Non-nesting, non-deforming patterns for spiral-wound elements

Information

  • Patent Grant
  • 11896933
  • Patent Number
    11,896,933
  • Date Filed
    Tuesday, July 6, 2021
    2 years ago
  • Date Issued
    Tuesday, February 13, 2024
    2 months ago
Abstract
Embodiments of the present invention provide for the deposition of spacing elements for spiral wound elements that prevent nesting of adjacent spacer layers and occlusion of feed space during element rolling.
Description
TECHNICAL FIELD

The subject invention relates to a permeable membrane system utilized for the separation of fluid components, specifically spiral-wound permeable membrane elements.


BACKGROUND ART

Spiral-wound membrane filtration elements known in the art comprise a laminated structure including a membrane sheet sealed to or around a porous permeate carrier which creates a path for removal of the fluid passing through the membrane to a central tube, while this laminated structure is wrapped spirally around the central tube and spaced from itself with a porous feed spacer to allow axial flow of the fluid through the element. While this feed spacer is necessary to maintain open and uniform axial flow between the laminated structure, it is also a source of flow restriction and pressure drop within the axial flow channel and also presents areas of restriction of flow and contact to the membrane that contribute significantly to membrane fouling via biological growth, scale formation, and particle capture.


Improvements to the design of spiral wound elements have been disclosed by Barger et al. and Bradford et al., which replace the feed spacer with islands or protrusions either deposited or embossed directly onto the outside or active surface of the membrane. This configuration is advantageous in that it maintains spacing for axial flow through the element while minimizing obstruction within the flow channel. It also eliminates the porous feed spacer as a separate component, thus simplifying element manufacture. Patent publication number US2016-0008763-A1, entitled “Improved Spiral Wound Element Construction” teaches the application of printed patterns on the back side of the active surface of the membrane sheet, or directly on the surface of the permeate carrier.


The following references, each of which is incorporated herein by reference, can facilitate understanding of the invention: U.S. Pat. Nos. 3,962,096; 4,476,022; 4,756,835; 4,834,881; 4,855,058; 4,902,417; 4,861,487; 6,632,357; and U.S. application No. 2016-0008763A1.


DISCLOSURE OF INVENTION

Embodiments of the present invention provide a membrane for use in a spiral wound permeable membrane system, comprising a membrane having spacing features disposed on a surface of the membrane, wherein the spacing features are configured such that they discourage nesting of the spacers when spirally wound. The spacing features can be disposed such that they overlap when the membrane is spirally wound.


In some embodiments, the spacing features can comprise a plurality of substantially parallel line segments spaced apart from each other by nonuniform spacing distances. A first subset of the plurality of line segments can be spaced apart from each other by nonuniform spacing distances thereby forming a pattern, and wherein other subsets of the plurality of line segments comprise repeats of the pattern. The first subset can extend over at least 6 inches measured from the first line segment to the last line segment. The first subset can extend over at least 12 inches measured from the first line segment to the last line segment. The variation in spacing can be less than 15% of the average distance between adjacent spacing features.


In some embodiments, the spacing features can comprise a plurality of line segments spaced apart from each other and oriented non-parallel to each other at nonuniform angles. A first subset of the plurality of line segments can be oriented relative to each other at nonuniform angles thereby forming a pattern, and wherein other subsets of the plurality of line segments comprise repeats of the pattern. The pattern can extend for at least 6 inches measured from the first line segment to the last line segment. The pattern can extend for at least 12 inches measured from the first line segment to the last line segment. The variation in angle can be less than 15% of the average angle of the features relative to the pattern.


In some embodiments, the spacing features can comprise a first plurality of line segments parallel to each other and disposed in a first grid on the surface, and a second plurality of line segments parallel to each other and disposed in a second grid on the surface, wherein the line segments in the first plurality do not intersect the line segments in the second plurality, and wherein the line segments in the first plurality are disposed at an angle other than zero degrees to the line segments in the second plurality. The angle can be at least 1 degree but not more than 45 degrees. The angle can be 45 degrees. Each spacing feature in the first plurality can be separated from adjacent spacing features in the first plurality by no more than one quarter of an inch. Each spacing feature in the first plurality can be separated from adjacent spacing features in the first plurality by no more than one tenth of an inch.


In some embodiments, the spacing features can comprise a plurality of curved segments that are spaced apart from each other by nonuniform spacing distances measured as determined along at least one path traversing the spacing features.


In some embodiments, the spacing features can be configured such that the spacing features at least partly support those spacing features on adjacent layers as the membrane is manufactured into the permeable membrane system.


In some embodiments, the spacing features can be disposed proximal the edges of the membrane.


In some embodiments, the spacing features can be disposed on the entirety of the surface of the membrane.


In some embodiments, the spacing features can be more closely spaced near the edges of the membrane than in portions of the membrane distant from the edges. The edges of the membrane can be defined as the region within three inches of the edge of the membrane. The edges of the membrane can be defined as the region within one inch of the edge of the membrane.


In some embodiments, the spacing features can be made of one or more of thermoplastics, reactive polymers, waxes, or resins; deposited directly onto the membrane surface.


In some embodiments, the spacing features can be made of one or more of high-temperature thermoplastics, metals, or ceramics; formed apart from the membrane surface and then adhered to the membrane surface.


Embodiments of the present invention provide a permeable membrane system comprising a membrane as described herein.


Embodiments of the present invention provide a water treatment facility comprising one or more permeable membrane systems as described herein.


Embodiments of the present invention provide a method of treating water, comprising providing a permeable membrane system as described herein, and passing water to be treated through the permeable membrane system.


Embodiments of the present invention provide a method of making a permeable membrane system, comprising providing a membrane as described herein, and spirally winding the membrane.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is an illustration of an array of parallel line segments with spacing varied to prevent nesting during rolling of a spiral-wound element.



FIG. 2 is an illustration of an array of line segments at various angles to prevent nesting during rolling of a spiral-wound element.



FIGS. 3A, B, C comprise illustrations of several configurations of closely spaced patterns designed to prevent nesting during rolling of a spiral-wound element.



FIGS. 4A, B, C, D comprise illustrations of further example feature embodiments.





MODES FOR CARRYING OUT THE INVENTION AND INDUSTRIAL APPLICABILITY

Embossing or depositing features onto the surface of the membrane sheet, or onto or into the permeate carrier sheet of a spiral-wound element to provide spacing between adjacent membrane sheets can provide several advantages as compared to feed spacer mesh, including more open flow channels, lower pressure drop, reduced fouling, and the ability to produce thinner feed space than would be practical using a mesh. The membrane sheet itself can be made with a porous layer of polypropylene, bonded to a porous layer of polysulfone, with the membrane polymer material cast onto the polysulfone layer. Various other materials and methods can be used to make the membrane sheet. Membrane sheet can be made that provides varying degrees of removal efficiency. Micro filtration membranes can typically remove material as small as about 0.1 micron, typical of bacteria and protozoa, or other contaminants of such size in industrial applications. Ultra filtration membranes can have pore sizes as small as about 0.01 micron and can remove, as an example, viruses from fluid sources. Nano filtration membranes can have pore sizes small enough to remove di-valent ions, but will pass monovalent ions such as sodium and chloride. An example of application of nano filtration is water softening to remove, as an example, calcium carbonate. Reverse osmosis is typically the smallest pore size, and is sufficient to remove mono-valent salts, typically used in desalination applications. Various configurations of these spacer features have been disclosed by Barger et al. and Bradford et al. PCT/US14/18813, incorporated herein by reference, discloses various methods and materials suitable for depositing spacing features on membrane sheets. Those methods and materials can be useful in implementing embodiments of the present invention.


Spacer features that are embossed or deposited directly on the membrane surface present differences during manufacture of spiral wound elements as compared to conventional mesh feed spacers. Spacer features can be made with a wider variety of shapes and patterns than can be achieved with an extruded or woven mesh material, and their spacing and orientation can likewise be widely varied. During the typical manufacture of a spiral wound filtration element using embossed or deposited features, sheets of membrane with features on one-half of the sheet are folded into leaves, one side containing features and the other side blank; both faces—now opposed to each other—are active membrane surface. The spacers allow a feed solution to flow between the active membrane surfaces so that all active surfaces of the membrane are available for filtration. Interleaved on the outside of these two membrane sheets are sheets of permeate carrier. Fluids flowing through the active membrane sheet come in contact with the permeate carrier and the fluid in the permeate carrier is transported to the center tube. Adhesive is applied before being rolled around the center tube to create the finished element. A line of adhesive is deposited starting at one end of the center tube either onto the back (inactive) side of the folded membrane leaf or onto the permeate carrier mesh above said leaf, around three sides of the perimeter of this sheet and back into contact with the center tube. The glue line serves to seal and isolate the permeate carrier from the feed/reject flow. This process is repeated on each leaf used to create the element.


The printed features are particularly important at the inlet and outlet areas of a spiral-wound element, where the area between the features creates spacing through which feed water flows into and reject water flows out of the element, and where they must resist the forces generated by the compression of the viscous adhesive line during element rolling. If the printed features are merely a regularly spaced repeating pattern of lines, line segments, or posts, they may allow the adjacent membrane sheet to deform into the feed space during rolling due to force on the adhesive and occlude the flow channel. Similarly, some patterns and spacing of features can allow for the entire adjacent layer of membrane, permeate carrier and adhesive to deform to nest between features.


Example embodiments of the present invention can prevent occlusion of the feed channel during spiral wound element manufacture by providing feature spacing and patterns that prevent collapse and deformation of the membrane film and adjacent layers. Additionally, by providing additional support to the membrane sheet during rolling and preventing nesting, example embodiments of the present invention can discourage occlusion of the feed channel without requiring changes to the standard processes used to roll spiral wound elements.


An advantage of embodiments of the present invention is that reducing occlusion of the feed space between layers of a spiral wound element reduces resistance to flow and thus pressure drop from the inlet to the outlet of the element, which improves the efficiency of filtration and reduces energy requirements.


Example embodiments of the present invention can also provide advantages by facilitating more uniform flow throughout the element and preventing potential fouling due to non-uniform flow. If some segments of the feed space are unevenly occluded, as can be caused by nesting of adjacent layers between conventional features, uneven flow can occur within the element. Uneven flow is known to create stagnation points that allow for biological fouling and scale deposition.


Referring to FIG. 1, in one example embodiment of the present invention, rather than uniform spacing between adjacent features, the spacing between adjacent features is varied slightly in the direction perpendicular to cross-flow in the element. This varied spacing can be periodic, with set varied spacing occurring regularly, with a longer period generally producing less chance of nesting. In some spiral-wound element configurations, preferably the period before the pattern repeats is at least 6 inches (6″) and more preferably the period is at least twelve inches (12″). In some spiral-wound element configurations, preferably the variation in spacing is less than 15% of the average distance between adjacent features in order to not significantly effect flow characteristics through the element. The variation in feature spacing reduces the potential for pattern nesting between consecutive layers in the spiral wound element.


Referring to FIG. 2, in another example embodiment of the present invention, an array of line segments providing spacer features have their angles from mutual parallelism varied slightly with respect to one another. This variation in angle can be periodic, with set varied angles occurring regularly, with a longer period generally producing less chance of nesting. In some spiral-wound element configurations, preferably the period before the pattern repeats is at least 6 inches (6″) and more preferably the period is at least twelve inches (12″). In some spiral-wound element configurations, preferably the variation in angle is less than 15% from the average angle of the overall spacer feature array in order to not significantly effect flow characteristics through the element. The variation in feature angle reduces the potential for pattern nesting between consecutive layers in the spiral wound element.


Similarly, variation of features or relative angles can be practiced on other shapes such as curves, or zigzag patterned features can be arrayed with periodic varying angles in order to prevent nesting of consecutive layers as well. Examples of such variations are illustrated in FIG. 4: FIG. 4a is an illustration of zigzag patterns with varying internal angle from feature to feature; FIG. 4B is an illustration of similar zigzag elements disposed non-parallel to each other. FIG. 4C is an illustration of curved features with varying curve shape from feature to feature; FIG. 4D is an illustration of curved features with similar shapes but disposed non-parallel to each other. While the spacing between features in FIG. 4 is illustrated as consistent, the features can also be disposed with varying spacing between features, similar to those in FIG. 1. The present invention contemplates a variety of such feature shapes and configurations, each providing features such that features at least partly support those on adjacent layers as the element is rolled and glued.


Spiral wound elements using conventional extruded mesh spacers generally do not have issues with nesting of adjacent layers because the mesh filaments are spaced so closely that the filaments do not allow the membrane film or the entire layer of membrane, permeate carrier, and adhesive to deform and occlude the feed space. Typically, the largest mesh spacing is eight strands per inch, with ten to twelve strands per inch more common for large elements and more dense spacing for smaller elements. Consequently, the concern addressed by the current invention was not apparent until unconventional, deposited spacing features were deployed.


Referring to FIG. 3, further example embodiments of the current invention employ a pattern of embossed or deposited features which are similar in spacing to conventional mesh feed spacer and arranged in patterns that minimally impede feed flow. These features can be a regular array of shapes such as circular or polygonal posts, chevrons, curved line segments or other shapes, and can comprise an array of line segments offset from one another and set at two different angles from the direction of fluid cross-flow. These angles can be equal but opposite in direction, e.g. +45° and −45° (FIG. 3A), and can be of any angle from +/−1° to +/−45° (FIGS. 3A, 3B). In some spiral-wound element configurations, preferably the maximum spacing of any part of these features to the nearest adjacent feature is less than or equal to one-quarter of one inch (0.25″) and more preferably less than or equal to one-tenth of one inch (0.10″). In another embodiment the features comprise an array of offset and opposing angled line segments with round posts spaced in between the features (FIG. 3C). Such closely spaced features can be advantageous in that the features and the membrane sheet surrounding them become substantially less susceptible to deformation during the rolling process where the adhesive is in contact with the membrane film and thus it can be beneficial to have these densely spaced patterns along the perimeter of the membrane sheet where the adhesive is applied even when a less densely spaced pattern is employed elsewhere on the membrane sheet in order to reduce restriction to flow.


In each of the example embodiments, the features can be embossed or deposited in a continuous manner across the entirety of the printed surface of the membrane leaf; embossed or deposited only along the inlet and outlet edge sections of the membrane, for example at a width of one to three inches, in order to support the area where adhesive is applied; or embossed or deposited only along the inlet and outlet edge sections and end section of the membrane, for example at a width of one to three inches, in order to support the area where adhesive is applied in all areas.


The features can comprise various materials that are compatible with the separated fluid and the permeate carrier including, but not limited to, thermoplastics, reactive polymers, waxes, or resins. Additionally, materials that are compatible with the separated fluid but not compatible with direct deposition to the permeate carrier, including, but not limited to high-temperature thermoplastics, metals, or ceramics, can be pre-formed, cast, or cut to the proper dimensions and adhered to the surface of the permeate carrier with an adhesive that is compatible with the permeate carrier.


The present invention has been described in connection with various example embodiments. It will be understood that the above description is merely illustrative of the applications of the principles of the present invention, the scope of which is to be determined by the claims viewed in light of the specification. Other variants and modifications of the invention will be apparent to those skilled in the art.

Claims
  • 1. A spiral wound permeable membrane system, comprising a membrane spirally wound about a center tube, wherein the membrane has spacing features disposed on a surface of the membrane, wherein the spacing features are configured such that they do not nest with spacing features on adjacent windings when spirally wound, wherein the spacing features comprise a plurality of substantially parallel line segments spaced apart from each other by nonuniform spacing distances, and wherein each spacing feature has a long axis oriented non-parallel to the direction of spiral winding, wherein the spacing features are more closely spaced near the edges of the membrane than in portions of the membrane distant from the edges.
  • 2. The spiral wound permeable membrane system of claim 1, wherein a first subset of the plurality of substantially parallel line segments are spaced apart from each other by nonuniform spacing distances thereby forming a pattern, and wherein other subsets of the plurality of substantially parallel line segments comprise repeats of the pattern.
  • 3. The spiral wound permeable membrane system of claim 2, wherein the first subset extends over at least 6 inches measured from a first line segment in the subset to a last line segment in the subset.
  • 4. The spiral wound permeable membrane system of claim 3, wherein the first subset extends over at least 12 inches measured from the first line segment to the last line segment.
  • 5. The spiral wound permeable membrane system of claim 2, wherein the nonuniform spacing distances comprise a plurality of spacing distances, and wherein the largest spacing distance of such spacing distances minus the smallest spacing distance of such spacing distances is less than 15% of the average of all such spacing distances.
  • 6. The spiral wound permeable membrane system of claim 1, wherein the spacing features are made of one or more of thermoplastics, reactive polymers, waxes, or resins; deposited directly onto the membrane surface.
  • 7. The spiral wound permeable membrane system of claim 1, wherein the spacing features are made of one or more of high-temperature thermoplastics, metals, or ceramics; formed apart from the membrane surface and then adhered to the membrane surface.
  • 8. The spiral wound permeable membrane system of claim 1, wherein the edges of the membrane are defined as the region within three inches of the edge of the membrane.
  • 9. The spiral wound permeable membrane system of claim 1, wherein the edges of the membrane are defined as the region within one inch of the edge of the membrane.
  • 10. A spiral wound permeable membrane system, comprising a membrane spirally wound about a center tube, wherein the membrane has spacing features disposed on a surface of the membrane, wherein the spacing features are configured such that they do not nest with spacing features on adjacent windings when spirally wound, wherein the spacing features comprise a plurality of substantially parallel line segments spaced apart from each other by nonuniform spacing distances, and wherein each spacing feature has a long axis oriented non-parallel to the direction of spiral winding, wherein the nonuniform spacing distances comprise a plurality of spacing distances, and wherein the largest spacing distance of such spacing distances minus the smallest spacing distance of such spacing distances is less than 15% of the average of all such spacing distances.
  • 11. The spiral wound permeable membrane system of claim 10, wherein the spacing features are made of one or more of thermoplastics, reactive polymers, waxes, or resins; deposited directly onto the membrane surface.
  • 12. The spiral wound permeable membrane system of claim 10, wherein the spacing features are made of one or more of high-temperature thermoplastics, metals, or ceramics; formed apart from the membrane surface and then adhered to the membrane.
US Referenced Citations (255)
Number Name Date Kind
3963621 Newman Jun 1976 A
4187173 Keefer Feb 1980 A
4208289 Bray Jun 1980 A
4222874 Connelly Sep 1980 A
4228014 Timm et al. Oct 1980 A
4230564 Keefer Oct 1980 A
4230579 Bray et al. Oct 1980 A
4235723 Bartlett, Jr. Nov 1980 A
4277340 Kanamaru et al. Jul 1981 A
4288326 Keefer Sep 1981 A
4309287 Roos et al. Jan 1982 A
4326960 Iwahori et al. Apr 1982 A
4341631 Hargitay Jul 1982 A
4347132 Davis Aug 1982 A
4354939 Pohl Oct 1982 A
4358377 Clark Nov 1982 A
4409849 Roos Oct 1983 A
4410429 Harvey et al. Oct 1983 A
4411785 Yu et al. Oct 1983 A
4426285 Davis Jan 1984 A
4434056 Keefer Feb 1984 A
4454891 Dreibelbis et al. Jun 1984 A
4461707 Thayer et al. Jul 1984 A
4476022 Doll Oct 1984 A
4482459 Shiver Nov 1984 A
4534713 Wanner Aug 1985 A
4556488 Timm et al. Dec 1985 A
4585554 Burrows Apr 1986 A
RE32144 Keefer May 1986 E
4595497 Burrows Jun 1986 A
4599171 Padilla et al. Jul 1986 A
4600512 Aid Jul 1986 A
4608140 Goldstein Aug 1986 A
4613436 Wight et al. Sep 1986 A
4623451 Oliver Nov 1986 A
4623467 Hamlin Nov 1986 A
4640774 Garcera et al. Feb 1987 A
4645601 Regunathan et al. Feb 1987 A
4652373 Trimmer Mar 1987 A
4657674 Burrows Apr 1987 A
4670144 McCausland et al. Jun 1987 A
4695375 Tyler Sep 1987 A
4704324 Davis et al. Nov 1987 A
4705625 Hart, Jr. Nov 1987 A
4735716 Petrucci et al. Apr 1988 A
4735718 Peters Apr 1988 A
4741823 Olsen et al. May 1988 A
4743366 Burrows May 1988 A
4744895 Gales et al. May 1988 A
4744900 Bratt May 1988 A
4756835 Wilson Jul 1988 A
4775465 Burrows Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4802982 Lien Feb 1989 A
4814079 Schneider Mar 1989 A
4820413 Lopez Apr 1989 A
4830744 Burrows May 1989 A
4832850 Cais et al. May 1989 A
4834873 Burrows May 1989 A
4834881 Sawada May 1989 A
4842725 Blad et al. Jun 1989 A
4842736 Bray Jun 1989 A
4844805 Solomon Jul 1989 A
4855058 Holland et al. Aug 1989 A
4856559 Lipshultz et al. Aug 1989 A
4869821 Korin Sep 1989 A
4874514 Casey, Jr. Oct 1989 A
4876002 Marshall et al. Oct 1989 A
4877521 Petrucci et al. Oct 1989 A
4882061 Petrucci et al. Nov 1989 A
4882223 Aptel et al. Nov 1989 A
RE33135 Wanner, Sr. et al. Dec 1989 E
4885092 Zwick Dec 1989 A
4886597 Wild et al. Dec 1989 A
4892657 Mohn et al. Jan 1990 A
4902417 Lien Feb 1990 A
4906372 Hopkins Mar 1990 A
4917847 Solomon Apr 1990 A
4937557 Tucci et al. Jun 1990 A
4944877 Maples Jul 1990 A
4988525 Gresch Jan 1991 A
4990248 Brown et al. Feb 1991 A
4992170 Menon et al. Feb 1991 A
4995977 Hilgendorff et al. Feb 1991 A
5002664 Clack et al. Mar 1991 A
5017284 Miler et al. May 1991 A
5043066 Miller et al. Aug 1991 A
5045197 Burrows Sep 1991 A
5057212 Burrows Oct 1991 A
5069789 Mohn et al. Dec 1991 A
5078876 Whittier et al. Jan 1992 A
5094749 Seita et al. Mar 1992 A
5096574 Birdsong et al. Mar 1992 A
5104532 Thompson et al. Apr 1992 A
5108604 Robbins Apr 1992 A
5128035 Clack et al. Jul 1992 A
5131277 Birdsong et al. Jul 1992 A
5132017 Birdsong et al. Jul 1992 A
5145575 Burrows Sep 1992 A
5167786 Eberle Dec 1992 A
5167826 Eaton Dec 1992 A
5183567 Mohn et al. Feb 1993 A
5194156 Tomchak Mar 1993 A
5198110 Hanai et al. Mar 1993 A
5204002 Belfort et al. Apr 1993 A
5232591 Solomon Aug 1993 A
5234583 Cluff Aug 1993 A
5240612 Grangeon et al. Aug 1993 A
5279732 Edens Jan 1994 A
5296148 Colangelo et al. Mar 1994 A
5354464 Slovak et al. Oct 1994 A
5362383 Zimmerman et al. Nov 1994 A
5462414 Permar Oct 1995 A
5466366 Chia-ching Nov 1995 A
5468387 Solomon Nov 1995 A
5507943 Labrador Apr 1996 A
RE35252 Clack et al. May 1996 E
5545320 Heine et al. Aug 1996 A
5573662 Abe et al. Nov 1996 A
5597487 Vogel et al. Jan 1997 A
5626752 Mohn et al. May 1997 A
5626758 Belfort May 1997 A
5628198 Permar May 1997 A
5681459 Bowman Oct 1997 A
5681467 Solie et al. Oct 1997 A
5788858 Acernese et al. Aug 1998 A
5795475 Luedke et al. Aug 1998 A
5811251 Hirose et al. Sep 1998 A
5824217 Pearl et al. Oct 1998 A
5914041 Chancellor Jun 1999 A
5944985 Bowman Aug 1999 A
5985146 Knappe et al. Nov 1999 A
6030535 Hayashi et al. Feb 2000 A
6071404 Tsui Jun 2000 A
6071414 Kishi Jun 2000 A
6099735 Kelada Aug 2000 A
6109029 Vowles et al. Aug 2000 A
6110360 Hart, Jr. Aug 2000 A
6117297 Goldstein Sep 2000 A
6120682 Cook Sep 2000 A
6126833 Stobbe et al. Oct 2000 A
6174437 Haney Jan 2001 B1
6190557 Hisada et al. Feb 2001 B1
6193879 Bowman Feb 2001 B1
6197191 Wobben Mar 2001 B1
6217773 Graham Apr 2001 B1
6258270 Hilgendorff et al. Jul 2001 B1
6277282 Kihara et al. Aug 2001 B1
6299766 Permar Oct 2001 B1
6345961 Oklejas, Jr. Feb 2002 B1
6348148 Bosley Feb 2002 B1
6379518 Osawa et al. Apr 2002 B1
6379548 Kurokawa et al. Apr 2002 B1
6383384 Anderson May 2002 B1
RE37759 Belfort Jun 2002 E
6402956 Andou et al. Jun 2002 B1
6423212 Bosko Jul 2002 B1
6423223 Northcut et al. Jul 2002 B1
6432301 Dengler Aug 2002 B1
6436282 Gundrum et al. Aug 2002 B1
6447259 Elliott-Moore Sep 2002 B2
6514398 DiMascio et al. Feb 2003 B2
6521124 Northcut et al. Feb 2003 B2
6521127 Chancellor Feb 2003 B1
6524478 Heine et al. Feb 2003 B1
6540915 Patil Apr 2003 B2
6575308 Fuls et al. Jun 2003 B1
6579451 Avero Jun 2003 B1
6607668 Rela Aug 2003 B2
6613231 Jitariouk Sep 2003 B1
6632357 Barger et al. Oct 2003 B1
6790345 Broussard Sep 2004 B2
6805796 Hirose et al. Oct 2004 B2
6830683 Gundrum et al. Dec 2004 B2
6866831 Nakao et al. Mar 2005 B2
6929743 Diel Aug 2005 B2
6929748 Avijit et al. Aug 2005 B2
7021667 Campbell et al. Apr 2006 B2
7186331 Maartens et al. Mar 2007 B2
7244357 Herrington et al. Jul 2007 B2
7297268 Herrington et al. Nov 2007 B2
7306437 Hauge Dec 2007 B2
7311831 Bradford et al. Dec 2007 B2
7351335 Broens et al. Apr 2008 B2
7387725 Choi et al. Jun 2008 B2
7416666 Gordon Aug 2008 B2
7449093 Dudziak et al. Nov 2008 B2
7455778 Gordon Nov 2008 B2
7501064 Schmidt et al. Mar 2009 B2
7514010 Salmon Apr 2009 B2
7520981 Barber Apr 2009 B2
7540956 Kurth et al. Jun 2009 B1
7650805 Nauseda et al. Jan 2010 B2
7733459 Dierichs et al. Jun 2010 B2
7736503 Kennedy et al. Jun 2010 B2
7862723 Cartwright Jan 2011 B2
7875184 Parker et al. Jan 2011 B2
7892429 Oklejas, Jr. Feb 2011 B2
7901580 Salyer Mar 2011 B2
7909998 Kennedy et al. Mar 2011 B2
7910004 Cohen et al. Mar 2011 B2
7927082 Haudenschild Apr 2011 B2
7981293 Powell Jul 2011 B2
8021550 Beauchamp et al. Sep 2011 B2
8101074 Larsen Jan 2012 B2
8114286 Kawakami Feb 2012 B2
8147699 Goldsmith Apr 2012 B2
8257594 Astle et al. Sep 2012 B2
8282823 Acernese et al. Oct 2012 B2
8292088 Francisco et al. Oct 2012 B2
8292492 Ho et al. Oct 2012 B2
8414767 Gaignet et al. Apr 2013 B2
8425734 Goel et al. Apr 2013 B2
8454829 Yaeger Jun 2013 B2
8506685 Taylor et al. Aug 2013 B2
8518225 Sumita et al. Aug 2013 B2
8628642 Goel et al. Jan 2014 B2
8652326 Johann et al. Feb 2014 B2
8685252 Vuong et al. Apr 2014 B2
8696904 Thiyagarajan et al. Apr 2014 B2
8771510 Takahashi et al. Jul 2014 B2
8778055 Taylor et al. Jul 2014 B2
8808538 Oklejas, Jr. Aug 2014 B2
8889009 Brausch et al. Nov 2014 B2
8944257 Eisen et al. Feb 2015 B2
8961790 Beauchamp et al. Feb 2015 B2
8968566 Beauchamp et al. Mar 2015 B2
8999162 Vuong et al. Apr 2015 B2
9011664 Takahashi et al. Apr 2015 B2
9011688 Takahashi et al. Apr 2015 B2
9108162 Takahashi et al. Aug 2015 B2
9114365 Schmitt Aug 2015 B2
9260325 Takahashi et al. Feb 2016 B2
9328743 Hirosawa et al. May 2016 B2
9387445 Kimura et al. Jul 2016 B2
9403125 Shaffer Aug 2016 B2
9475008 Salama et al. Oct 2016 B2
9492792 Tomescu et al. Nov 2016 B2
9546671 Hirosawa et al. Jan 2017 B2
9597640 Koiwa et al. Mar 2017 B2
9616390 Hirozawa et al. Apr 2017 B2
9617172 Baski Apr 2017 B1
9724646 Okamoto et al. Aug 2017 B2
9731984 Beall Aug 2017 B2
9758389 Rau, III Sep 2017 B2
9764291 Hirozawa et al. Sep 2017 B2
9808767 Tabayashi et al. Nov 2017 B2
20080290031 Popa Nov 2008 A1
20110036774 McGinnis Feb 2011 A1
20120103892 Beauchamp et al. May 2012 A1
20130334128 Takagi et al. Dec 2013 A1
20160008763 Roderick et al. Jan 2016 A1
20160059188 Liberman Mar 2016 A1
20160236132 Hara et al. Aug 2016 A1
Foreign Referenced Citations (11)
Number Date Country
2662925 Jan 2009 CA
2825674 Aug 2011 CA
2902094 Aug 2015 EP
H06 262026 Sep 1994 JP
2009 195871 Sep 2009 JP
2016 137462 Aug 2016 JP
WO2010047360 Apr 2010 WO
WO2015016253 Feb 2015 WO
WO2002055179 Aug 2015 WO
WO2016199272 Dec 2016 WO
WO2017087461 May 2017 WO
Non-Patent Literature Citations (2)
Entry
Schwinge et al., “Spiral Wound Modules and Spacers”, 2004, Journal of Membrane Science, vol. 242, No. 1-2.
Evangelista et al., “Optimal Design and Performance of Spiral Wound Modules”, 1988, Chem. Eng. Comm., vol. 72, pp. 66-81.
Related Publications (1)
Number Date Country
20210339202 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62487970 Apr 2017 US
Continuations (1)
Number Date Country
Parent 16074057 US
Child 17368625 US