1. Field of the Invention
The present invention relates to ear modules for personal sound systems, adapted to be worn on the ear and provide audio processing.
2. Description of Related Art
Ear modules, including head-phones, earphones, head sets, hearing aids and the like, are adapted to be worn at the ear of a user and provide personal sound processing. A wide variety of such devices has been developed to deal with the problems of secure positioning at the ear and comfort for the user. One technique to secure an ear module is based on a fitting adapted to fit within the concha of the outer ear, including a compressive member providing a holding force between the anti-helix and the forward wall of the ear canal beneath the tragus. See, Patent Publication No. US 2003/0174853 A1, entitled Anti-Helix-Conforming Ear-Mount for Personal Audio Set, published Sep. 18, 2003. While such devices have been found to satisfactorily secure an ear piece with relative ease of use, the mechanisms have occluded the ear canal, preventing free air passage into the ear canal. Indeed, it has been a design goal for some of such devices to minimize “pneumatic leakage” between the ear canal and the ear piece. However, without adequate air flow into the ear canal, the devices are found to be uncomfortable for many users.
It is desirable to provide an ear module that can be secured safely to the ear without occluding the ear canal, and that is suitable for housing audio processing resources.
An ear module is described herein including an interior lobe housing a speaker and adapted to fit within the concha of the outer ear, an exterior lobe housing data processing resources, and a compressive member coupled to the interior lobe and providing a holding force between the anti-helix and the forward wall of the ear canal near the tragus. An extension of the interior lobe is adapted to extend into the exterior opening of the ear canal, and includes a forward surface adapted to fit against the forward wall of the ear canal, and a rear surface facing the anti-helix. The width of the extension (in a dimension orthogonal to the forward surface of the extension) between the forward surface and the rear surface from at least the opening of the ear canal to the tip of the extension is substantially less than the width of the ear canal, leaving an open air passage. The extension fits within the concha and beneath the tragus, without filling the concha and leaving a region within the concha that is in air flow communication with the open air passage in the ear canal. The compressive member tends to force the forward surface of the extension against the forward wall of the ear canal, securing the ear module in the ear comfortably and easily and maintaining the open air passage open.
In embodiments of the ear module described herein, the shape of the interior lobe within the region is adapted to fit within the concha so that it does not lie flush with the surface of the ear, leaving air gaps at irregularities in the surface of the ear or in the surface of the interior lobe, establishing an opening from outside air through the concha into the open air passage in the ear canal. Also, the interior lobe extends outwardly to support the exterior lobe of the ear module in a position spaced away from the anti-helix and tragus. Thus, air flow is provided to the open-air passage in the ear canal around the exterior and the interior lobes of the ear module, even in embodiments in which the exterior lobe is larger than the opening of the concha. Embodiments of the compressive member include an opening exposing the region within the concha that is in air flow communication with the open air passage in the ear canal to outside air. The opening in the compressive member, the region in the concha beneath the compressive member, and the open air passage in the ear canal provide an un-occluded air path from free air into the ear canal.
The ear-level module is a component of a personal sound system. The ear-level module houses a radio for transmitting and receiving communication signals encoding audio data, an audio transducer, one or more microphones, a user input and control circuitry. In embodiments of the technology, the ear-level module is configured with hearing aid functionality for processing audio received on one or more of the microphones according to a hearing profile of the user, and playing the processed sound back on the audio transducer. The control circuitry includes logic for communication using the radio with a plurality of sources of audio data in memory storing a set of variables for processing the audio data. Logic on the ear-level module is operable in a plurality of signal processing modes. In one embodiment, the plurality of signal processing modes include a first signal processing mode (e.g. a hearing aid mode) for processing sound picked up by one of the one or more microphones using a first subset of the set of variables and playing the processed sound on the audio transducer. A second signal processing mode (e.g. a companion microphone mode) is included for processing audio data from a corresponding audio source received using the radio according to a second subset of the set of variables, and playing the processed audio data on the audio transducer. A third signal processing mode (e.g. a phone mode) is included for processing audio data from another corresponding audio source, such as a telephone, and received using the radio. The audio data in the third signal processing mode is processed according to a third subset of the set of variables in played on the audio transducer. The ear level module includes logic that controls switching among the first, second and third signal processing modes according to predetermined priority, in response to user input, and in response to control signals from the plurality of sources. Other embodiments include fewer or more processing modes as suits the needs of the particular implementation.
A structure for an ear level module in a personal sound system is provided to fit securely within the ear, to be comfortable, and to support sophisticated microelectronics at the ear level, without occluding air flow into the ear canal.
Other aspects and advantages of the present invention can be seen on review of the drawings, the detailed description and the claims, which follow.
A detailed description of embodiments of the present invention is provided with reference to the
As illustrated in
The interior lobe 200 includes slot 213 adapted to receive a corresponding rail on an ear loop, to secure the ear loop onto the ear module. The exterior lobe 300 is substantially larger than the concha on the target ear, and houses data processing resources as mentioned above. In
The material of the loop 400 deforms when inserted in the ear, and provides compressive force against the interior lobe of the ear module. The loop 400 preferably includes an opening 403 inside the rim 402, which facilitates fit of the ear loop within the ear and provides for air flow into the open air passage within the ear canal. In the illustrated embodiment, the rim 402 includes a broader exterior rim 404 and a more narrow interior rim 405. The ear loops in the set can be made using a variety of flexible elastomer materials, such as a thermoplastic elastomer TPE suitable for injection molding. In one embodiment, a TPE having durometer of Shore A 64 was used. The material is selected empirically, so that it is not too hard for comfort and not too soft so that is stays within the ear.
Components of the exterior module 300 illustrated include the user interface button 301, a second user interface button 304, and the main interface button 302. In addition, the extension 303 which houses the microphones of the ear module from this view extends away and downwardly into the plane of the page.
Companion modules, such as the companion microphone 12 consist of small components, such as a battery operated module designed to be worn on a lapel, that house “thin” data processing platforms, and therefore do not have the rich user interface needed to support configuration of private network communications to pair with the ear module. For example, thin platforms in this context do not include a keyboard or touch pad practically suitable for the entry of personal identification numbers or other authentication factors, network addresses, and so on. Thus, to establish a private connection pairing with the ear module, the radio is utilized in place of the user interface.
In embodiments of the network described herein, the linked companion microphone 12 and other companion devices may be “permanently” paired with the ear module 10 using the configuration host 13, by storing a shared secret on the ear module and on the companion module that is unique to the pair of modules, and requiring use of the shared secret for establishing a communication link using the radio between them. The configuration host 13 is also utilized for setting variables utilized by the ear module 10 for a processing audio data from the various sources. Thus in embodiments described herein, each of the audio sources in communication with the ear module 10 may operate with a different subset of the set of variables stored on the ear module for audio processing, where each different subset is optimized for the particular audio source, and for the hearing profile of the user. The set of variables on the ear module 10 is stored in non-volatile memory on the ear module, and includes for example, indicators for selecting data processing algorithms to be applied and parameters used by data processing algorithms.
The radio module 51 is coupled to the digital signal processor 52 by a data/audio bus 70 and a control bus 71. The radio module 51 includes, in this example, a Bluetooth radio/baseband/control processor 72. The processor 72 is coupled to an antenna 74 and to nonvolatile memory 76. The nonvolatile memory 76 stores computer programs for operating a radio 72 and control parameters as known in the art. The radio processor module 51 also controls the man-machine interface 48 for the ear module 10, including accepting input data from the buttons and providing output data to the status light, according to well-known techniques.
A power control bus 75 couples the radio module 51 and the processor module 50 to power management circuitry 76. The power management circuitry 77 provides power to the microelectronic components on the ear module in both the processor module 50 and the radio module 51 using a rechargeable battery 78. A battery charger 79 is coupled to the battery 78 and the power management circuitry 77 for recharging the rechargeable battery 78.
The microelectronics and transducers shown in
The nonvolatile memory 76 is adapted to store at least first and second link parameters for establishing radio communication links with companion devices, in respective data structures referred to as “pre-pairing slots” in non-volatile memory. In the illustrated embodiment the first and second link parameters comprise authentication factors, such as Bluetooth PIN codes, needed for pairing with companion devices. The first link parameter is preferably stored on the device as manufactured, and known to the user. Thus, it can be used for establishing radio communication with phones and the configuration host or other platforms that provide user input resources to input the PIN code. The second link parameter also comprises an authentication factor, such as a Bluetooth PIN code, and is not pre-stored in the embodiment described herein. Rather, the second link parameter is computed by the configuration host in the field for private pairing of a companion module with the ear-module. In one preferred embodiment, the second link parameter is unique to the pairing, and not known to the user. In this way, the ear module is able to recognize authenticated companion modules within a network which attempt communication with the ear module, without requiring the user to enter the known first link parameter at the companion module. Embodiments of the technology support a plurality of unique pairing link parameters in addition to the second link parameter, for connection to a plurality of variant sources of audio data using the radio.
In addition, the processing resources in the ear module include resources for establishing a configuration channel with a configuration host for retrieving the second link parameter, for establishing a first audio channel with the first link parameters and for establishing a second audio channel with the second link parameter, in order to support a variety of audio sources.
While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.
This application is a 371 of PCT/US06/11036 filed on 28 Mar. 2006, entitled “Non-Occluding Ear Module For A Personal Sound System” which claims benefit of U.S. Provisional Application 60/666,018 filed 28 Mar. 2005, entitled “Personal Hearing System.”
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/011036 | 3/28/2006 | WO | 00 | 11/6/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/104981 | 10/5/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20030165248 | Lenz et al. | Sep 2003 | A1 |
20030174853 | Howes et al. | Sep 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20090141921 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60666018 | Mar 2005 | US |