, hereinabove, shows the room temperature tensile properties for the comparative heats having the hardness values disclosed in Table 3. Table 4 provides a direct comparison of room temperature tensile properties for Heat No. 49-FJ-4 for a comparative sample that was warm worked by press forging only, and for an inventive sample that was warm worked by press forging followed by radial forging.

















TABLE 4











Ultimate





Final
Direction
Total
Final
Yield
Tensile

Percent


Heat
Anneal and
and Test
Deformation
Diameter
Strength
Strength
Percent
Reduction


No.
Forge Steps
Region
(percent)
(inch)
(ksi)
(ksi)
Elongation
in Area







49FJ-4
annealed at
Long-NS
45
7.25
156.9
170.1
30.6
67.3



2150° F.;
Transverse
45
7.25
148.1
161.9
28.8
58.8



water
Long-C



quench;



radial forge



at 1025° F.;



comparative


49FJ-4
annealed at
Long-NS
45
7.25
176.2
191.6
22.7
65.3



2150° F.;
Transverse
45
7.25
187.8
195.3
20.4
62.5



water
Long-C



quench;



press forge



at 1025° F.;



radial forge



at 1025° F.;



inventive





key:


Transverse = Transverse, specimen gauge length across central region


Long-NS = Longitudinal near surface region


Long-C = long center; central region






The yield and ultimate tensile strengths at the surface of the comparative samples are greater than at the center. However, the ultimate tensile and yield strengths for the material processed according to the present disclosure (inventive sample) not only show that strength at the center of the billet and at the surface of the billet is substantially uniform, but also show that the inventive samples are considerably stronger than the comparative samples.


It will be understood that the present description illustrates those aspects of the invention relevant to a clear understanding of the invention. Certain aspects that would be apparent to those of ordinary skill in the art and that, therefore, would not facilitate a better understanding of the invention have not been presented in order to simplify the present description. Although only a limited number of embodiments of the present invention are necessarily described herein, one of ordinary skill in the art will, upon considering the foregoing description, recognize that many modifications and variations of the invention may be employed. All such variations and modifications of the invention are intended to be covered by the foregoing description and the following claims.

Claims
  • 1. A non-magnetic alloy forging comprising: a circular cross-section with a diameter greater than 5.25 inches; andat least one mechanical property that is substantially uniform throughout a cross-section of the forging, wherein the non-magnetic alloy exhibits a longitudinal yield strength greater than 156.9 ksi to 176.2 ksi.
  • 2. The non-magnetic alloy forging of claim 1, wherein the non-magnetic alloy forging comprises one of a non-magnetic stainless steel alloy, a nickel alloy, a cobalt alloy, and an iron alloy.
  • 3. The non-magnetic alloy forging of claim 1, wherein the non-magnetic alloy forging comprises a non-magnetic austenitic stainless steel alloy.
  • 4. The non-magnetic alloy forging of claim 1, wherein the mechanical property is at least one of ultimate tensile strength, yield strength, percent elongation, and percent reduction in area.
  • 5. The non-magnetic alloy forging of claim 1, wherein the diameter of the circular cross-section is at least 7.25 inches.
  • 6. The non-magnetic alloy forging of claim 1, wherein the diameter of the circular cross-section is in a range of 7.25 inches to 12 inches.
  • 7. The non-magnetic alloy forging of claim 1, wherein the alloy forging is a cylindrical alloy forging.
  • 8. The non-magnetic alloy forging of claim 1, wherein the alloy is an austenitic stainless steel alloy having a composition as set out in UNS N08367.
  • 9. The non-magnetic alloy forging of claim 1, wherein a nominal composition of the alloy comprises, in weight percentages, 0.03 carbon, 0.30 silicon, 15.1 manganese, 15.3 chromium, 2.1 molybdenum, 2.3 nickel, 0.4 nitrogen, incidental impurities, and balance iron.
  • 10. The non-magnetic alloy forging of claim 1, wherein the alloy is an austenitic alloy comprising chromium, cobalt, copper, iron, manganese, molybdenum, nickel, carbon, nitrogen, tungsten, incidental impurities, and, optionally, trace elements.
  • 11. The non-magnetic alloy forging of claim 10, wherein the alloy further comprises at least one of aluminum, silicon, titanium, boron, phosphorus, sulfur, niobium, tantalum, ruthenium, vanadium, and zirconium.
  • 12. The non-magnetic alloy forging of claim 1, wherein the alloy comprises, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 13. The non-magnetic alloy forging of claim 1, wherein the alloy consists of, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 14. The non-magnetic alloy forging of claim 1, wherein the alloy comprises, in weight percentages, up to 0.05 carbon, 1.0 to 9.0 manganese, 0.1 to 1.0 silicon, 18.0 to 26.0 chromium, 19.0 to 37.0 nickel, 3.0 to 7.0 molybdenum, 0.4 to 2.5 copper, 0.1 to 0.55 nitrogen, 0.2 to 3.0 tungsten, 0.8 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 15. The non-magnetic alloy forging of claim 1, wherein the alloy consists of, in weight percentages, up to 0.05 carbon, 1.0 to 9.0 manganese, 0.1 to 1.0 silicon, 18.0 to 26.0 chromium, 19.0 to 37.0 nickel, 3.0 to 7.0 molybdenum, 0.4 to 2.5 copper, 0.1 to 0.55 nitrogen, 0.2 to 3.0 tungsten, 0.8 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 16. The non-magnetic alloy forging of claim 1, wherein the alloy comprises, in weight percentages, up to 0.05 carbon, 2.0 to 8.0 manganese, 0.1 to 0.5 silicon, 19.0 to 25.0 chromium, 20.0 to 35.0 nickel, 3.0 to 6.5 molybdenum, 0.5 to 2.0 copper, 0.2 to 0.5 nitrogen, 0.3 to 2.5 tungsten, 1.0 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 17. The non-magnetic alloy forging of claim 1, wherein the alloy consists of, in weight percentages, up to 0.05 carbon, 2.0 to 8.0 manganese, 0.1 to 0.5 silicon, 19.0 to 25.0 chromium, 20.0 to 35.0 nickel, 3.0 to 6.5 molybdenum, 0.5 to 2.0 copper, 0.2 to 0.5 nitrogen, 0.3 to 2.5 tungsten, 1.0 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 18. The non-magnetic alloy forging of claim 1, wherein the alloy has a magnetic permeability value (μr) less than 1.01.
  • 19. The non-magnetic alloy forging of claim 1, wherein the alloy has a magnetic permeability value (μr) less than 1.005.
  • 20. The non-magnetic alloy forging of claim 1, wherein the alloy has a magnetic permeability value (μr) less than 1.001.
  • 21. The non-magnetic alloy forging of claim 1, wherein the alloy is free from ferrite.
  • 22. A cylindrical non-magnetic alloy forging comprising: a circular cross-section with a diameter greater than 5.25 inches;wherein at least one of ultimate tensile strength, yield strength, percent elongation, and percent reduction in area is uniform throughout a cross-section of the forging;wherein the non-magnetic alloy exhibits a longitudinal yield strength greater than 156.9 ksi to 176.2 ksi; andwherein the non-magnetic alloy is selected from a stainless steel alloy, a nickel alloy, a cobalt alloy, and an iron alloy.
  • 23. The cylindrical non-magnetic alloy forging of claim 22, wherein the non-magnetic alloy is a non-magnetic austenitic stainless steel alloy.
  • 24. The cylindrical non-magnetic alloy forging of claim 23, wherein the alloy has a magnetic permeability value (μr) less than 1.01.
  • 25. The cylindrical non-magnetic alloy forging of claim 23, wherein the alloy has a magnetic permeability value (μr) less than 1.005.
  • 26. The cylindrical non-magnetic alloy forging of claim 23, wherein the alloy has a magnetic permeability value (μr) less than 1.001.
  • 27. The cylindrical non-magnetic alloy forging of claim 23, wherein the alloy is free from ferrite.
  • 28. The cylindrical non-magnetic alloy forging of claim 22, wherein the alloy is an austenitic stainless steel alloy having a composition as set out in UNS N08367.
  • 29. The cylindrical non-magnetic alloy forging of claim 22, wherein the alloy comprises, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 30. The cylindrical non-magnetic alloy forging of claim 22, wherein the alloy consists of, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 31. A non-magnetic alloy forging comprising: a circular cross-section with a diameter greater than 5.25 inches; andat least one mechanical property that is substantially uniform throughout a cross-section of the forging, wherein the non-magnetic alloy exhibits an ultimate tensile strength greater than 170.1 ksi to 191.6 ksi.
  • 32. The non-magnetic alloy forging of claim 31, wherein the non-magnetic alloy forging comprises one of a non-magnetic stainless steel alloy, a nickel alloy, a cobalt alloy, and an iron alloy.
  • 33. The non-magnetic alloy forging of claim 31, wherein the non-magnetic alloy forging comprises a non-magnetic austenitic stainless steel alloy.
  • 34. The non-magnetic alloy forging of claim 31, wherein the mechanical property is at least one of ultimate tensile strength, yield strength, percent elongation, and percent reduction in area.
  • 35. The non-magnetic alloy forging of claim 31, wherein the diameter of the circular cross-section is at least 7.25 inches.
  • 36. The non-magnetic alloy forging of claim 31, wherein the diameter of the circular cross-section is in a range of 7.25 inches to 12 inches.
  • 37. The non-magnetic alloy forging of claim 31, wherein the alloy forging is a cylindrical alloy forging.
  • 38. The non-magnetic alloy forging of claim 31, wherein the alloy is an austenitic stainless steel alloy having a composition as set out in UNS N08367.
  • 39. The non-magnetic alloy forging of claim 31, wherein a nominal composition of the alloy comprises, in weight percentages, 0.03 carbon, 0.30 silicon, 15.1 manganese, 15.3 chromium, 2.1 molybdenum, 2.3 nickel, 0.4 nitrogen, incidental impurities, and balance iron.
  • 40. The non-magnetic alloy forging of claim 31, wherein the alloy is an austenitic alloy comprising chromium, cobalt, copper, iron, manganese, molybdenum, nickel, carbon, nitrogen, tungsten, incidental impurities, and, optionally, trace elements.
  • 41. The non-magnetic alloy forging of claim 40, wherein the alloy further comprises at least one of aluminum, silicon, titanium, boron, phosphorus, sulfur, niobium, tantalum, ruthenium, vanadium, and zirconium.
  • 42. The non-magnetic alloy forging of claim 31, wherein the alloy comprises, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 43. The non-magnetic alloy forging of claim 31, wherein the alloy consists of, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 44. The non-magnetic alloy forging of claim 31, wherein the alloy has a magnetic permeability value (μr) less than 1.01.
  • 45. The non-magnetic alloy forging of claim 31, wherein the alloy has a magnetic permeability value (μr) less than 1.005.
  • 46. The non-magnetic alloy forging of claim 31, wherein the alloy has a magnetic permeability value (μr) less than 1.001.
  • 47. A non-magnetic alloy forging comprising: a circular cross-section with a diameter greater than 5.25 inches; andat least one mechanical property that is substantially uniform throughout a cross-section of the forging, wherein the alloy is an austenitic alloy comprising chromium, iron, manganese, molybdenum, nickel, carbon, nitrogen, incidental impurities, and, optionally, trace elements.
  • 48. The non-magnetic alloy forging of claim 47, wherein the alloy further comprises at least one of cobalt, copper, tungsten, aluminum, silicon, titanium, boron, phosphorus, sulfur, niobium, tantalum, ruthenium, vanadium, and zirconium.
  • 49. The non-magnetic alloy forging of claim 47, wherein a nominal composition of the alloy comprises, in weight percentages, 0.03 carbon, 0.30 silicon, 15.1 manganese, 15.3 chromium, 2.1 molybdenum, 2.3 nickel, 0.4 nitrogen, incidental impurities, and balance iron.
  • 50. The non-magnetic alloy forging of claim 47, wherein the alloy comprises, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 51. The non-magnetic alloy forging of claim 47, wherein the alloy consists of, in weight percentages, up to 0.2 carbon, up to 20 manganese, 0.1 to 1.0 silicon, 14.0 to 28.0 chromium, 15.0 to 38.0 nickel, 2.0 to 9.0 molybdenum, 0.1 to 3.0 copper, 0.08 to 0.9 nitrogen, 0.1 to 5.0 tungsten, 0.5 to 5.0 cobalt, up to 1.0 titanium, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 52. The non-magnetic alloy forging of claim 47, wherein the alloy comprises, in weight percentages, up to 0.05 carbon, 1.0 to 9.0 manganese, 0.1 to 1.0 silicon, 18.0 to 26.0 chromium, 19.0 to 37.0 nickel, 3.0 to 7.0 molybdenum, 0.4 to 2.5 copper, 0.1 to 0.55 nitrogen, 0.2 to 3.0 tungsten, 0.8 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 53. The non-magnetic alloy forging of claim 47, wherein the alloy consists of, in weight percentages, up to 0.05 carbon, 1.0 to 9.0 manganese, 0.1 to 1.0 silicon, 18.0 to 26.0 chromium, 19.0 to 37.0 nickel, 3.0 to 7.0 molybdenum, 0.4 to 2.5 copper, 0.1 to 0.55 nitrogen, 0.2 to 3.0 tungsten, 0.8 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 54. The non-magnetic alloy forging of claim 47, wherein the alloy comprises, in weight percentages, up to 0.05 carbon, 2.0 to 8.0 manganese, 0.1 to 0.5 silicon, 19.0 to 25.0 chromium, 20.0 to 35.0 nickel, 3.0 to 6.5 molybdenum, 0.5 to 2.0 copper, 0.2 to 0.5 nitrogen, 0.3 to 2.5 tungsten, 1.0 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 55. The non-magnetic alloy forging of claim 47, wherein the alloy consists of, in weight percentages, up to 0.05 carbon, 2.0 to 8.0 manganese, 0.1 to 0.5 silicon, 19.0 to 25.0 chromium, 20.0 to 35.0 nickel, 3.0 to 6.5 molybdenum, 0.5 to 2.0 copper, 0.2 to 0.5 nitrogen, 0.3 to 2.5 tungsten, 1.0 to 3.5 cobalt, up to 0.6 titanium, a combined weight percentage of columbium and tantalum no greater than 0.3, up to 0.2 vanadium, up to 0.1 aluminum, up to 0.05 boron, up to 0.05 phosphorus, up to 0.05 sulfur, iron, and incidental impurities.
  • 56. The non-magnetic alloy forging of claim 47, wherein the alloy has a magnetic permeability value (μr) less than 1.01.
  • 57. The non-magnetic alloy forging of claim 47, wherein the alloy has a magnetic permeability value (μr) less than 1.005.
  • 58. The non-magnetic alloy forging of claim 47, wherein the alloy has a magnetic permeability value (μr) less than 1.001.
  • 59. The non-magnetic alloy forging of claim 47, wherein the alloy is free from ferrite.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation application claiming priority under 35 U.S.C. § 120 to co-pending U.S. patent application Ser. No. 13/792,285, filed on Mar. 11, 2013, which patent application is hereby incorporated herein by reference in its entirety.

US Referenced Citations (279)
Number Name Date Kind
2857269 Vordahl Oct 1958 A
2893864 Harris et al. Jul 1959 A
2932886 Althouse Apr 1960 A
2974076 Vordahl Mar 1961 A
3015292 Bridwell Jan 1962 A
3025905 Haerr Mar 1962 A
3060564 Corral Oct 1962 A
3082083 Levy et al. Mar 1963 A
3117471 O'Connell et al. Jan 1964 A
3313138 Spring et al. Apr 1967 A
3379522 Vordahl Apr 1968 A
3436277 Bomberger, Jr. et al. Apr 1969 A
3469975 Bomberger, Jr. et al. Sep 1969 A
3489617 Wuerfel Jan 1970 A
3584487 Carlson Jun 1971 A
3605477 Carlson Sep 1971 A
3615378 Bomberger, Jr. et al. Oct 1971 A
3635068 Watmough et al. Jan 1972 A
3649259 Heitman Mar 1972 A
3676225 Owczarski et al. Jul 1972 A
3686041 Lee Aug 1972 A
3802877 Parris et al. Apr 1974 A
3815395 Sass Jun 1974 A
3835282 Sass et al. Sep 1974 A
3922899 Fremont et al. Dec 1975 A
3979815 Nakanose et al. Sep 1976 A
4053330 Henricks et al. Oct 1977 A
4067734 Curtis et al. Jan 1978 A
4094708 Hubbard et al. Jun 1978 A
4098623 Ibaraki et al. Jul 1978 A
4120187 Mullen Oct 1978 A
4138141 Andersen Feb 1979 A
4147639 Lee et al. Apr 1979 A
4150279 Metcalfe et al. Apr 1979 A
4163380 Masoner Aug 1979 A
4197643 Burstone et al. Apr 1980 A
4229216 Paton et al. Oct 1980 A
4299626 Paton et al. Nov 1981 A
4309226 Chen Jan 1982 A
4472207 Kinoshita Sep 1984 A
4473125 Addudle Sep 1984 A
4482398 Eylon et al. Nov 1984 A
4510788 Ferguson et al. Apr 1985 A
4543132 Berczik et al. Sep 1985 A
4614550 Leonard et al. Sep 1986 A
4631092 Ruckle et al. Dec 1986 A
4639281 Sastry et al. Jan 1987 A
4668290 Wang et al. May 1987 A
4687290 Prussas Aug 1987 A
4688290 Hogg Aug 1987 A
4690716 Sabol et al. Sep 1987 A
4714468 Wang et al. Dec 1987 A
4798632 Yonezawa et al. Jan 1989 A
4799975 Ouchi et al. Jan 1989 A
4808249 Eyelon et al. Feb 1989 A
4842653 Wirth et al. Jun 1989 A
4851055 Eylon et al. Jul 1989 A
4854977 Alheritiere et al. Aug 1989 A
4857269 Wang et al. Aug 1989 A
4878966 Alheritiere et al. Nov 1989 A
4888973 Comley Dec 1989 A
4889170 Mae et al. Dec 1989 A
4917728 Enright Apr 1990 A
4919728 Kohl et al. Apr 1990 A
4943412 Bania et al. Jul 1990 A
4957567 Krueger et al. Sep 1990 A
4975125 Chakrabarti et al. Dec 1990 A
4980127 Parris et al. Dec 1990 A
5026520 Bhowal et al. Jun 1991 A
5032189 Eylon et al. Jul 1991 A
5041262 Gigliotti, Jr. Aug 1991 A
5074907 Amato et al. Dec 1991 A
5080727 Aihara et al. Jan 1992 A
5094812 Dulmaine et al. Mar 1992 A
5141566 Kitayama et al. Aug 1992 A
5156807 Nagata et al. Oct 1992 A
5162159 Tenhover et al. Nov 1992 A
5169597 Davidson et al. Dec 1992 A
5173134 Chakrabarti et al. Dec 1992 A
5201457 Kitayama et al. Apr 1993 A
5244517 Kimura et al. Sep 1993 A
5256369 Ogawa et al. Oct 1993 A
5264055 Champin et al. Nov 1993 A
5277718 Paxson et al. Jan 1994 A
5310522 Culling May 1994 A
5330591 Vasseur Jul 1994 A
5332454 Meredith et al. Jul 1994 A
5332545 Love Jul 1994 A
5342458 Adams et al. Aug 1994 A
5358586 Schutz Oct 1994 A
5359872 Nashiki Nov 1994 A
5360496 Kuhlman et al. Nov 1994 A
5374323 Kuhlman et al. Dec 1994 A
5399212 Chakrabarti et al. Mar 1995 A
5442847 Semiatin et al. Aug 1995 A
5472526 Gigliotti, Jr. Dec 1995 A
5494636 Dupioron et al. Feb 1996 A
5509979 Kimura Apr 1996 A
5516375 Ogawa et al. May 1996 A
5520879 Saito et al. May 1996 A
5527403 Schirra et al. Jun 1996 A
5545262 Hardee et al. Aug 1996 A
5545268 Yashiki et al. Aug 1996 A
5547523 Blankenship et al. Aug 1996 A
5558728 Kobayashi et al. Sep 1996 A
5580665 Taguchi et al. Dec 1996 A
5600989 Segal et al. Feb 1997 A
5649280 Blankenship et al. Jul 1997 A
5658403 Kimura Aug 1997 A
5662745 Takayama et al. Sep 1997 A
5679183 Takagi et al. Oct 1997 A
5698050 El-Soudani Dec 1997 A
5758420 Schmidt et al. Jun 1998 A
5759305 Benz et al. Jun 1998 A
5759484 Kashii et al. Jun 1998 A
5795413 Gorman Aug 1998 A
5871595 Ahmed et al. Feb 1999 A
5896643 Tanaka Apr 1999 A
5897830 Abkowitz et al. Apr 1999 A
5904204 Teraoka et al. May 1999 A
5954724 Davidson Sep 1999 A
5980655 Kosaka Nov 1999 A
6002118 Kawano et al. Dec 1999 A
6032508 Ashworth et al. Mar 2000 A
6044685 Delgado et al. Apr 2000 A
6053993 Reichman et al. Apr 2000 A
6059904 Benz et al. May 2000 A
6071360 Gillespie Jun 2000 A
6077369 Kusano et al. Jun 2000 A
6127044 Yamamoto et al. Oct 2000 A
6132526 Carisey Oct 2000 A
6139659 Takahashi et al. Oct 2000 A
6143241 Hajaligol et al. Nov 2000 A
6187045 Fehring et al. Feb 2001 B1
6197129 Zhu et al. Mar 2001 B1
6200685 Davidson Mar 2001 B1
6209379 Nishida et al. Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6228189 Oyama et al. May 2001 B1
6250812 Ueda et al. Jun 2001 B1
6258182 Schetky et al. Jul 2001 B1
6284071 Suzuki et al. Sep 2001 B1
6332935 Gorman et al. Dec 2001 B1
6334350 Shin et al. Jan 2002 B1
6334912 Ganin et al. Jan 2002 B1
6384388 Anderson et al. May 2002 B1
6387197 Bewlay et al. May 2002 B1
6391128 Ueda et al. May 2002 B2
6399215 Zhu et al. Jun 2002 B1
6402859 Ishii et al. Jun 2002 B1
6409852 Lin et al. Jun 2002 B1
6532786 Luttgeharm Mar 2003 B1
6536110 Smith et al. Mar 2003 B2
6539607 Fehring et al. Apr 2003 B1
6539765 Gates Apr 2003 B2
6558273 Kobayashi et al. May 2003 B2
6561002 Okada et al. May 2003 B2
6569270 Segal May 2003 B2
6576068 Grubb et al. Jun 2003 B2
6607693 Saito et al. Aug 2003 B1
6632304 Oyama et al. Oct 2003 B2
6632396 Tetjukhin et al. Oct 2003 B1
6663501 Chen Dec 2003 B2
6726784 Oyama et al. Apr 2004 B2
6742239 Lee et al. Jun 2004 B2
6764647 Aigner et al. Jul 2004 B2
6773520 Fehring et al. Aug 2004 B1
6786985 Kosaka et al. Sep 2004 B2
6800153 Ishii et al. Oct 2004 B2
6823705 Fukada et al. Nov 2004 B2
6908517 Segal et al. Jun 2005 B2
6918971 Fujii et al. Jul 2005 B2
6932877 Raymond et al. Aug 2005 B2
6971256 Okada et al. Dec 2005 B2
7008491 Woodfield Mar 2006 B2
7010950 Cai et al. Mar 2006 B2
7032426 Durney et al. Apr 2006 B2
7037389 Barbier et al. May 2006 B2
7038426 Hill May 2006 B2
7081173 Bahar et al. Jul 2006 B2
7096596 Hernandez, Jr. et al. Aug 2006 B2
7132021 Kuroda et al. Nov 2006 B2
7152449 Durney et al. Dec 2006 B2
7264682 Chandran et al. Sep 2007 B2
7269986 Pfaffmann et al. Sep 2007 B2
7332043 Tetyukhin et al. Feb 2008 B2
7410610 Woodfield et al. Aug 2008 B2
7438849 Kuramoto et al. Oct 2008 B2
7449075 Woodfield et al. Nov 2008 B2
7536892 Amino et al. May 2009 B2
7559221 Horita et al. Jul 2009 B2
7601232 Fonte Oct 2009 B2
7611592 Davis et al. Nov 2009 B2
7708841 Sailer et al. May 2010 B2
7837812 Marquardt et al. Nov 2010 B2
7879286 Miracle et al. Feb 2011 B2
7947136 Saller May 2011 B2
7984635 Callebaut et al. Jul 2011 B2
8037730 Polen et al. Oct 2011 B2
8043446 Jung et al. Oct 2011 B2
8048240 Hebda et al. Nov 2011 B2
8128764 Miracle et al. Mar 2012 B2
8211548 Chun et al. Jul 2012 B2
8316687 Slattery Nov 2012 B2
8336359 Werz Dec 2012 B2
8408039 Cao et al. Apr 2013 B2
8430075 Qiao et al. Apr 2013 B2
8454765 Saller et al. Jun 2013 B2
8499605 Bryan Aug 2013 B2
8551264 Kosaka et al. Oct 2013 B2
8568540 Marquardt et al. Oct 2013 B2
8578748 Huskamp et al. Nov 2013 B2
8597442 Hebda et al. Dec 2013 B2
8597443 Hebda et al. Dec 2013 B2
8608913 Shim et al. Dec 2013 B2
8613818 Forbes Jones et al. Dec 2013 B2
8623155 Marquardt et al. Jan 2014 B2
8652400 Forbes Jones et al. Feb 2014 B2
8679269 Goller et al. Mar 2014 B2
8834653 Bryan Sep 2014 B2
8919168 Valiev et al. Dec 2014 B2
9034247 Suzuki et al. May 2015 B2
9050647 Thomas et al. Jun 2015 B2
9192981 Forbes Jones et al. Nov 2015 B2
9206497 Bryan et al. Dec 2015 B2
9255316 Bryan Feb 2016 B2
9327342 Oppenheimer et al. May 2016 B2
9732408 Sanz et al. Aug 2017 B2
20020033717 Matsuo Mar 2002 A1
20030168138 Marquardt Sep 2003 A1
20040099350 Manitone et al. May 2004 A1
20040148997 Amino et al. Aug 2004 A1
20040221929 Hebda et al. Nov 2004 A1
20040250932 Briggs Dec 2004 A1
20050047952 Coleman Mar 2005 A1
20050145310 Bewlay et al. Jul 2005 A1
20060045789 Nasserrafi et al. Mar 2006 A1
20060110614 Liimatainen May 2006 A1
20060243356 Oikawa et al. Nov 2006 A1
20070017273 Haug et al. Jan 2007 A1
20070098588 Narita et al. May 2007 A1
20070193662 Jablokov et al. Aug 2007 A1
20070286761 Miracle et al. Dec 2007 A1
20080000554 Yaguchi et al. Jan 2008 A1
20080103543 Li et al. May 2008 A1
20080107559 Nishiyama et al. May 2008 A1
20080202189 Otaki Aug 2008 A1
20080210345 Tetyukhin et al. Sep 2008 A1
20080264932 Hirota Oct 2008 A1
20090000706 Huron et al. Jan 2009 A1
20090183804 Zhao et al. Jul 2009 A1
20090234385 Cichocki et al. Sep 2009 A1
20110180188 Bryan et al. Jul 2011 A1
20110183151 Yokoyama et al. Jul 2011 A1
20120067100 Stefansson et al. Mar 2012 A1
20120076611 Bryan Mar 2012 A1
20120076612 Bryan Mar 2012 A1
20120076686 Bryan Mar 2012 A1
20120279351 Gu et al. Nov 2012 A1
20130062003 Shulkin et al. Mar 2013 A1
20130156628 Forbes Jones et al. Jun 2013 A1
20140041768 Nagao Feb 2014 A1
20140060138 Hebda et al. Mar 2014 A1
20140076468 Marquardt et al. Mar 2014 A1
20140076471 Forbes Jones et al. Mar 2014 A1
20140116582 Forbes Jones et al. May 2014 A1
20140238552 Forbes Jones et al. Aug 2014 A1
20140261922 Thomas et al. Sep 2014 A1
20150129093 Forbes Jones et al. May 2015 A1
20160047024 Bryan Feb 2016 A1
20160138149 Bryan May 2016 A1
20160201165 Foltz, IV Jul 2016 A1
20170058387 Marquardt et al. Mar 2017 A1
20170146046 Foltz, IV May 2017 A1
20170218485 Jones et al. Aug 2017 A1
20170321313 Thomas et al. Nov 2017 A1
20170349977 Forbes Jones et al. Dec 2017 A1
20180016670 Bryan Jan 2018 A1
20180195105 Bryan Jul 2018 A1
Foreign Referenced Citations (155)
Number Date Country
2787980 Jul 2011 CA
1070230 Mar 1993 CN
1194671 Sep 1998 CN
1403622 Mar 2003 CN
1816641 Aug 2006 CN
101104898 Jan 2008 CN
101205593 Jun 2008 CN
101294264 Oct 2008 CN
101684530 Mar 2010 CN
101637789 Jun 2011 CN
102212716 Oct 2011 CN
102816953 Dec 2012 CN
19743802 Mar 1999 DE
10128199 Dec 2002 DE
102010009185 Nov 2011 DE
0066361 Dec 1982 EP
0109350 May 1984 EP
0320820 Jun 1989 EP
0535817 Apr 1995 EP
0611831 Jan 1997 EP
0834580 Apr 1998 EP
0870845 Oct 1998 EP
0707085 Jan 1999 EP
0683242 May 1999 EP
0969109 Jan 2000 EP
1083243 Mar 2001 EP
1136582 Sep 2001 EP
1302554 Apr 2003 EP
1302555 Apr 2003 EP
1433863 Jun 2004 EP
1471158 Oct 2004 EP
1605073 Dec 2005 EP
1612289 Jan 2006 EP
1375690 Mar 2006 EP
1717330 Nov 2006 EP
1882752 Jan 2008 EP
2028435 Feb 2009 EP
2281908 Feb 2011 EP
1546429 Jun 2012 EP
2545104 Nov 1984 FR
847103 Sep 1960 GB
1170997 Nov 1969 GB
1433306 Apr 1976 GB
2151260 Jul 1985 GB
2337762 Dec 1999 GB
55-113865 Sep 1980 JP
57-62820 Apr 1982 JP
57-62846 Apr 1982 JP
S58-210158 Dec 1983 JP
60-046358 Mar 1985 JP
60-100655 Jun 1985 JP
S61-060871 Mar 1986 JP
S61-217564 Sep 1986 JP
62-109956 May 1987 JP
62-127074 Jun 1987 JP
62-149859 Jul 1987 JP
S62-227297 Oct 1987 JP
S62-247023 Oct 1987 JP
S63-49302 Mar 1988 JP
63-188426 Aug 1988 JP
1-279736 Nov 1989 JP
H01-272750 Nov 1989 JP
2-205661 Aug 1990 JP
3-134124 Jun 1991 JP
H03-138343 Jun 1991 JP
H03-166350 Jul 1991 JP
H03-264618 Nov 1991 JP
H03-274238 Dec 1991 JP
4-74856 Mar 1992 JP
4-103737 Apr 1992 JP
4-143236 May 1992 JP
4-168227 Jun 1992 JP
5-59510 Mar 1993 JP
5-117791 May 1993 JP
5-195175 Aug 1993 JP
H05-293555 Nov 1993 JP
H06-93389 Apr 1994 JP
8-300044 Nov 1996 JP
9-143650 Jun 1997 JP
9-194969 Jul 1997 JP
9-215786 Aug 1997 JP
H10-128459 May 1998 JP
H10-306335 Nov 1998 JP
H11-21642 Jan 1999 JP
H11-309521 Nov 1999 JP
H11-319958 Nov 1999 JP
11-343528 Dec 1999 JP
11-343548 Dec 1999 JP
2000-153372 Jun 2000 JP
2000-234887 Aug 2000 JP
2001-71037 Mar 2001 JP
2001-081537 Mar 2001 JP
2001-343472 Dec 2001 JP
2002-69591 Mar 2002 JP
2002-146497 May 2002 JP
2003-55749 Feb 2003 JP
2003-74566 Mar 2003 JP
2003-285126 Oct 2003 JP
2003-334633 Nov 2003 JP
2004-131761 Apr 2004 JP
2005-281855 Oct 2005 JP
2007-291488 Nov 2007 JP
2007-327118 Dec 2007 JP
2008-200730 Sep 2008 JP
2009-138218 Jun 2009 JP
WO 2009142228 Nov 2009 JP
2009-299110 Dec 2009 JP
2009-299120 Dec 2009 JP
2010-70833 Apr 2010 JP
2012-140690 Jul 2012 JP
2015-54332 Mar 2015 JP
920004946 Jun 1992 KR
10-2005-0087765 Aug 2005 KR
10-2009-0069647 Jul 2009 KR
2003417 Nov 1993 RU
1131234 Oct 1994 RU
2156828 Sep 2000 RU
2197555 Jul 2001 RU
2172359 Aug 2001 RU
2217260 Nov 2003 RU
2234998 Aug 2004 RU
2269584 Feb 2006 RU
2288967 Dec 2006 RU
2364660 Aug 2009 RU
2368695 Sep 2009 RU
2378410 Jan 2010 RU
2392348 Jun 2010 RU
2393936 Jul 2010 RU
2441089 Jan 2012 RU
534518 Jan 1977 SU
631234 Nov 1978 SU
1077328 May 1982 SU
1135798 Jan 1985 SU
1088397 Feb 1991 SU
38805 May 2001 UA
40862 Aug 2001 UA
A200613448 Jun 2008 UA
WO 9817836 Apr 1998 WO
WO 9822629 May 1998 WO
WO 0236847 May 2002 WO
WO 02070763 Sep 2002 WO
WO 02086172 Oct 2002 WO
WO 02090607 Nov 2002 WO
WO 2004101838 Nov 2004 WO
WO 2007084178 Jul 2007 WO
WO 2007114439 Oct 2007 WO
WO 2007142379 Dec 2007 WO
WO 2008017257 Feb 2008 WO
WO 2009082498 Jul 2009 WO
WO 2010084883 Jul 2010 WO
WO 2012063504 May 2012 WO
WO 2012147742 Nov 2012 WO
WO2012147742 Nov 2012 WO
WO 2013081770 Jun 2013 WO
WO 2013130139 Sep 2013 WO
Non-Patent Literature Citations (414)
Entry
Handa, Sukhdeep Singh, “Precipitation of Carbides in a Ni-based Superalloy”, Degree Project for Master of Science with Specialization in Manufacturing Department of Engineering Science, University West, Jun. 30, 2014, 42 pages.
Office Action dated Feb. 17, 2016 in U.S. Appl. No. 12/691,952.
Office Action dated Jun. 28, 2016 in U.S. Appl. No. 12/691,952.
Office Action dated Mar. 30, 2016 in U.S. Appl. No. 13/108,045.
Advisory Action Before the Filing of an Appeal Brief dated Mar. 17, 2016 in U.S. Appl. No. 13/777,066.
Office Action dated Jul. 22, 2016 in U.S. Appl. No. 13/777,066.
Office Action dated Feb. 12, 2016 in U.S. Appl. No. 13/844,196.
Advisory Action Before the Filing of an Appeal Brief dated Jun. 15, 2016 in U.S. Appl. No. 13/844,196.
Office Action dated Mar. 17, 2016 in U.S. Appl. No. 14/093,707.
Advisory Action Before the Filing of an Appeal Brief dated Jun. 10, 2016 in U.S. Appl. No. 14/093,707.
Office Action dated Jul. 25, 2016 in U.S. Appl. No. 14/077,699.
Office Action dated Mar. 16, 2016 in U.S. Appl. No. 15/005,281.
U.S. Appl. No. 14/948,941, filed Nov. 23, 2015.
Office Action dated Apr. 5, 2016 in U.S. Appl. No. 14/028,588.
Office Action dated Aug. 8, 2016 in U.S. Appl. No. 14/028,588.
Office Action dated Apr. 13, 2016 in U.S. Appl. No. 14/083,759.
Office Action dated May 6, 2016 in U.S. Appl. No. 14/083,759.
“Allvac TiOsteum and TiOstalloy Beat Titanium Alloys”, printed from www.allvac.com/allvac/pages/Titanium/TiOsteum.htm on Nov. 7, 2005.
“Datasheet: Timetal 21S”, Alloy Digest, Advanced Materials and Processes (Sep. 1998), pp. 38-39.
“Heat Treating of Nonferrous Alloys: Heat Treating of Titanium and Titanium Alloys,” Metals Handbook. ASM Handbooks Online (2002).
“Stryker Orthopaedics TMZF® Alloy (UNS R58120)”, printed from www.allvac.com/allvac/pages/Titanium/UNSR58120.htm on Nov. 7, 2005.
“Technical Data Sheet: Allvac® Ti-15Mo Beta Titanium Alloy” (dated Jun. 16, 2004).
ASM Materials Engineering Dictionary, “Blasting or Blast Cleaning,” J.R. Davis Ed., ASM International, Materials Park. OH (1992) p. 42.
“ASTM Designation F1801-97 Standard Practice for Corrosion Fatigue Testing of Metallic Implant Materials” ASTM International (1997) pp. 876-880.
“ASTM Designation F2066-01 Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications (UNS R58150),” ASTM International (2000) pp. 1-4.
AL-6XN® Alloy (UNS N08367) Allegheny Ludlum Corporation, 2002, 56 pages.
Allegheny Ludlum. “High Performance Metals for Industry, High Strength. High Temperature, and Corrosion-Resistant Alloys”, (2000) pp. 1-8.
Allvac, Product Specification for “Allvac Ti-15 Mo,” available at http://www.allvac.com/allvac/pages/Titanium/Ti15MO.htm, last visited Jun. 9, 2003 p. 1 of 1.
Altemp® A286 Iron-Base Superalloy (UNS Designation S66286) Allegheny Ludlum Technical Data Sheet Blue Sheet, 1998, 8 pages.
ASM Materials Engineering Dictionary, J.R. Davis Ed., ASM International, Materials Park, OH (1992) p. 39.
ATI Datalloy 2 Alloy. Technical Data Sheet, ATI Allvac, Monroe, NC, SS-844, Version1, Sep. 17, 2010, 8 pages.
ATI 38-644™ Beta Titanium Alloy Technical Data Sheet, UNS R58640, Version 1, Dec. 21, 2011, 4 pages.
ATI 690 (UNS N06690) Nickel-Base, ATI Allvac, Oct. 5, 2010, 1 page.
Isothermal forging definition, ASM Materials Engineering Dictionary, J.R. Davis ed., Fifth Printing, Jan. 2006, ASM International, p. 238.
Isothermal forging, printed from http://thelibraryofmanufacturing.com/isothermal_forging.html, accessed Jun. 5, 2013, 3 pages.
Adiabatic definition, ASM Materials Engineering Dictionary. J.R. Davis ed., Fifth Printing, Jan. 2006, ASM International, p. 9.
Adiabatic process—Wikipedia, the free encyclopedia, printed from http://en.wikipedia.org/wiki/Adiabatic_process. accessed May 21, 2013, 10 pages.
ASTM Designation F 2066-01, “Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications (UNS R58150)”. May 2001, 7 pages.
ASTM Designation F 2066/F2066M-13, “Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications (UNS R58150)”, Nov. 2013, 6 pages.
ATI 6-2-4-2™ Alloy Technical Data Sheet. Version 1, Feb. 26, 2012, 4 pages.
ATI 6-2-4-6™ Titanium Alloy Data Sheet, accessed Jun. 26, 2012.
ATI 425, High-Strength Titanium Alloy, Alloy Digest, ASM International, Jul. 2004, 2 pages.
ATI 425® Alloy Applications, retrieved from http://web.archive.org/web/20100704044024/http://www.alleghenytechnologies.com/AT1425/applications/default.asp#other, Jul. 4, 2010. Way Back Machine, 2 pages.
ATI 425® Alloy, Technical Data Sheet, retrieved from http://web.archive.org/web/20100703120218/http://www.alleghenytechnologies.com/ATI425/specifications/datasheet.asp, Jul. 3, 2010, Way Back Machine, 5 pages.
Ati 4250-MIL Alloy, Technical Data Sheet, Version 1, May 28, 2010, pp. 1-5.
Ati 425®-MIL Alloy, Technical Data Sheet, Version 2, Aug. 16, 2010, 5 pages.
Ati 425®-MIL Titanium Alloy, Mission Critical Metallics®, Version 3, Sep. 10, 2009, pp. 1-4.
ATI 425® Titanium Alloy, Grade 38 Technical Data Sheet, Version 1, Feb. 1. 2012, pp. 1-6.
ATI 425® Alloy, Grade 38, Titanium Alloy, UNS R54250, Technical Data Sheet, Version 1. Nov. 25, 2013, pp. 1-6.
ATI 500-MIL™ Mission Critical Metallics®, High Hard Specialty Steel Armor, Version 4, Sep. 10, 2009, pp. 1-4.
ATI 600-MIL®, Preliminary Draft Data Sheet, Ultra High Hard Specialty Steel Armor, Version 4, Aug. 10, 2010, pp. 1-3.
ATI 600-MIL™, Preliminary Draft Data Sheet, Ultra High Hard Specialty Steel Armor, Version 3, Sep. 10, 2009, pp. 1-3.
ATI Aerospace Materials Development, Mission Critical Metallics, Apr. 30, 2008, 17 pages.
ATI Ti—15Mo Beta Titanium Alloy Technical Data Sheet, ATI Allvac, Monroe, NC, Mar. 21, 2008, 3 pages.
ATI Titanium 6Al—2Sri—4Zr—2Mo Alloy, Technical Data Sheet, Version 1, Sep. 17, 2010, pp. 1-3.
ATI Titanium 6Al—4V Alloy, Mission Critical Metallics®, Technical Data Sheet, Version 1, Apr. 22, 2010, pp. 1-3.
ATI Wah Chang, ATI™ 425 Titanium Alloy (Ti—4Al—2.5V—1.5Fe-0.2502). Technical Data Sheet, 2004, pp. 1-5.
ATI Wah Chang, Titanium and Titanium Alloys, Technical Data Sheet, 2003, pp. 1-16.
Beal et al., “Forming of Titanium and Titanium Alloys-Cold Forming”, ASM Handbook, 2006, ASM International, vol. 14B, 2 pages.
Beal et al., “Forming of Titanium and Titanium Alloys—Cold Forming”, ASM Handbook, 2006, ASM International. Revised by ASM Committee on Forming Titanium Alloys, vol. 14B, 2 pages.
Beal et al., “Forming of Titanium and Titanium Alloys—Cold Forming”, ASM Handbook, 2006, vol. 14B, pp. 656-669.
Bewlay, et al., “Superplastic roll forming of Ti alloys”, Materials and Design, 21, 2000, pp. 287-295.
Bowen, A. W., “Omega Phase Embrittlement in Aged Ti-15%Mo,” Scripta Metallurgica, vol. 5, No. 8 (1971) pp. 709-715.
Bowen, A. W., “On the Strengthening of a Metastable b-Titanium Alloy by w- and a-Precipitation” Royal Aircraft Establishment Technical Memorandum Mat 338, (1980) pp. 1-15 and Figs 1-5.
Boyer, Rodney R., “Introduction and Overview of Titanium and Titanium Alloys: Applications,” Metals Handbook, ASM Handbooks Online (2002).
Boyko et al., “Modeling of the Open-Die and Radial Forging Processes for Alloy 718”, Superalloys 718, 625 and Various Derivatives: Proceedings of the International Symposium on the Metallurgy and Applications of Superalloys 718, 625 and Various Derivatives, held Jun. 23, 1992, pp. 107-124.
Cain, Patrick, “Warm forming aluminum magnesium components; How it can optimize formability, reduce springback”, Aug. 1, 2009, from http://www.thefabricator.com/article/presstechnology/warm-forming-aluminum-magnesium-components. 3 pages.
Callister, Jr., William D., Materials Science and Engineering, An Introduction, Sixth Edition, John Wiley & Sons, pp. 180-184 (2003).
Craighead et al., “Ternary Alloys of Titanium”, Journal of Metals, Mar. 1950, Transactions AIME, vol. 188, pp. 514-538.
Craighead et al., “Titanium Binary Alloys”, Journal of Metals, Mar. 1950, Transactions AIME, vol. 188, pp. 485-513.
Desrayaud et al., “A novel high straining process for bulk materials—The development of a multipass forging system by compression along three axes”, Journal of Materials Processing Technology, 172, 2006, pp. 152-158.
Diderrich et al., “Addition of Cobalt to the Ti—6Al—4V Alloy”, Journal of Metals, May 1968, pp. 29-37.
DiDomizio, et al., “Evaluation of a Ni—20Cr Alloy Processed by Multi-axis Forging”. Materials Science Forum vols. 503-504, 2006, pp. 793-798.
Disegi, J. A., “Titanium Alloys for Fracture Fixation Implants,” Injury International Journal of the Care of the Injured, vol. 31 (2000) pp. S-D14-17.
Disegi, John, Wrought Titanium-15% Molybdenum Implant Material, Original Instruments and Implants of the Association for the Study of International Fixation—AO ASIF, Oct. (2003).
Donachie Jr., M.J., “Titanium A Technical Guide” 1988, ASM, pp. 39 and 46-50.
Donachie Jr., M.J., “Heat Treating Titanium and Its Alloys”, Heat Treating Process, Jun./Jul. 2001, pp. 47-49. 52-53, and 56-57.
Duflou et al.. “A method for force reduction in heavy duty bending”, Int. J. Materials and Product Technology, vol. 32. No. 4, 2008, pp. 460-475.
Elements of Metallurgy and Engineering Alloys, Editor F. C. Campbell, ASM International, 2008, Chapter 8, p. 125.
Fedotov, S.G. et al., “Effect of Aluminum and Oxygen on the Formation of Metastable Phases in Alloys of Titanium with .beta.-Stabilizing Elements”, Izvestiya Akademii Nauk SSSR, Metally (1974) pp. 121-126.
Froes, F.H. et al., “The Processing Window for Grain Size Control in Metastable Beta Titanium Alloys”, Beta Titanium Alloys in the 80's, ed. by R. Boyer and H. Rosenberg, AIME, 1984, pp. 161-164.
Gigliotti et al., “Evaluation of Superplastically Roll Formed VT-25”, Titamium'99. Science and Technology, 2000. pp. 1581-1588.
Gilbert et al., “Heat Treating of Titanium and Titanium Alloys—Solution Treating and Aging”, ASM Handbook, 1991, ASM International, vol. 4, pp. 1-8.
Glazunov et al., Structural Titanium Alloys, Moscow, Metallurgy, 1974, pp. 264-283.
Greenfield, Dan L., News Release, ATI Aerospace Presents Results of Year-Long Characterization Program for New ATI 425 Alloy Titanium Products at Aeromat 2010, Jun. 21, 2010, Pittsburgh, Pennsylvania, 1 page.
Harper, Megan Lynn, “A Study of the Microstructural and Phase Evolutions in Timetal 555”, Jan. 2004, retrieved from http://www.ohiolink.edu/etd/send-pdf.cgi/harper%20megan%20lynn.pdf?acc_num=osu1132165471 on Aug. 10, 2009, 92 pages.
Hawkins, M.J. et al., “Osseointegration of a New Beta Titanium Alloy as Compared to Standard Orthopaedic Implant Metals,” Sixth World Biomaterials Congress Transactions, Society for Biomaterials, 2000, p. 1083.
Ho, W.F. et al., “Structure and Properties of Cast Binary Ti—Mo Alloys” Biomaterials, vol. 20 (1999) pp. 2115-2122.
Hsieh, Chih-Chun and Weite Wu, “Overview of Intermetallic Sigma Phase Precipitation in Stainless Steels”, ISRN Metallurgy, vol. 2012, 2012, pp. 1-16.
Imatani et al., “Experiment and simulation for thick-plate bending by high frequency inductor”, Acta Metallurgica Sinica, vol. 11, No. 6, Dec. 1998, pp. 449-455.
Imayev et al., “Formation of submicrocrystalline structure in TiAl intermetallic compound”, Journal of Materials Science, 27, 1992, pp. 4465-4471.
Imayev et al., “Principles of Fabrication of Bulk Ultrafine-Grained and Nanostructured Materials by Multiple Isothermal Forging”, Materials Science Forum, vols. 638-642, 2010, pp. 1702-1707.
Imperial Metal Industries Limited, Product Specification for “IMI Titanium 205”, The Kynoch Press (England) pp. 1-5. (1965).
Jablokov et al., “Influence of Oxygen Content on the Mechanical Properties of Titanium-35Niobium-7Zirconium-5Tantalum Beta Titanium Alloy,” Journal of ASTM International, Sep. 2005, vol. 2, No. 8, 2002, pp. 1-12.
Jablokov et al., “The Application of Ti-15 Mo Beta Titanium Alloy in High Strength Orthopaedic Applications”, Journal of ASTM International, vol. 2, Issue 8 (Sep. 2005) (published online Jun. 22, 2005).
Kovtun, et al., “Method of calculating induction heating of steel sheets during thermomechanical bending”, Kiev, Nikolaev, translated from Problemy Prochnosti. No. 5, pp. 105-110, May 1978, original article submitted Nov. 27, 1977, pp. 600-606.
Lampman, S., “Wrought and Titanium Alloys,” ASM Handbooks Online, ASM International, 2002.
Lee et al., “An electromagnetic and thermo-mechanical analysis of high frequency induction heating for steel plate bending”, Key Engineering Materials, vols. 326-328, 2006, pp. 1283-1286.
Lemons, Jack et al., “Metallic Biomaterials for Surgical Implant Devices,” BONEZone, Fat (2002) p. 5-9 and Table.
Long, M. et al., “Friction and Surface Behavior of Selected Titanium Alloys During Reciprocating-Sliding Motion”, Wear, 249(1-2), Jan. 17, 2001. 158-168.
Lütjering, G. and J.C. Williams, Titanium, Springer, New York (2nd ed. 2007) p. 24.
Lutjering, G. and Williams, J.C., Titanium, Springer-Verlag, 2003, Ch. 5: Alpha+Beta Alloys, p. 177-201.
Marquardt et al., “Beta Titanium Alloy Processed for High Strength Orthopaedic Applications, ”Journal of ASTM International, vol. 2, Issue 9 (Oct. 2005) (published online Aug. 17, 2005).
Marquardt, Brian, “Characterization of Ti—15Mo for Orthopaedic Applications, ”TMS 2005 Annual Meeting: Technical Program, San Francisco, CA, Feb. 13-17, 2005 Abstract, p. 239.
Marquardt, Brian, “Ti—15Mo Beta Titanium Alloy Processed for High Strength Orthopaedic Applications,” Program and Abstracts for The Symposium on Titanium, Niobium, Zirconium, and Tantalum for Medical and Surgical Applications, Washington, D.C., Nov. 9-10, 2004 Abstract, p. 11.
Marte et al., “Structure and Properties of NI—20CR Produced by Severe Plastic Deformation”, Ultrafine Grained Materials IV, 2006, pp. 419-424.
Materials Properties Handbook: Titanium Alloys, Eds. Boyer et al, ASM International, Materials Park, OH, 1994, pp. 524-525.
Martinelli, Gianni and Roberto Peroni, “Isothermal forging of Ti-alloys for medical applications”, Presented at the 11th World Conference on Titanium, Kyoto, Japan, Jun. 4-7, 2007, accessed Jun. 5, 2013, 5 pages.
McDevitt, et al., Characterization of the Mechanical Properties of ATI 425 Alloy According to the Guidelines of the Metallic Materials Properties Development & Standardization Handbook, Aeromat 2010 Conference and Exposition: Jun. 20-24, 2010, Bellevue, WA, 23 pages.
Metals Handbook, Desk Edition. 2nd ed., J. R. Davis ed., ASM International, Materials Park, Ohio (1998), pp. 575-588.
Military Standard, Fastener Test Methods, Method 13, Double Shear Test, MIL-STD-1312-13, Jul. 26, 1985, superseding MIL-STD-1312 (in part) May 31. 1967, 8 pages.
Military Standard, Fastener Test Methods, Method 13, Double Shear Test, MIL-STD-1312-13A, Aug. 23, 1991, superseding MIL-STD-13, Jul. 26, 1985, 10 pages.
Murray, J.L., et al., Binary Alloy Phase Diagrams, Second Edition, vol. 1, Ed. Massalski, Materials Park, OH; ASM International; 1990, p. 547.
Murray, J.L., The Mn—Ti (Manganese-Titanium) System, Bulletin of Alloy Phase Diagrams, vol. 2, No. 3 (1981) p. 334-343.
Myers, J., “Primary Working, A lesson from Titanium and its Alloys.” ASM Course Book 27 Lesson, Test 9, Aug. 1994, pp. 3-4.
Naik, Uma M. et al., Omega and Alpha Precipitation in Ti—15Mo Alloy, Titanium '80 Science and Technology—Proceedings of the 4th International Conference on Titanium, H. Kimura & O. Izumi Eds. May 19-22, 1980 pp. 1335-1341.
Nguyen et al., “Analysis of bending deformation in triangle heating of steel plates with induction heating process using laminated plate theory”. Mechanics Based Design of Structures and Machines, 37, 2009, pp. 228-246.
Nishimura, T. “Ti—15Mo—5Zr—3Al”. Materials Properties Handbook: Titanium Alloys, eds. R. Boyer et al., ASM International, Materials Park, OH, 1994, p. 949.
Novikov et al., 17.2.2 Deformable (α + β) alloys, Chapter 17, Titanium and its Alloys, Metal Science, vol. II Thermal Treatment of the Alloy, Physical Matallurgy, 2009, pp. 357-360.
Nutt, Michael J. et al., The Application of Ti-15 Beta Titanium Alloy in High Strength Structural Orthopaedic Applications, Program and Abstracts for The Symposium on Titanium Niobium, Zirconium, and Tantalum for Medical and Surgical Applications, Washington, D.C., Nov. 9-10, 2004 Abstract, p. 12.
Nyakana, et al.. “Quick Reference Guide for β Titanium Alloys in the 00s”, Journal of Materials Engineering and Performance, vol. 14, No. 6, Dec. 1, 2005, pp. 799-811.
Pennock, G.M. et al., “The Control of a Precipitation by Two Step Ageing in β Ti—15Mo,” Titanium '80 Science and Technology—Proceedings of the 4th International Conference on Titanium, H. Kimura & O. Izumi Eds. May 19-22, 1980 pp. 1344-1350.
Prasad, Y.V.R.K. et al. “Hot Deformation Mechanism in Ti—6Al—4V with Transformed B Starting Microstructure: Commercial v. Extra Low Interstitial Grade”, Materials Science and Technology, Sep. 2000, vol. 16, pp. 1029-1036.
Qazi. J.I. et al., “High-Strength Metastable Beta-Titanium Alloys for Biomedical Applications,” JOM, Nov. 2004 pp. 49-51.
Roach, M.D., et al., “Comparison of the Corrosion Fatigue Characteristics of CPTi—Grade 4. Ti-6A1-4V ELI, Ti-6A1-7 Nb, and Ti-15 Mo”, Journal of Testing and Evaluation, vol. 2, Issue 7, (Jul./Aug. 2005) (published online Jun. 8, 2005).
Roach, M.D., et al., “Physical, Metallurgical, and Mechanical Comparison of a Low-Nickel Stainless Steel,” Transactions on the 27th Meeting of the Society for Biomaterials, Apr. 24-29, 2001, p. 343.
Roach, M.D., et al., “Stress Corrosion Cracking of a Low-Nickel Stainless Steel,” Transactions of the 27th Annual Meeting of the Society for Biomaterials, 2001, p. 469.
Rudnev et at., “Longitudinal flux indication heating of slabs, bars and strips is no longer “Black Magic:” II”, Industrial Heating, Feb. 1995, pp. 46-48 and 50-51.
Russo, P.A., “Influence of Ni and Fe on the Creep of Beta Annealed Ti-6242S”, Titanium '95: Science and Technology, pp. 1075-1082.
SAE Aerospace Material Specification 4897A (issued Jan. 1997, revised Jan. 2003).
SAE Aerospace, Aerospace Material Specification, Titanium Alloy Bars, Forgings and Forging Stock, 6.0Al—4.0V Annealed, AMS 6931A. Issued Jan. 2004, Revised Feb. 2007, pp. 1-7.
SAE Aerospace, Aerospace Material Specification, Titanium Alloy Bars, Forgings and Forging Stock, 6.0Al—4.0V, Solution Heat Treated and Aged, AMS 6930A, Issued Jan. 2004, Revised Feb. 2006. pp. 1-9.
SAE Aerospace, Aerospace Material Specification, Titanium Alloy, Sheet, Strip, and Plate, 4A—2.5V—1.5Fe, Annealed, AMS 6946A, Issued Oct. 2006, Revised Jun. 2007, pp. 1-7.
Salishchev et al., “Characterization of Submicron-grained Ti—6Al—4V Sheets with Enhanced Superplastic Properties”, Materials Science Forum, Trans Tech Publications, Switzerland, vols. 447-448, 2004. pp. 441-446.
Salishchev et al., “Mechanical Properties of Ti—6Al—4V Titanium Alloy with Submicrocrystalline Structure Produced by Multiaxial Forging”, Materials Science Forum, vols. 584-586, 2008, pp. 783-788.
Salishchev, et al., “Effect of Deformation Conditions on Grain Size and Microstructure Homogeneity of β-Rich Titanium Alloys”, Journal of Materials Engineering and Performance, vol. 14(6), Dec. 2005, pp. 709-716.
Salishchev, G.A., “Formation of submicrocrystalline structure in large size billets and sheets out of titanium alloys”, Institute for Metals Superplasticity Problerns,Ufa, Russia, presented at 2003 NATO Advanced Research Workshop. Kyiv, Ukraine, Sep. 9-13, 2003, 50 pages.
Semiatin, S.L. et al., “The Thermomechanical Processing of Alpha/Beta Titanium Alloys,” Journal of Metals, Jun. 1997, pp. 33-39.
Semiatin et al., “Equal Channel Angular Extrusion of Difficult-to-Work Alloys”, Materials & Design, Elsevier Science Ltd., 21, 2000, pp. 311-322.
Semiatin et al., “Alpha/Beta Heat Treatment of a Titanium Alloy with a Nonuniform Microstructure”, Metallurgical and Materials Transactions A, vol. 38A, Apr. 2007, pp. 910-921.
Shahan et al., “Adiabatic shear bands in titanium and titanium alloys: a critical review”, Materials & Design, vol. 14, No. 4, 1993, pp. 243-250.
SPS Titanium™ Titanium Fasteners, SPS Technologies Aerospace Fasteners, 2003, 4 pages.
Standard Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNS R56400), Designation: F 1472-99. ASTM 1999, pp. 1-4.
Swann, P.R. and J. G. Parr, “Phase Transformations in Titanium-Rich Alloys of Titanium and Cobalt”, Transactions of The Metallurgical Society of AIME, Apr. 1958, pp. 276-279.
Takemoto Y et al., “Tensile Behavior and Cold Workability of Ti—Mo Alloys”, Materials Transactions Japan Inst. Metals Japan, vol. 45, No. 5, May 2004, pp. 1571-1576.
Tamarisakandala, S. et al., “Strain-induced Porosity During Cogging of Extra-Low Interstitial Grade Ti—6Al—4V”, Journal of Materials Engineering and Performance, vol. 10(2), Apr. 2001, pp. 125-130.
Tamirisakandala et al., “Effect of boron on the beta transus of Ti—6Al—4V alloy”, Scripta Materialia, 53, 2005, pp. 217-222.
Tamirisakandala et al., “Powder Metallurgy Ti—6Al—4V—xB Alloys: Processing, Microstructure, and Properties”, JOM, May 2004, pp. 60-63.
Tebbe, Patrick A. and Ghassan T. Kridli, “Warm forming aluminum alloys: an overview and future directions”, Int. J. Materials and Product Technology, vol. 21, Nos. 1-3, 2004, pp. 24-40.
Technical Presentation: Overview of MMPDS Characterization of ATI 425 Alloy, 2012, 1 page.
Ti—6Al—4V, Ti64, 6Al—4V, 6-4, UNS R56400, 1 page.
TIMET 6-6-2 Titanium Alloy (Ti—6Al—6V—2Sn), Annealed, accessed Jun. 27, 2012.
TIMET TIMETAL® 6-2-4-2 (Ti—6Al—2Sn—4Zr—2Mo—0.08Si) Titanium Alloy datasheet, accessed Jun. 26, 2012.
TIMET TIMETAL® 6-2-4-6 Titanium Alloy (Ti—6Al—2Sn—4Zr—6Mo), Typical, accessed Jun. 26, 2012.
Titanium 3Al—8V—6Cr—4Mo—4Zr Beta-C/Grade 19 UNS R58640, 2 pages.
Tokaji, Keiro et al., “The Microstructure Dependence of Fatigue Behavior in Ti—15Mo—5Zr—3Al Alloy,” Materials Science and Engineering A., vol. 213 (1996) pp. 86-92.
Two new α-β titanium alloys, KS Ti-9 for sheet and KS El-F for forging, with mechanical properties comparable to Ti—6Al—4V, Oct. 8, 2002, ITA 2002 Conference in Orlando, Hideto Oyama, Titanium Technology Dept., Kobe Steel, Ltd., 16 pages.
Veeck, S. et al., “The Castability of Ti-5553 Alloy,” Advanced Materials and Processes, Oct. 2004, pp. 47-49.
Weiss, I. et al., “The Processing Window Concept of Beta Titanium Alloys”, Recrystallization '90, ed. by T. Chandra, The Minerals, Metals & Materials Society, 1990, pp. 609-616.
Weiss, I. et al., “Thermomechanical Processing of Beta Titanium Alloys—An Overview,” Material Science and Engineering, A243, 1998, pp. 46-65.
Williams, J., Thermo-mechanical processing of high-performance Ti alloys: recent progress and future needs, Journal of Material Processing Technology, 117 (2001), p. 370-373.
Yakymyshyn et al., “The Relationship between the Constitution and Mechanical Properties of Titanium-Rich Alloys of Titanium and Cobalt”, 1961, vol. 53, pp. 283-294.
Zardiackas, L.D. et al., “Stress Corrosion Cracking Resistance of Titanium Implant Materials,” Transactions of the 27th Annual Meeting of the Society for Biomaterials, (2001).
Zeng et at, Evaluation of Newly Developed Ti-555 High Strength Titanium Fasteners. 17th AeroMat Conference & Exposition, May 18, 2006, 2 pages.
Zhang et al., “Simulation of slip band evolution in duplex Ti—6Al—4V”, Acta Materialia, vol. 58, (2010), Nov. 26, 2009, pp. 1087-1096.
Zherebtsov et al., “Production of submicrocrystalline structure in large-scale Ti—6Al—4V billet by warm severe deformation processing”, Scripta Materialia, 51, 2004, pp. 1147-1151.
Titanium Alloy, Sheet, Strip, and Plate 4Al—2.5V—1.5Fe, Annealed, AMS6946 Rev. B, Aug. 2010, SAE Aerospace, Aerospace Material Specification, 7 pages.
Titanium Alloy, Sheet, Strip, and Plate 6Al—4V, Annealed, AMS 4911L, Jun. 2007, SAE Aerospace, Aerospace Material Specification, 7 pages.
E112-12 Standard Test Methods for Determining Average Grain Size, ASTM International, Jan. 2013, 27 pages.
ATI Datalloy 2 Alloy, Technical Data Sheet, ATI Properties, Inc., Version 1, Jan. 24, 2013, 6 pages.
ATI Al-6XN® Alloy (UNS N08367), ATI Allegheny Ludlum, 2010, 59 pages.
ATI 800™/ATI 800H™/ATI 800AT™ ATI Technical Data Sheet, Nickel-base Alloys (UNS N08800/N08810/N08811), 2012 Allegheny Technologies Incorporated, Version 1, Mar. 9, 2012, 7 pages.
ATI 825™ Technical Data Sheet, Nickel-base Alloy (UNS N08825), 2013 Allegheny Technologies Incorporated, Version 2, Mar. 8, 2013, 5 pages.
ATI 625™ Alloy Technical Data Sheet, High Strength Nickel-base Alloy (UNS N06625), Allegheny Technologies Incorporated, Version 1, Mar. 4, 2012, 3 pages.
ATI 600™ Technical Data Sheet, Nickel-base Alloy (UNS N06600), 2012 Allegheny Technologies Incorporated, Version 1, Mar. 19, 2012, 5 pages.
Bar definition, ASM Materials Engineering Dictionary, J.R. Davis Ed., ASM International, Materials Park, OH (1992) p. 32.
Billet definition, ASM Materials Engineering Dictionary. J.R. Davis Ed., ASM International, Materials Park, OH (1992) p. 40.
Cogging definition, ASM Materials Engineering Dictionary, J.R. Davis Ed., ASM International, Materials Park, OH (1992) p. 79.
Open die press forging definition, ASM Materials Engineering Dictionary, J.R. Davis Ed., ASM International, Materials Park, OH (1992) pp. 298 and 343.
Thermomechanical working definition, ASM Materials Engineering Dictionary, J.R. Davis Ed., ASM International, Materials Park, OH (1992) p. 480.
Ductility definition. ASM Materials Engineering Dictionary, J.R. Davis Ed., ASM International, Materials Park, OH (1992) p. 131.
AFML-TR-76-80 Development of Titanium Alloy Casting Technology, Aug. 1976, 5 pages.
Valiev et al., “Nanostructured materials produced by sever plastic deformation”, Moscow, LOGOS, 2000.
Li et al., “The optimal determination of forging process parameters for Ti—6.5Al—3.5Mo—1.5Zr—0.3Si alloy with thick lamellar microstructure in two phase field based on P-map”, Journal of Materials Processing Technology, vol. 210, Issue 2, Jan. 19, 2010, pp. 370-377.
Buijk, A., “Open-Die Forging Simulation”, Forge Magazine, Dec. 1, 2013. 5 pages.
Herring, D., “Grain Size and Its Influence on Materials Properties”, IndustrialHeating.com, Aug. 2005, pp. 20 and 22.
Inconel® alloy 600, Special Metals Corporation, www.specialmetals.com, Sep. 2008, 16 pages.
Yaylaci et al., “Cold Working & Hot Working & Annealing”, http://yunus.hacettepe.edu.tr/˜selis/teaching/WEBkmu479/Ppt/kmu479Presentations2010/Cold_Hot_Working_Annealing.pdf , 2010, 41 pages.
Superaustenitic, http://www.atimetals.com/products/Pages/superaustenitic.aspx, Nov. 9, 2015, 3 pages.
French, D., “Austenitic Stainless Steel”, The National Board of Boiler and Pressure Vessel Inspectors Bulletin,1992, 3 pages.
Acorn Magazine. outokumpu, NACE International, Feb. 2013, 16 pages.
ATI A286™ Iron Based Superalloy (UNS S66286) Technical Data Sheet, Allegheny Technologies Incorporated, Version 1, Apr. 17, 2012, 9 pages.
ATI A286™ (UNS S66286) Technical Data Sheet, Allegheny Technologies Incorporated, Version 1. Mar. 14, 2012, 3 pages.
Corrosion-Resistant Titanium, Technical Data Sheet, Allegheny Technologies Incorporated, Version 1, Feb. 29, 2012, 5 pages.
ATI 3-2.5™ Titanium (Ti Grade 9) Technical Data Sheet, ATI Wah Chang, 2010, 4 pages.
Grade 9 Ti 3Al 2.5V Alloy (UNS R56320), Jul. 30, 2013. http://www.azom.com/article.aspx?ArticleID=9337, 3 pages.
ATI Ti—6Al—4V, Grade 5, Titanium Alloy (UNS R56400) Technical Data Sheet, Allegheny Technologies Incorporated, Version 1, Jan. 31, 2012. 4 pages.
Panin et al., “Low-cost Titanium Alloys for Titanium-Polymer Layered Composites”, 29th Congress of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, Sep. 7, 2014, 4 pages.
Grade Ti—4.5Al—3V—2Mo—2Fe Alloy, Jul. 9, 2013, http://Amazon.com/article.aspx?ArticieID=9448, 2 pages.
Garside et al., “Mission Critical Metallics® Recent Developments in High-Strength Titanium Fasteners for Aerospace Applications”, ATI, 2013, 21 pages.
Foltz et al., “Recent Developments in High-Strength Titanium Fasteners for Aerospace Applications”, ATI, Oct. 22, 2014, 17 pages.
Kosaka et al., “Superplastic Forming Properties of TIMETAL ®54M”, Henderson Technical Laboratory, Titanium Metals Corporation, ITA, Oct. 2010, Orlando, Florida, 18 pages.
Office Action dated Oct. 19, 2011 in U.S. Appl. No. 12/691,952.
Office Action dated Feb. 2, 2012 in U.S. Appl. No. 12/691,952.
Office Action dated Dec. 23, 2014 in U.S. Appl. No. 12/691,952.
Office Action dated Apr. 23, 2015 in U.S. Appl. No. 12/691,952.
Office Action dated Jul. 28, 2015 in U.S. Appl. No. 12/691,952.
Office Action dated Feb. 20, 2004 in U.S. Appl. No. 10/165,348.
Office Action dated Oct. 26, 2004 in U.S. Appl. No. 10/165,348.
Office Action dated Feb. 16, 2005 in U.S. Appl. No. 10/165,348.
Office Action dated Jul. 25, 2005 in U.S. Appl. No. 10/165,348.
Office Action dated Jan. 3, 2006 in U.S. Appl. No. 10/165,348.
Office Action dated Dec. 16, 2004 in U.S. Appl. No. 10/434,598.
Office Action dated Aug. 17, 2005 in U.S. Appl. No. 10/434,598.
Office Action dated Dec. 19, 2005 in U.S. Appl. No. 10/434,598.
Office Action dated Sep. 6, 2006 in U.S. Appl. No. 10/434,598.
Office Action dated Aug. 6, 2008 in U.S. Appl. No. 11/448,160.
Office Action dated Jan. 13, 2009 in U.S. Appl. No. 11/448,160.
Notice of Allowance dated Apr. 13, 2010 in U.S. Appl. No. 11/448,160.
Notice of Allowance dated Sep. 20, 2010 in U.S. Appl. No. 11/448,160.
Office Action dated Sep. 26, 2007 in U.S. Appl. No. 11/057,614.
Office Action dated Jan. 10, 2008 in U.S. Appl. No. 11/057,614.
Office Action dated Aug. 29, 2008 in U.S. Appl. No. 11/057,614.
Office Action dated Aug. 11, 2009 in U.S. Appl. No. 11/057,614.
Office Action dated Jan. 14, 2010 in U.S. Appl. No. 11/057,614.
Interview summary dated Apr. 14, 2010 in U.S. Appl. No. 11/057,614.
Office Action dated Jun. 21, 2010 in U.S. Appl. No. 11/057,614.
Notice of Allowance dated Sep. 3, 2010 in U.S. Appl. No. 11/057,614.
Office Action dated Apr. 1, 2010 in U.S. Appl. No. 11/745,189.
Interview summary dated Jun. 3, 2010 in U.S. Appl. No. 11/745,189.
Interview summary dated Jun. 15, 2010 in U.S. Appl. No. 11/745,189.
Office Action dated Nov. 24, 2010 in U.S. Appl. No. 11/745,189.
Interview summary dated Jan. 6, 2011 in U.S. Appl. No. 11/745,189.
Notice of Allowance dated Jun. 27, 2011 in U.S. Appl. No. 11/745,189.
Office Action dated Jan. 11, 2011 in U.S. Appl. No. 12/911,947.
Office Action dated Aug. 4, 2011 in U.S. Appl. No. 12/911,947.
Office Action dated Nov. 16, 2011 in U.S. Appl. No. 12/911,947.
Advisory Action dated Jan. 25, 2012 in U.S. Appl. No. 12/911,947.
Notice of Panel Decision from Pre-Appeal Brief Review dated Mar. 28, 2012 in U.S. Appl. No. 12/911,947.
Office Action dated Apr. 5, 2012 in U.S. Appl. No. 12/911,947.
Office Action dated Sep. 19, 2012 in U.S. Appl. No. 12/911,947.
Advisory Action dated Nov. 29, 2012 in U.S. Appl. No. 12/911,947.
Office Action dated May 31, 2013 in U.S. Appl. No. 12/911,947.
Notice of Allowance dated Oct. 4, 2013 in U.S. Appl. No. 12/911,947.
Office Action dated Jan. 3, 2011 in U.S. Appl. No. 12/857,789.
Office Action dated Jul. 27, 2011 in U.S. Appl. No. 12/857,789.
Advisory Action dated Oct. 7, 2011 in U.S. Appl. No. 12/857,789.
Notice of Allowance dated Jul. 1, 2013 in U.S. Appl. No. 12/857,789.
Office Action dated Nov. 14, 2012 in U.S. Appl. No. 12/885,620.
Office Action dated Jun. 13, 2013 in U.S. Appl. No. 12/885,620.
Office Action dated Nov. 19, 2013 in U.S. Appl. No. 12/885,620.
Advisory Action Before the Filing of an Appeal Brief dated Jan. 30, 2014 in U.S. Appl. No. 12/885,620.
Office Action dated Jun. 18, 2014 in U.S. Appl. No. 12/885,620.
Office Action dated Nov. 28, 2014 in U.S. Appl. No. 12/885,620.
Advisory Action dated May 18, 2015 in U.S. Appl. No. 12/885,620.
Office Action dated Jun. 30, 2015 in U.S. Appl. No. 12/885,620.
Notice of Abandonment dated Jan. 29, 2016 in U.S. Appl. No. 12/885,620.
Office Action dated Nov. 14, 2012 in U.S. Appl. No. 12/888,699.
Office Action dated Oct. 3, 2012 in U.S. Appl. No. 12/838,674.
Office Action dated Jul. 18, 2013 in U.S. Appl. No. 12/838,674.
Office Action dated May 27, 2015 in U.S. Appl. No. 12/838,674.
Applicant Initiated Interview Summary dated Sep. 1, 2015 in U.S. Appl. No. 12/838,674.
Notice of Allowance dated Sep. 25. 2015 in U.S. Appl. No. 12/838,674.
Office Action dated Sep. 26, 2012 in U.S. Appl. No. 12/845,122.
Notice of Allowance dated Apr. 17, 2013 in U.S. Appl. No. 12/845,122.
Office Action dated Dec. 24, 2012 in U.S. Appl. No. 13/230,046.
Notice of Allowance dated Jul. 31, 2013 in U.S. Appl. No. 13/230,046.
Office Action dated Dec. 26, 2012 in U.S. Appl. No. 13/230,143.
Notice of Allowance dated Aug. 2, 2013 in U.S. Appl. No. 13/230,143.
Office Action dated Mar. 1, 2013 in U.S. Appl. No. 12/903,851.
Office Action dated Jan. 16, 2014 in U.S. Appl. No. 12/903,851.
Office Action dated Oct. 6, 2014 in U.S. Appl. No. 12/903,851.
Office Action dated Jul. 15, 2015 in U.S. Appl. No. 12/903,851.
Office Action dated Mar. 25, 2013 in U.S. Appl. No. 13/108,045.
Office Action dated Jan. 17, 2014 in U.S. Appl. No. 13/108,045.
Office Action dated Apr. 16, 2013 in U.S. Appl. No. 13/150,494.
Office Action dated Jun. 14, 2013 in U.S. Appl. No. 13/150,494.
Notice of Allowance dated Nov. 5, 2013 in U.S. Appl. No. 13/150,494.
Supplemental Notice of Allowability dated Jan. 17, 2014 in U.S. Appl. No. 13/150,494.
U.S. Appl. No. 13/331,135, filed Dec. 20, 2011.
Office Action dated Jan. 21, 2015 in U.S. Appl. No. 13/792,285.
Office Action dated Jun. 4, 2015 in U.S. Appl. No. 13/792,285.
Notice of Allowance dated Sep. 16, 2015 in U.S. Appl. No. 13/792,285.
Response to Rule 312 Communication dated Oct. 20, 2015 in U.S. Appl. No. 13/792,285.
Notice of Allowance dated Oct. 24, 2014 in U.S. Appl. No. 13/844,545.
Notice of Allowance dated Feb. 6, 2015 in U.S. Appl. No. 13/844,545.
Office Action dated Jan. 23, 2013 in U.S. Appl. No. 12/882,538.
Office Action dated Feb. 8, 2013 in U.S. Appl. No. 12/882,538.
Notice of Allowance dated Jun. 24, 2013 in U.S. Appl. No. 12/882,538.
Office Action dated Sep. 6, 2013 in U.S. Appl. No. 13/933,222.
Notice of Allowance dated Oct. 1, 2013 in U.S. Appl. No. 13/933,222.
Notice of Allowance dated May 6, 2014 in U.S. Appl. No. 13/933,222.
U.S. Appl. No. 14/594,300, filed Jan. 12, 2015.
Office Action dated Jun. 3, 2015 in U.S. Appl. No. 13/714,465.
Office Action dated Jul. 8, 2015 in U.S. Appl. No. 13/714,465.
Notice of Allowance dated Sep. 2, 2015 in U.S. Appl. No. 13/714,465.
Response to Rule 312 Communication dated Sep. 29, 2015 in U.S. Appl. No. 13/714,465.
Response to Rule 312 Communication dated Oct. 8, 2015 in U.S. Appl. No. 13/714,465.
Office Action dated Jun. 26, 2015 in U.S. Appl. No. 13/777,066.
Office Action dated Oct. 5, 2015 in U.S. Appl. No. 13/777,066.
Office Action dated Aug. 19, 2015 in U.S. Appl. No. 13/844,196.
Office Action dated Oct. 15, 2015 in U.S. Appl. No. 13/844,196.
Office Action dated Oct. 2, 2015 in U.S. Appl. No. 14/073,029.
Office Action dated Oct. 28, 2015 in U.S. Appl. No. 14/093,707.
Notice of Third-Party Submission dated Dec. 16, 2015 in U.S. Appl. No. 14/077,699.
ATI Datalloy HP™ Alloy, UNS N08830, Technical Data Sheet Version 1, Apr. 14, 2015, 6 pages.
ATI Datalloy 2® Alloy, Technical Data Sheet, Version 1, Feb. 20, 2014, 6 pages.
Gil et al., “Formation of alpha-Widmanstatten structure: effects of grain size and cooling rate on the Widmanstatten morphologies and on the mechanical properties in Ti6Al4V alloy”, Journal of Alloys and Compounds, 329, 2001, pp. 142-152.
Enayati et al., “Effects of temperature and effective strain on the flow behavior of Ti—6Al—4V”, Journal of the Franklin Institute, 348, 2011, pp. 2813-2822.
Longxian et al., “Wear-Resistant Coating and Performance Titanium and Its Alloy, and properties thereof”, Northeastern University Press, Dec. 2006, pp. 26-28, 33.
“Acceleration and Improvement for Heat Treating Workers,” Quick Start and Improvement for Heat Treatment, ed. Yang Man, China Machine Press, Apr. 2008, pp. 265-266.
Decision on Appeal mailed Dec. 15, 2017 in U.S. Appl. No. 12/903,851.
Office Action dated Feb. 27, 2018 in U.S. Appl. No. 13/108,045.
Corrected Notice of Allowability dated Dec. 20, 2017 in U.S. Appl. No. 13/777,066.
Office Action dated Dec. 1, 2017 in U.S. Appl. No. 14/077,699.
Interview Summary dated Mar. 12, 2018 in U.S. Appl. No. 14/077,699.
Notice of Panel Decision from Pre-Appeal Brief Review mailed Oct. 27, 2017 in U.S. Appl. No. 14/028,588.
Notice of Allowance dated Feb. 9, 2018 in U.S. Appl. No. 14/028,588.
Advisory Action dated Jan. 26, 2018 in U.S. Appl. No. 14/594,300.
Office Action dated Feb. 28, 2018 in U.S. Appl. No. 14/594,300.
Office Action dated Oct. 31, 2017 in U.S. Appl. No. 15/653,985.
Office Action dated Dec. 6, 2017 in U.S. Appl. No. 14/948,941.
Office Action dated Feb. 15, 2018 in U.S. Appl. No. 14/948,941.
U.S. Appl. No. 15/816,128, filed Nov. 17, 2017.
Markovsky, P. E., “Preparation and properties of ultrafine (submicron) structure titanium alloys”, Materials Science and Engineering, 1995, A203, 4 pages.
Titanium Alloy Guide, RMI Titanium Company, Jan. 2000, 45 pages.
Wanhill et al, “Chapter 2, Metallurgy and Microstructure”, Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys, SpringerBriefs in Applied Sciences and Technology, 2012, pp. 5-10.
Heat Treating of Titanium and Titanium Alloys, http://www.totalmateria.com/Article97.htm, Apr. 2004, 5 pages.
Grade 6Al 2Sn 4Zr 6Mo Titanium Alloy (UNS R56260), AZoM, http://www.azom.com/article.aspx?Article ID=9305, Jun. 20, 2013, 4 pages.
Gammon et al., “Metallography and Microstructures of Titanium and Its Alloys”, ASM Handbook, vol. 9: Metallography and Microstructures, ASM International, 2004, pp. 899-917.
Rui-gang Deng, et al. “Effects of Forging Process and Following Heat Treatment on Microstructure and Mechanical Properties of TC11 Titanium Alloy,” Materials for Mechanical Engineering, vol. 35. No. 11, Nov. 2011, 5 pages. (English abstract included).
Srinivasan et al., “Rolling of Plates and Sheets from As-Cast Ti—6Al—4V-0.1 B”, Journal of Materials Engineering and Performance, vol. 18.4, Jun. 2009, pp. 390-398.
Applicant-Initiated Interview Summary dated Aug. 22, 2016 in U.S. Appl. No. 12/691,952.
Advisory Action Before the Filing of an Appeal Brief dated Aug. 30, 2016 in U.S. Appl. No. 12/691,952.
Office Action dated Apr. 28, 2017 in U.S. Appl. No. 12/691,952.
Office Action dated Jul. 10, 2017 in U.S. Appl. No. 12/691,952.
Advisory Action dated Aug. 7, 2017 in U.S. Appl. No. 12/691,952.
Examiner's Answer to Appeal Brief mailed Oct. 27, 2016 in U.S. Appl. No. 12/903,851.
Office Action dated Sep. 9, 2016 in U.S. Appl. No. 13/108,045.
Advisory Action dated Mar. 7, 2017 in U.S. Appl. No. 13/108,045.
Office Action dated Oct. 12, 2016 in U.S. Appl. No. 13/777,066.
Office Action dated May 18, 2017 in U.S. Appl. No. 13/777,066.
Advisory Action Before the Filing of an Appeal Brief dated Jul. 10, 2017 in U.S. Appl. No. 13/777,066.
Notice of Allowance dated Aug. 30, 2017 in U.S. Appl. No. 13/777,066.
Office Action dated Aug. 22, 2016 in U.S. Appl. No. 13/844,196.
Office Action dated Dec. 29, 2016 in U.S. Appl. No. 13/844,196.
Notice of Allowance dated Jul. 13, 2017 in U.S. Appl. No. 13/844,196.
Corrected Notice of Allowability dated Jul. 20, 2017 in U.S. Appl. No. 13/844,196.
Corrected Notice of Allowability dated Aug. 18, 2017 in U.S. Appl. No. 13/844,196.
Office Action dated Aug. 12, 2016 in U.S. Appl. No. 14/073,029.
Office Action dated Jun. 14, 2017 in U.S. Appl. No. 14/073,029.
Notice of Allowance dated Jul. 7, 2017 in U.S. Appl. No. 14/073,029.
Notice of Allowability dated Sep. 21, 2017 in U.S. Appl. No. 14/073,029.
Office Action dated Sep. 30, 2016 in U.S. Appl. No. 14/093,707.
Notice of Allowance dated Jan. 13, 2017 in U.S. Appl. No. 14/093,707.
Supplemental Notice of Allowance dated Jan. 27, 2017 in U.S. Appl. No. 14/093,707.
Supplemental Notice of Allowance dated Feb. 10, 2017 in U.S. Appl. No. 14/093,707.
Supplemental Notice of Allowability dated Mar. 1, 2017 in U.S. Appl. No. 14/093,707.
Office Action dated Aug. 16, 2016 in U.S. Appl. No. 14/077,699.
Office Action dated Oct. 25, 2016 in U.S. Appl. No. 14/077,699.
Advisory Action dated Nov. 30, 2016 in U.S. Appl. No. 14/077,699.
Office Action dated Aug. 26, 2016 in U.S. Appl. No. 15/005,281.
Notice of Panel Decision from Pre-Appeal Brief Review mailed Feb. 24, 2017 in U.S. Appl. No. 15/005,281.
Office Action dated Mar. 2, 2017 in U.S. Appl. No. 15/005,281.
Notice of Allowance dated May 10, 2017 in U.S. Appl. No. 15/005,281.
Corrected Notice of Allowability dated Aug. 9, 2017 in U.S. Appl. No. 15/005,281.
Advisory Action dated Oct. 14, 2016 in U.S. Appl. No. 14/028,588.
Applicant Initiated Interview Summary dated Oct. 27, 2016 in U.S. Appl. No. 14/028,588.
Office Action dated Mar. 15, 2017 in U.S. Appl. No. 14/028,588.
Office Action dated Jul. 14, 2017 in U.S. Appl. No. 14/028,588.
Advisory Action dated Sep. 12, 2017 in U.S. Appl. No. 14/028,588.
Notice of Allowance dated Oct. 13, 2016 in U.S. Appl. No. 14/083,759.
U.S. Appl. No. 15/348,140, filed Nov. 10, 2016.
Notice of Allowance dated Dec. 16, 2016 in U.S. Appl. No. 14/922,750.
Notice of Allowance dated Feb. 28, 2017 in U.S. Appl. No. 14/922,750.
Office Action dated Apr. 10, 2017 in U.S. Appl. No. 14/594,300.
Office Action dated May 25, 2017 in U.S. Appl. No. 14/594,300.
Office Action dated Sep. 13, 2017 in U.S. Appl. No. 14/594,300.
Office Action dated Apr. 6, 2018 in U.S. Appl. No. 12/903,851.
Office Action dated Mar. 16, 2018 in U.S. Appl. No. 15/653,985.
Forging Machinery, Dies, Processes, Metals Handbook Desk Edition, ASM International, 1998, pp. 839-863.
Smith, et al. “Types of Heat-Treating Furnaces,” Heat Treating, ASM Handbook, ASM International, 1991, vol. 4, p. 465-474.
Concise Explanation for Third Party Preissuance submission under Rule 1.290 filed in U.S. Appl. No. 15/678,527 on Jun. 5, 2018.
Guidelines for PWR Steam Generator Tubing Specifications and Repair, Electric Power Research Institute, Apr. 14, 1999, vol. 2, Revision 1, 74 pages. (accessed at https://www.epri.com/#/pages/product/TR-016743-V2R1/.
Materials Reliability Program: Guidelines for Thermally Treated Alloy 690 Pressure Vessel Nozzels, (MRP-241), Electric Power Research Institute, Jul. 25, 2008, 51 pages. (accessed at https://www.epri.com/#/pages/product/1015007/.
Microstructure Etching and Carbon Analysis Techniques, Electric Power Research Institute, May 1, 1990, 355 pages. (accessed at https://www.epri.com/#/pages/product/NP-6720-SD/.
Frodigh, John, “Some Factors Affecting the Appearance of the Microstructure in Alloy 690”, Proceedings of the Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, American Nuclear Society, Inc., vol. 1, Aug. 10, 1997, 12 pages.
Kajimura et al., “Corrosion Resistance of TT Alloy 690 Manufactured by Various Melting Processes in High Temperature NaOH Solution”, Proceedings of the Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, American Nuclear Society, Inc., vol. 1, Aug. 10, 1997, pp. 149-156.
The Japan Society for Heat Treatment, introduction of Heat Treatment, Japan, Minoru, Kanai, Jan. 10. 1974, p. 150.
Notice of Allowance dated Jun. 5, 2018 in U.S. Appl. No. 12/691,952.
Notice of Allowability dated Jul. 20, 2018 in U.S. Appl. No. 12/691,952.
Office Action mailed Oct. 26, 2018 in U.S. Appl. No. 12/903,851.
Office Action mailed Nov. 2, 2018 in U.S. Appl. No. 13/108,045.
Office Action dated Jul. 17, 2018 in U.S. Appl. No. 14/077,699.
Office Action dated Jan. 10, 2019 in U.S. Appl. No. 14/077,699.
Notice of Allowance dated Sep. 6, 2018 in U.S. Appl. No. 14/028,588.
Notification of Reopening Prosecution mailed Dec. 19, 2018 in U.S. Appl. No. 14/028,588.
Office Action Feb. 1, 2019 in U.S. Appl. No. 14/028,588.
Notice of Allowance dated Jun. 29, 2018 in U.S. Appl. No. 14/594,300.
Corrected Notice of Allowability dated Jul. 9, 2018 in U.S. Appl. No. 14/594,300.
Notice of Allowance dated Aug. 15, 2018 in U.S. Appl. No. 15/653,985.
Office Action dated Jul. 30, 2018 in U.S. Appl. No. 14/948,941.
Applicant Initiated Interview Summary dated Jan. 30, 2019 in U.S. Appl. No. 14/948,941.
Notice of Allowance dated Jun. 22, 2018 in U.S. Appl. No. 15/433,443.
Notice of Allowability dated Aug. 27, 2018 in U.S. Appl. No. 15/433,443.
Corrected Notice of Allowability dated Sep. 6, 2018 in U.S. Appl. No. 15/433,443.
Notice of Allowability dated Oct. 11, 2018 in U.S. Appl. No. 15/433,443.
Corrected Notice of Allowability dated Oct. 18, 2018 in U.S. Appl. No. 15/433,443.
Office Action dated Aug. 28, 2018 in U.S. Appl. No. 15/678,527.
Notice of Allowance dated Dec. 13, 2018 in U.S. Appl. No. 15/678,527.
U.S. Appl. No. 16/122,174, filed Sep. 5, 2018.
U.S. Appl. No. 16/122,450, filed Sep. 5, 2018.
Office action dated Jan. 10, 2019 in U.S. Appl. No. 15/659,661.
Office Action dated Jan. 25, 2019 in U.S. Appl. No. 15/348,140.
Related Publications (1)
Number Date Country
20160122851 A1 May 2016 US
Continuations (1)
Number Date Country
Parent 13792285 Mar 2013 US
Child 14881633 US