Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods

Information

  • Patent Grant
  • 10047295
  • Patent Number
    10,047,295
  • Date Filed
    Thursday, March 14, 2013
    11 years ago
  • Date Issued
    Tuesday, August 14, 2018
    5 years ago
Abstract
The present technology is generally directed to non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods. In some embodiments, a coking system includes a coke oven and an uptake duct in fluid communication with the coke oven. The uptake duct has an uptake flow vector of exhaust gas from the coke oven. The system also includes a common tunnel in fluid communication with the uptake duct. The common tunnel has a common flow vector and can be configured to transfer the exhaust gas to a venting system. The uptake flow vector and common flow vector can meet at a non-perpendicular interface to improve mixing between the flow vectors and reduce draft loss in the common tunnel.
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. patent application Ser. No. 13/730,673, filed Dec. 28, 2012, which is incorporated herein by reference in its entirety. Further, components and features of embodiments disclosed in the application incorporated by reference may be combined with various components and features disclosed and claimed in the present application.


TECHNICAL FIELD

The present technology is generally directed to non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods.


BACKGROUND

Coke is a solid carbonaceous fuel that is derived from coal. Coke is a favored energy source in a variety of useful applications. For example, coke is often used to smelt iron ore during the steelmaking process. As a further example, coke may also be used to heat commercial buildings or power industrial boilers.


In a typical coking process, an amount of coal is baked in a coke oven at temperatures that generally exceed 2,000 degrees Fahrenheit. The baking process transforms the relatively impure coal into coke, which contains relatively few impurities. At the end of the baking process, the coke typically emerges from the coke oven as a substantially intact piece. The coke typically is removed from the coke oven, loaded into one or more train cars, and transported to a quench tower in order to cool or “quench” the coke before it is made available for distribution for use as a fuel source.


The hot exhaust (i.e. flue gas) emitted during baking is extracted from the coke ovens through a network of ducts, intersections, and transitions. The intersections in the flue gas flow path of a coke plant can lead to significant pressure drop losses, poor flow zones (e.g. dead, stagnant, recirculation, separation, etc.), and poor mixing of air and volatile matter. The high pressure drop losses can lead to higher required draft, leaks, and problems with system control. In addition, poor mixing and resulting localized hot spots can lead to earlier structural degradation due to accelerated localized erosion and thermal wear. Erosion includes deterioration due to high velocity flow eating away at material. Hot spots can lead to thermal degradation of material, which can eventually cause thermal/structural failure. The localized erosion and/or hot spots can, in turn, lead to failures at duct intersections.


Traditional duct intersection designs also result in significant pressure drop losses which may limit the number of coke ovens connected together in a single battery. There are limitations on how much draft a draft fan can pull. Pressure drops in duct intersections can take away from the amount of draft available to exhaust flue gases from the coke ovens. These and other related problems with traditional duct intersection design result in additional capital expenses. Therefore, a need exists to provide improved duct intersection/transitions that can improve mixing, flow distribution, minimize poor flow zones, and reduce pressure drop losses.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a horizontal heat recovery coke plant, configured in accordance with embodiments of the technology.



FIG. 2 is an isometric, partial cut-away view of a portion of the horizontal heat recovery coke plant of FIG. 1 configured in accordance with embodiments of the technology.



FIG. 3 is a sectional view of a horizontal heat recovery coke oven configured in accordance with embodiments of the technology.



FIG. 4 is a top view of a portion of a horizontal heat recovery coke plant configured in accordance with embodiments of the technology.



FIG. 5A is a cross-sectional top view of a perpendicular interface between an uptake duct and a common tunnel configured in accordance with embodiments of the technology.



FIG. 5B is a cross-sectional top view of a non-perpendicular interface between an uptake duct and a common tunnel configured in accordance with embodiments of the technology.



FIG. 5C is a cross-sectional end view of a non-perpendicular interface between an uptake duct and a common tunnel configured in accordance with embodiments of the technology.



FIG. 5D is a cross-sectional end view of a non-perpendicular interface between an uptake duct and a common tunnel configured in accordance with embodiments of the technology.



FIG. 5E is a cross-sectional end view of a non-perpendicular interface between an uptake duct and a common tunnel configured in accordance with embodiments of the technology.



FIGS. 6A-6I are top views of various configurations of interfaces between uptake ducts and a common tunnel configured in accordance with embodiments of the technology.



FIG. 7A is a cross-sectional top view of a non-perpendicular interface retrofitted between an uptake and a common tunnel configured in accordance with embodiments of the technology.



FIG. 7B is a cross-sectional top view of an interface between an uptake and a common tunnel configured in accordance with embodiments of the technology.



FIG. 7C is a cross-sectional top view of a non-perpendicular interface retrofitted between the uptake and common tunnel of FIG. 7B configured in accordance with embodiments of the technology.



FIG. 8 is a cross-sectional top view of a non-perpendicular interface between an uptake and a common tunnel configured in accordance with embodiments of the technology.



FIG. 9 is a plot showing the spatial distribution of gas static pressure along the length of the common tunnel.





DETAILED DESCRIPTION

The present technology is generally directed to non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods. In some embodiments, a coking system includes a coke oven and an uptake duct in fluid communication with the coke oven. The uptake duct has an uptake flow vector of exhaust gas from the coke oven. The system also includes a common tunnel in fluid communication with the uptake duct. The common tunnel has a common flow vector and can be configured to transfer the exhaust gas to a venting system. The uptake flow vector and common flow vector can meet at a non-perpendicular interface to improve mixing between the flow vectors and reduce draft loss in the common tunnel.


Specific details of several embodiments of the technology are described below with reference to FIGS. 1-9. Other details describing well-known structures and systems often associated with coal processing have not been set forth in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Many of the details, dimensions, angles, and other features shown in the Figures are merely illustrative of particular embodiments of the technology. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the spirit or scope of the present technology. A person of ordinary skill in the art, therefore, will accordingly understand that the technology may have other embodiments with additional elements, or the technology may have other embodiments without several of the features shown and described below with reference to FIGS. 1-9.



FIG. 1 is a schematic illustration of a horizontal heat recovery (HHR) coke plant 100, configured in accordance with embodiments of the technology. The HHR coke plant 100 comprises ovens 105, along with heat recovery steam generators (HRSGs) 120 and an air quality control system 130 (e.g., an exhaust or flue gas desulfurization (FGD) system), both of which are positioned fluidly downstream from the ovens 105 and both of which are fluidly connected to the ovens 105 by suitable ducts. The HHR coke plant 100 also includes one or more common tunnels 110A, 110B (collectively “common tunnel 110”) fluidly connecting individual ovens 105 to the HRSGs 120 via one or more individual uptake ducts 225. In some embodiments, two or more uptake ducts 225 connect each individual oven 105 to the common tunnel 110. A first crossover duct 290 fluidly connects the common tunnel 110A to the HRSGs 120 and a second crossover duct 295 fluidly connects the common tunnel 110B to the HRSGs 120 at respective intersections 245. The common tunnel 110 can further be fluidly connected to one or more bypass exhaust stacks 240. A cooled gas duct 125 transports the cooled gas from the HRSGs to the FGD system 130. Fluidly connected and further downstream are a baghouse 135 for collecting particulates, at least one draft fan 140 for controlling air pressure within the system, and a main gas stack 145 for exhausting cooled, treated exhaust into the environment. Various coke plants 100 can have different proportions of ovens 105, HRSGs 120, uptake ducts 225, common tunnels 110, and other structures. For example, in some coke plants, each oven 105 illustrated in FIG. 1 can represent ten actual ovens.


As will be described in further detail below, in several embodiments the uptake ducts 225 meet the common tunnel 110 at non-perpendicular interfaces. The non-perpendicular interfaces may comprise a fitting within the uptake ducts 225, a fitting within the common tunnel 110, a non-perpendicular uptake duct 225, a non-perpendicular portion of the uptake duct 225, or other feature. The non-perpendicular interfaces can lower the mixing draft loss at the uptake/common tunnel connection by angling the connection in the direction of the common tunnel flow. More specifically, the uptake ducts 225 have an uptake flow having an uptake flow vector (having x, y, and z orthogonal components) and the common tunnel 110 has a common flow having a common flow vector (having x, y, and z orthogonal components). By minimizing the differences between the uptake flow vector and the common flow vector, the lesser the change in the directional momentum of the hot gas and, consequently, the lower the draft losses.


Furthermore, there are interface angles in which the draft in the common tunnel 110 can increase from the addition of the extra mass flow from the uptake duct 225. More specifically, the interface can act as a vacuum aspirator which uses mass flow to pull a vacuum. By aligning the uptake duct 225 mass flow with the common tunnel 110 mass flow (having a velocity vector in the same major flow direction), a coke plant can achieve more vacuum pull and lower draft loss, which can potentially cause a draft increase. The reduced draft loss can be used to reduce the common tunnel 110 size (e.g., diameter) or lower the required overall system draft.


Further, various embodiments of the technology are not limited to the interface between uptake ducts and the common tunnel. Rather, any connection where the gas flow undergoes a significant change in direction can be improved to have a lower draft loss by using a non-perpendicular connection. For example, any of the connections in the exhaust flow path (e.g., between the common tunnel 110 and the bypass exhaust stacks 240) can include ducts meeting head to head; angling these connections can lower draft losses in the manner described above.



FIGS. 2 and 3 provide further detail regarding the structure and operation of the coke plant 100. More specifically, FIGS. 2 and 3 illustrate further details related to the structure and mechanics of exhaust flow from the ovens to the common tunnel. FIGS. 4 through 9 provide further details regarding various embodiments of non-perpendicular connections between coke oven uptakes ducts and the common tunnel.



FIG. 2 is an isometric, partial cut-away view of a portion of the HHR coke plant 100 of FIG. 1 configured in accordance with embodiments of the technology. FIG. 3 is a sectional view of an HHR coke oven 105 configured in accordance with embodiments of the technology. Referring to FIGS. 2 and 3 together, each oven 105 can include an open cavity defined by a floor 160, a front door 165 forming substantially the entirety of one side of the oven, a rear door 170 opposite the front door 165 forming substantially the entirety of the side of the oven opposite the front door, two sidewalls 175 extending upwardly from the floor 160 intermediate the front 165 and rear 170 doors, and a crown 180 which forms the top surface of the open cavity of an oven chamber 185. Controlling air flow and pressure inside the oven chamber 185 can be critical to the efficient operation of the coking cycle, and therefore the front door 165 includes one or more primary air inlets 190 that allow primary combustion air into the oven chamber 185. Each primary air inlet 190 includes a primary air damper 195 which can be positioned at any of a number of positions between fully open and fully closed to vary the amount of primary air flow into the oven chamber 185. Alternatively, the one or more primary air inlets 190 are formed through the crown 180.


In operation, volatile gases emitted from the coal positioned inside the oven chamber 185 collect in the crown and are drawn downstream in the overall system into downcomer channels 200 formed in one or both sidewalls 175. The downcomer channels fluidly connect the oven chamber 185 with a sole flue 205 positioned beneath the oven floor 160. The sole flue 205 forms a circuitous path beneath the oven floor 160. Volatile gases emitted from the coal can be combusted in the sole flue 205 thereby generating heat to support the carbonization of coal into coke. The downcomer channels 200 are fluidly connected to chimneys or uptake channels 210 formed in one or both sidewalls 175. A secondary air inlet 215 is provided between the sole flue 205 and the atmosphere; the secondary air inlet 215 includes a secondary air damper 220 that can be positioned at any of a number of positions between fully open and fully closed to vary the amount of secondary air flow into the sole flue 205. The uptake channels 210 are fluidly connected to the common tunnel 110 by the one or more uptake ducts 225. A tertiary air inlet 227 is provided between the uptake duct 225 and atmosphere. The tertiary air inlet 227 includes a tertiary air damper 229 which can be positioned at any of a number of positions between fully open and fully closed to vary the amount of tertiary air flow into the uptake duct 225.


In order to provide the ability to control gas flow through the uptake ducts 225 and within the ovens 105, each uptake duct 225 also includes an uptake damper 230. The uptake damper 230 can be positioned at any number of positions between fully open and fully closed to vary the amount of oven draft in the oven 105. The uptake damper 230 can comprise any automatic or manually-controlled flow control or orifice blocking device (e.g., any plate, seal, block, etc.). As used herein, “draft” indicates a negative pressure relative to atmosphere. For example, a draft of 0.1 inches of water indicates a pressure of 0.1 inches of water below atmospheric pressure. Inches of water is a non-SI unit for pressure and is conventionally used to describe the draft at various locations in a coke plant. In some embodiments, the draft ranges from about 0.12 to about 0.16 inches of water in the oven 105. If a draft is increased or otherwise made larger, the pressure moves further below atmospheric pressure. If a draft is decreased, drops, or is otherwise made smaller or lower, the pressure moves towards atmospheric pressure. By controlling the oven draft with the uptake damper 230, the air flow into the oven 105 from the air inlets 190, 215, 227 as well as air leaks into the oven 105 can be controlled. Typically, as shown in FIG. 3, an individual oven 105 includes two uptake ducts 225 and two uptake dampers 230, but the use of two uptake ducts and two uptake dampers is not a necessity; a system can be designed to use just one or more than two uptake ducts and two uptake dampers. All of the ovens 105 are fluidly connected by at least one uptake duct 225 to the common tunnel 110 which is in turn fluidly connected to each HRSG 120 by the crossover ducts 290, 295. The exhaust gases from each oven 105 flow through the common tunnel 110 to the crossover ducts 290, 295.


In operation, coke is produced in the ovens 105 by first loading coal into the oven chamber 185, heating the coal in an oxygen depleted environment, driving off the volatile fraction of coal, and then oxidizing the VM within the oven 105 to capture and utilize the heat given off. The coal volatiles are oxidized within the ovens over an extended coking cycle, and release heat to regeneratively drive the carbonization of the coal to coke. The coking cycle begins when the front door 165 is opened and coal is charged onto the oven floor 160. The coal on the oven floor 160 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle. As discussed above, in some embodiments, no additional fuel other than that produced by the coking process is used. Roughly half of the total heat transfer to the coal bed is radiated down onto the top surface of the coal bed from the luminous flame of the coal bed and the radiant oven crown 180. The remaining half of the heat is transferred to the coal bed by conduction from the oven floor 160 which is convectively heated from the volatilization of gases in the sole flue 205. In this way, a carbonization process “wave” of plastic flow of the coal particles and formation of high strength cohesive coke proceeds from both the top and bottom boundaries of the coal bed.


Typically, each oven 105 is operated at negative pressure so air is drawn into the oven during the reduction process due to the pressure differential between the oven 105 and atmosphere. Primary air for combustion is added to the oven chamber 185 to partially oxidize the coal volatiles, but the amount of this primary air is controlled so that only a portion of the volatiles released from the coal are combusted in the oven chamber 185, thereby releasing only a fraction of their enthalpy of combustion within the oven chamber 185. The primary air is introduced into the oven chamber 185 above the coal bed through the primary air inlets 190 with the amount of primary air controlled by the primary air dampers 195. The primary air dampers 195 can also be used to maintain the desired operating temperature inside the oven chamber 185. The partially combusted gases pass from the oven chamber 185 through the downcomer channels 200 into the sole flue 205, where secondary air is added to the partially combusted gases. The secondary air is introduced through the secondary air inlet 215. The amount of secondary air that is introduced is controlled by the secondary air damper 220. As the secondary air is introduced, the partially combusted gases are more fully combusted in the sole flue 205, thereby extracting the remaining enthalpy of combustion which is conveyed through the oven floor 160 to add heat to the oven chamber 185. The fully or nearly-fully combusted exhaust gases exit the sole flue 205 through the uptake channels 210 and then flow into the uptake duct 225. Tertiary air is added to the exhaust gases via the tertiary air inlet 227, where the amount of tertiary air introduced is controlled by the tertiary air damper 229 so that any remaining fraction of uncombusted gases in the exhaust gases are oxidized downstream of the tertiary air inlet 227.


At the end of the coking cycle, the coal has coked out and has carbonized to produce coke. The coke is preferably removed from the oven 105 through the rear door 170 utilizing a mechanical extraction system. Finally, the coke is quenched (e.g., wet or dry quenched) and sized before delivery to a user.



FIG. 4 is a top view of a portion of a horizontal heat recovery coke plant 400 configured in accordance with embodiments of the technology. The coke plant 400 includes several features generally similar to the coke plant 100 described above with reference to FIG. 1. For example, the plant 400 includes numerous uptake ducts 425 in fluid communication with coke ovens (not shown) and the hot common tunnel 110. The uptake ducts 425 can include “corresponding” uptake ducts 425a, 425b opposite one another on opposing lateral sides of the common tunnel 110 and a most-upstream or “end” uptake duct 425c. The uptake ducts 425 can channel exhaust gas to the common tunnel 110. The exhaust gas in the common tunnel 110 moves from an “upstream” end toward a “downstream” end.


In the illustrated embodiments, the uptake ducts 425 meet the common tunnel 110 at a non-perpendicular interface. More specifically, the uptake ducts 425 have an upstream angle θ relative to the common tunnel 110. While the upstream angle θ is shown to be approximately 45°, it can be lesser or greater in other embodiments. Further, as will be discussed in more detail below, in some embodiments different uptake ducts 425 can have different upstream angles θ from one another. For example, there may be a combination of perpendicular (90°) and non-perpendicular (less than 90°) interfaces. The non-perpendicular interfaces between the uptake ducts 425 and the common tunnel 110 can improve flow and reduce draft loss in the manner described above.



FIG. 5A is a cross-sectional top view of a perpendicular interface between an uptake duct 525a and the common tunnel 110 configured in accordance with embodiments of the technology. An uptake flow of exhaust gas in the uptake duct 525a intersects a common flow of exhaust gas in the common tunnel 110 to form a combined flow. The uptake duct 525a and the common tunnel 110 meet at an interface having an upstream angle α1 and a downstream angle α2 which are each approximately 90°. In other words, using a spherical coordinate system, a direction of the uptake flow vector comprises an azimuthal y-component but no azimuthal x-component, while a direction of the common flow vector and combined flow vector comprises an x-component but no y-component.



FIG. 5B is a cross-sectional top view of a non-perpendicular interface between an uptake duct 525b and the common tunnel 110 configured in accordance with embodiments of the technology. The uptake flow from the uptake duct 525b intersects the common flow in the common tunnel 110 to form a combined flow. The uptake duct 525b and the common tunnel 110 meet at an interface having an upstream angle α1 less than 90° and a downstream angle α2 greater than 90°. The non-perpendicular interface thus provides an azimuthal commonality between the uptake flow vector and the common flow vector. In other words, the uptake flow vector comprises an x-component having a direction in common with an x-component of the common flow vector, and the exhaust gas accordingly loses less momentum at the uptake duct 525b and common tunnel 110 interface as compared to the arrangement of FIG. 5A. The reduced momentum loss can lower the draft loss at the interface or, in some embodiments, can even increase the draft in the common tunnel 110.



FIG. 5C is a cross-sectional end view of a non-perpendicular interface between an uptake duct 525c and a common tunnel 510c configured in accordance with embodiments of the technology. While previous embodiments have shown the common tunnel to have a generally circular cross-sectional shape, in the embodiment shown in FIG. 5C the common tunnel 510c has a generally oval or egg-shaped cross-sectional shape. For example, the common tunnel 510 has a height H between a base B and a top T. In some embodiments, the egg-shaped cross-section can be asymmetrical (i.e., top-heavy), such that the common tunnel 510c has a greater cross-sectional area above a midpoint M between the top T and base B than below the midpoint M. Such a top-heavy design can provide for more room in the upper portion of the common tunnel 510c for combustion to occur, as the buoyancy of hot exhaust gas tends to urge combustion upward. The oblong shape of the illustrated common tunnel 510c can thus minimize flame impingement along the upper surface of the interior of the common tunnel 510c. In further embodiments, the uptake duct 525c can comprise any of the circular or non-circular cross-sectional shapes described above with reference to the common tunnel 510c, and the uptake duct 525c and common tunnel 510c need not have the same cross-sectional shape.


The uptake flow from the uptake duct 525c intersects the common flow in the common tunnel 510c to form a combined flow. Again referencing a spherical coordinate system, the uptake duct 525c meets the common tunnel 510c at an interface having a negative altitude angle β less than 90° with respect to the horizon (e.g., with respect to the x-y plane). The non-perpendicular interface thus provides an altitudinal difference between the uptake flow vector and the common flow vector. In other words, the uptake flow vector comprises a z-component that differs from a z-component of the common flow vector. In some embodiments, by introducing the uptake flow into the common flow at an altitudinal angle relative to the common flow vector, swirling flow or turbulence is developed inside the common tunnel 510c to enhance mixing and combustion of unburned volatile matter and oxygen. In other embodiments, the altitude angle β is a positive angle, greater than 90°, or approximately equal to 90°.


The uptake duct 525c can interface with the common tunnel 510c at any height between the top T and bottom B of the common tunnel 510c. For example, in the illustrated embodiment, the uptake duct 525c intersects with the common tunnel 510c in the lower portion of the common tunnel 510c (i.e., below or substantially below the midpoint M). In further embodiments, the uptake duct 525c intersects with the common tunnel 510c in the upper portion of the common tunnel 510c, at the midpoint M, at a top T or bottom B of the common tunnel 510c, or in multiple locations around the cross-sectional circumference of the common tunnel 510c. For example, in a particular embodiment, one or more uptake ducts 525c may intersect with the common tunnel 510c in the lower portion and one or more other uptake ducts 525c may intersect with the common tunnel 510c in the upper portion.



FIG. 5D is a cross-sectional end view of a non-perpendicular interface between an uptake duct 525d and the common tunnel 510d configured in accordance with embodiments of the technology. In the embodiment shown in FIG. 5D the common tunnel 510d has a generally square or rectangular cross-sectional shape. Other embodiments can have other cross-sectional shapes. The uptake flow from the uptake duct 525d intersects the common flow in the common tunnel 510d to form a combined flow. Again referencing a spherical coordinate system, the uptake duct 525d and the common tunnel 510d meet at an interface having a positive altitude angle β less than 90° with respect to the horizon. In other words, the uptake flow vector comprises a z-component that differs from a z-component of the common flow vector. In some embodiments, by introducing the uptake flow into the common flow at an altitudinal angle different from the common flow, mixing draft loss can be reduced and combustion can be encouraged to occur at a height that does not burn the interior surfaces of the common tunnel 510d. For example, the downward altitudinal introduction of flow from the uptake duct 525d can counter the buoyancy of the hot exhaust gas to encourage combustion to occur toward the bottom of the common tunnel 510d so as not to burn the top of the common tunnel 501d.



FIG. 5E is a cross-sectional end view of a non-perpendicular interface between an uptake duct 525e and a common tunnel 510e configured in accordance with embodiments of the technology. The interface has several features generally similar to those discussed above with reference to FIGS. 5A-5D. However, in the embodiment illustrated in FIG. 5E, the common tunnel 510e comprises a symmetrical, elongated oval. More specifically, the common tunnel 510e includes a semi-circular shape at top and bottom positions of the common tunnel 510e, and generally straight, parallel, elongated sides between the top and bottom semi-circles. The elongated shape can provide several of the advantages described above. For example, the design can provide for more room in the mid-section of the common tunnel 510e for combustion to occur, as the buoyancy of hot exhaust gas tends to urge combustion upward. Similarly, the downward altitudinal introduction of flow from the uptake duct 525e at angle β can further counter the buoyancy of the hot exhaust gas to encourage combustion to occur toward the bottom of the common tunnel 510e. The oblong shape of the illustrated common tunnel 510e can thus minimize flame impingement along the upper surface of the interior of the common tunnel 510e. In further embodiments, the common tunnel 510e can be symmetrical or asymmetrical and have the same or different shapes.


While various features of the uptake duct and common tunnel interface have been shown separately for purposes of illustration, any of these features can be combined to achieve reduced draft loss, combustion control, and the most effective mixing of the uptake flow and common flow. More specifically, the azimuthal angle of interface, the altitudinal angle of interface, the height of interface, the shape of the common tunnel and/or uptake duct, or other feature can be selected to achieve the desired thermal and draft conditions at the interface. Various parameters such as common tunnel draft, desired degree of common tunnel combustion, exhaust gas buoyancy conditions, total pressure, etc. can be some of the considerations in selecting the features of the uptake duct and common tunnel interface.



FIGS. 6A-6I are top views of various configurations of interfaces between uptake ducts and a common tunnel configured in accordance with embodiments of the technology. As will be shown, the uptake ducts can comprise various patterns of perpendicular and non-perpendicular interfaces with the common tunnel, or can comprise various non-perpendicular angles relative to the common tunnel. While the embodiments shown and discussed with reference to FIGS. 6A-6I include numerous features and arrangements, in further embodiments any of these features and/or arrangements can be used independently or in any combination with other features and/or arrangements described herein.


Referring first to FIG. 6A, in some embodiments each of several uptake ducts 625a meets the common tunnel 110 at a less-than-90° upstream angle α. The uptake ducts 625a thus reduce mixing loss at the combination of common flow and uptake flow in the manner described above. In some embodiments, corresponding (i.e., opposing) uptake ducts 625a are laterally offset from one another and are not directly opposing. This is shown in the two most-downstream uptake ducts 625a shown in FIG. 6A. In further embodiments, the spacing between individual uptake ducts 625a (i.e., along the length of the common tunnel 110) can likewise be variable. For example, the distance d between the two most downstream uptake ducts 625a along one side of the common tunnel 110 is greater than the distance between the other uptake ducts 625a. In further embodiments, the spacing is constant between all uptake ducts 625a.



FIG. 6B illustrates an embodiment where uptake ducts 625b meet the common tunnel 110 at decreasing upstream angles α. For example, at a most downstream position, the uptake ducts may be perpendicular or nearly-perpendicular to the common tunnel 110. As the uptake tunnels approach an upstream end, the upstream angles α between the uptake ducts 625b and the common tunnel 110 become progressively smaller. In some embodiments, the range of upstream angles α varies from about 15° to about 90°. Since the draft pull is weaker farther upstream, this arrangement can progressively reduce the barrier to entry of the uptake flow into the common flow and thereby reduce draft loss due to mixing or stagnant flow regions. In further embodiments, one or more uptake ducts 625b can be positioned at an upstream angle α that is greater than 90°. In still further embodiments, the trend shown in FIG. 6B can be reversed. More specifically, the uptake ducts 625b can meet the common tunnel 110 at increasing upstream angles, wherein the most-upstream angle can be near or approaching 90°. Such an arrangement can be useful in embodiments where mixing flow losses are potentially greater at downstream positions having higher accumulated common flow.



FIG. 6C illustrates an embodiment having a combination of uptake ducts 625c meeting the common tunnel 110 at non-perpendicular angles α1 and perpendicular angles α2. The illustrated embodiment includes pairs of non-perpendicular ducts 625c along a side of the common tunnel 110 followed by pairs of perpendicular ducts 625c, and so on. In further embodiments, there can be more or fewer perpendicular or non-perpendicular uptake ducts 625c in a row.



FIG. 6D illustrates an embodiment having a combination of uptake ducts 625d meeting the common tunnel 110 at non-perpendicular angles α1 and perpendicular angles α2. The illustrated embodiment includes alternating non-perpendicular ducts 625d and perpendicular ducts 625d along a side of the common tunnel 110.



FIG. 6E illustrates an embodiment having a combination of uptake ducts 625e meeting the common tunnel 110 at non-perpendicular angles α1 and perpendicular angles α2. The illustrated embodiment includes individual perpendicular uptake ducts 625e alternating with non-perpendicular uptake ducts 625e, followed by pairs of non-perpendicular ducts 625e, followed by pairs of perpendicular ducts 625e, and so on. This pattern or a portion of this pattern can repeat along further sections of the common tunnel 110. In further embodiments, there can be different combinations of perpendicular and non-perpendicular uptake ducts.



FIG. 6F illustrates an embodiment having a combination of uptake ducts 625f meeting the common tunnel 110 at non-perpendicular angles α1 and perpendicular angles α2. The illustrated embodiment includes a series of non-perpendicular uptake ducts 625f, followed by a perpendicular duct 625f, followed by another series of non-perpendicular ducts 625f, and so on.



FIG. 6G illustrates an embodiment having a combination of uptake ducts 625g meeting the common tunnel 110 at non-perpendicular angles α1 and perpendicular angles α2. The illustrated embodiment includes non-perpendicular uptake ducts 625g on a first lateral side of the common tunnel 110, and perpendicular ducts 625g along a second, opposing, lateral side of the common tunnel 110.



FIG. 6H illustrates an embodiment having a combination of uptake ducts 625h meeting the common tunnel 110 at non-perpendicular angles α1 and perpendicular angles α2. The illustrated embodiment includes alternating non-perpendicular ducts 625h and perpendicular ducts 625h along a side of the common tunnel 110, where the non-perpendicular uptake ducts 625h are opposite perpendicular ducts 625h and vice-versa.



FIG. 6I illustrates an embodiment having uptake ducts 625i along only one lateral side of the common tunnel 110, with no uptake ducts on the opposing lateral side. In some embodiments, two single-sided common tunnels 110 can be operated in a coke plant in a side-by-side parallel arrangement. The uptake ducts 625i can be angled at non-perpendicular angle α relative to the common tunnel 110 in the manner described above.



FIG. 7A is a cross-sectional top view of a non-perpendicular interface retrofitted between a perpendicular uptake duct 725a and the common tunnel 110 configured in accordance with embodiments of the technology. The uptake duct 725a and the common tunnel 110 can originally have the same arrangement as the embodiment discussed above with reference to FIG. 5A, but can be retrofitted to include one or more non-perpendicular interface features. For example, the interface has been fitted with an internal baffle 726a to alter the flow pattern and create a non-perpendicular interface. More specifically, the baffle 726a is placed in a lumen of the uptake duct 725a and modifies a perpendicular interface into an angled interface that reduces draft loss due to mixing. In the illustrated embodiment, the baffle 726a is triangle-shaped and converges the uptake flow by reducing an inner characteristic dimension of the uptake duct 725a. This converged flow can act as a nozzle and minimize flow energy losses of the uptake flow and/or common flow. In further embodiments, the baffle 726a can be adjustable (i.e., movable to adjust the flow and interface pattern), can have different shapes and/or sizes, and/or can converge and/or diverge flow to other degrees. Further, the baffle can extend around more or less of the lumen of the uptake duct 725a.


The common tunnel 110 can further be retrofitted with a flow modifier 703 positioned on an interior surface of the common tunnel 110 and configured to interrupt or otherwise modify flow in the common tunnel 110, or improve the interface (i.e., reduce draft loss) at the junction of the uptake flow and the common flow. The uptake duct 725a has further been modified with a bumped-out diverging flow plate D. The diverging flow plate D modifies the uptake flow vector to have an x-component in common with a common flow vector, thus reducing draft loss between the uptake flow and the common flow. While the diverging flow plate D, the baffle 726a, and the flow modifier 703 are shown in use together, in further embodiments, any of these features can be used independently or in any combination with any other features described herein.


While the terms “baffle” 726a and “flow modifier” 703 are used herein, the additions to the uptake duct 726a or common tunnel 110 can comprise any insulation material, refractory material, or other thermally-suitable material. In some embodiments, the flow modifier 703 and/or baffle 726a may comprise a single or multilayer lining that is built up with a relatively inexpensive material and covered with a skin. In yet another embodiment, refractory or similar material can be shaped via gunning (i.e. spraying). Better control of shaping via gunning may be accomplished by gunning in small increments or layers. In addition, a template or mold may be used to aid the shaping via gunning. A template, mold, or advanced cutting techniques may be used to shape the refractory (e.g. even in the absence of gunning for the main shape of an internal insert) for insertion into the duct and then attached via gunning to the inner lining of the duct. In yet another embodiment, the flow modifier 703 and/or baffle 726a may be integrally formed along the duct. In other words, the uptake duct 725a wall may be formed or “dented” to provide a convex surface along the interior surface of the duct. As used herein, the term convex does not require a continuous smooth surface, although a smooth surface may be desirable. For example, the flow modifier 703 and/or baffle 726a may be in the form of a multi-faceted protrusion extending into the flow path. Such a protrusion may be comprised of multiple discontinuous panels and/or surfaces. Furthermore, the flow modifier 703 and/or baffle 726a are not limited to convex surfaces. The contours of the flow modifier 703 and/or baffle 726a may have other complex surfaces, and can be determined by design considerations such as cost, space, operating conditions, etc. In further embodiments, there can be more than one flow modifier 703 and/or baffle 726a. Further, while the flow modifier 703 is shown in the common tunnel 110, in further embodiments the flow modifier 703 can be positioned at other locations (e.g., entirely or partially extending into the uptake duct 725a, or around the inner circumference of the common tunnel 110.



FIG. 7B is a cross-sectional top view of an interface between an uptake duct 725b and a common tunnel 110 configured in accordance with embodiments of the technology. FIG. 7C is a cross-sectional top view of a non-perpendicular interface retrofitted between the uptake duct 725b and common tunnel 110 of FIG. 7B. Referring to FIGS. 7B and 7C together, the uptake duct 725b includes a diverging uptake end D that flares at the interface with the common tunnel 110. The uptake duct 725b can be retrofitted with an internal baffle 726c generally similar to the internal baffle 726a described above with reference to FIG. 7A. The internal baffle 726c of FIG. 7C can eliminate the flare or a portion of the flare at the diverging end D, to create a non-perpendicular interface between the uptake duct 725b and the common tunnel 110 to reduce draft loss. In further embodiments, the entire internal circumference of the uptake duct 725b can be fitted with the baffle 726c to further narrow or otherwise alter the interface. The baffle 726c can minimize flow energy losses as the uptake flow meets the common flow in the common tunnel 110.



FIG. 8 is a cross-sectional top view of a non-perpendicular interface between an uptake duct 825 and the common tunnel 110 configured in accordance with embodiments of the technology. The uptake duct 825 includes a converging portion C followed by a diverging portion D. The converging portion C can minimize flow energy losses as the exhaust gas from the uptake duct 825 meets the common flow in the common tunnel 110. The diverging portion provides an interface that modifies the uptake flow vector to have an x-component in common with a common flow vector, thus reducing draft loss between the pressurized uptake flow and the common flow. In various embodiments, the diverging and converging portions can have smooth or sharp transitions, and there can be more or fewer converging or diverging nozzles in the uptake duct 825 or common tunnel 110. In another embodiment, the converging portion C is adjacent to the common tunnel 110 and the diverging portion D is upstream in the uptake duct 825. In further embodiments, the converging portion C can be used independently from the diverging portion D, and vice versa.


The interface of FIG. 8 further includes a jet 803 configured to introduce a pressurized fluid such as air, exhaust gas, water, steam, fuel, oxidizer, inert, or other fluid (or combination of fluids) to the uptake flow or common flow as a way to improve flow and reduce draft loss. The fluid can be gaseous, liquid, or multiphase. The jet 803 can stem from or be supported by any external or internal pressurized source (e.g., a pressurized vessel, a pressurized line, a compressor, a chemical reaction or burning within the coking oven system that supports energy to create pressure, etc.). While the jet 803 is shown as penetrating the common tunnel 110 at a position downstream of the uptake duct 825, in further embodiments the jet 803 can be positioned in the uptake duct 825, upstream of the uptake duct 825 in the common tunnel 110, in multiple locations (e.g., a ring) around the circumference of the common tunnel 110 or uptake duct 825a, a combination of these positions, or other positions. In a particular embodiment, the jet 803 can be positioned in the uptake duct 825 upstream of the converging portion C. The jet 803 can act as an ejector, and can pull a vacuum draft behind the pressurized fluid. The jet 803 can thus modify flow to create improved draft conditions, energize flow or mixing, or can reduce stagnant air or “dead” zones. In various embodiments, the jet 803 can pulse the fluid, provide constant fluid, or be run on a timer. Further, the jet 803 can be controlled manually, in response to conditions in the common tunnel 110, uptake duct 825, or other portion of the exhaust system, or as part of an advanced control regime. While the jet 803 is shown in use with the particular uptake duct 825 arrangement illustrated in FIG. 8, in further embodiments, the jet 803 and uptake duct 825 could be employed independently or in any combination with any other features described herein. For example, in a particular embodiment, the jet 803 could be used in combination with the flow modifier 703 shown in FIG. 7A, and could be proximate to or protrude through such a flow modifier 703.



FIG. 9 is a plot showing the spatial distribution of the difference in static pressure (in inches-water) along the length of the common tunnel. In other words, the plot illustrates the difference in static pressure at downstream positions in the common tunnel compared to the static pressure at the upstream end. As shown in the plot, the 45 degree uptake has a much lower draft loss over the same length of common tunnel as compared to the perpendicular uptake. This is because the angled uptake has less mixing loss than the perpendicular uptake.


EXAMPLES

The following Examples are illustrative of several embodiments of the present technology.


1. A coking system, comprising:

    • a coke oven;
    • an uptake duct in fluid communication with the coke oven and having an uptake flow vector of exhaust gas from the coke oven; and
    • a common tunnel in fluid communication with the uptake duct, the common tunnel having a common flow vector of exhaust gas and configured to transfer the exhaust gas to a venting system, wherein the uptake flow vector and common flow vector meet at a non-perpendicular interface.


2. The coking system of example 1 wherein at least a portion of the uptake duct is non-perpendicular to the common tunnel.


3. The coking system of example 1 wherein the non-perpendicular interface comprises at least one of an altitudinal difference or an azimuthal commonality between the uptake flow vector and the common flow vector.


4. The coking system of example 1 wherein the common tunnel has a common tunnel height, an upper portion above a midpoint of the common tunnel height, and a lower portion below the midpoint of the common tunnel height, and wherein the uptake duct interfaces with the common tunnel in at least one of the upper portion and the lower portion.


5. The coking system of example 1 wherein the non-perpendicular interface comprises at least one of a baffle, gunned surface, contoured duct liner, or convex flow modifier inside at least one of the uptake duct or common tunnel and configured to alter at least one of the uptake flow vector or common flow vector.


6. The coking system of example 5 wherein the baffle, gunned surface, contoured duct liner, or convex flow modifier is integral to at least one of the uptake duct or common tunnel or is retrofitted onto the uptake duct or common tunnel.


7. The coking system of example 1 wherein at least one of the uptake duct or the interface comprises a converging or diverging pathway.


8. The coking system of example 1 wherein the uptake duct comprises a first uptake duct in fluid communication with a first coke oven and having a first uptake flow vector, and wherein the system further comprises a second uptake duct in fluid communication with the first coke oven or a second coke oven and having a second uptake flow vector of exhaust gas.


9. The coking system of example 8 wherein the first uptake flow vector and common flow vector meet at a non-perpendicular interface, and the second uptake flow vector and common flow vector meet at a perpendicular interface.


10. The coking system of example 8 wherein the first uptake flow vector and common flow vector meet at a non-perpendicular interface and the second uptake flow vector and common flow vector meet at a non-perpendicular interface.


11. The coking system of example 8 wherein at least a portion of the first uptake duct is non-perpendicular to the common tunnel by a first angle and at least a portion of the second uptake duct is non-perpendicular to the common tunnel by a second angle different from the first angle.


12. The coking system of example 8 wherein:

    • the system further comprises a third uptake duct in fluid communication with the first coke oven, the second coke oven, or a third coke oven and having a third uptake flow vector of exhaust gas;
    • the first uptake duct, second uptake duct, and third uptake duct are positioned along a lateral side of the common tunnel; and
    • there is a first distance between the first uptake duct and second uptake duct and a second distance different from the first distance between the second uptake duct and the third uptake duct.


13. The coking system of example 8 wherein the first uptake duct is positioned on a first lateral side of the common tunnel and the second uptake duct is positioned on a second lateral side of the common tunnel opposite the first lateral side, and wherein the first uptake duct and second uptake duct are laterally offset from one another.


14. The coking system of example 8 wherein the first uptake duct and second uptake duct are positioned on a common lateral side of the common tunnel, and wherein there are no uptake ducts on an opposing lateral side of the common tunnel.


15. The coking system of example 1 wherein the common tunnel has one of a circular, non-circular, oval, elongated oval, asymmetrical oval, or rectangular cross-sectional shape.


16. A method of reducing draft losses in a common tunnel in a coking system, the method comprising:

    • flowing exhaust gas from a coke oven through an uptake duct;
    • biasing the exhaust gas exiting the uptake duct toward a common flow in the common tunnel; and
    • merging the exhaust gas and common flow at a non-perpendicular interface.


17. The method of example 16, further comprising at least one of converging or diverging the exhaust gas in or upon exiting the uptake duct.


18. The method of example 16 wherein biasing the exhaust gas comprises biasing the exhaust gas with a baffle in the uptake duct.


19. The method of example 16, further comprising increasing a draft in the common tunnel upon merging the exhaust gas and common flow.


20. The method of example 16 wherein biasing the exhaust gas comprises biasing the exhaust gas within the uptake duct, wherein the uptake duct is at least partially non-perpendicular to the common tunnel.


21. The method of example 16, further comprising introducing a pressurized fluid via a jet into at least one of the uptake duct or the common tunnel.


22. A coking system, comprising:

    • a common tunnel configured to direct a gas from one or more coke ovens to a common stack, wherein the common tunnel has a common tunnel flow with a common tunnel flow vector, and wherein the common tunnel flow vector has an x-component and a y-component;
    • a coke oven in fluid connection with the common tunnel via an uptake, wherein—
      • the uptake connects to the common tunnel at an intersection, and
      • the uptake includes an uptake flow having an uptake flow vector with an x-component and a y-component; and
    • wherein the uptake flow vector x-component has a same direction as the x-component of the common tunnel flow vector.


23. The coking system of example 22 wherein an inner characteristic dimension of the uptake at least one of increases or decreases in the direction of the intersection.


24. The coking system of example 22 wherein the uptake further includes an angled baffle at or near the intersection, the baffle configured to redirect the uptake flow.


Traditional heat recovery coke ovens employ an uptake duct connection from the coke oven to the hot common tunnel that is perpendicular to the common tunnel. Due to the perpendicular shape of the interface, the hot flue gas moving toward the common tunnel experiences a 90-degree change in flow direction. This induces considerable flow losses which can lead to a higher pressure drop. Such mixing losses are undesirable. In order to maintain the system under negative pressure, the high draft loss may require that either the common tunnel be made larger or a higher draft be pulled on the whole system to off-set this higher draft loss.


The non-perpendicular interfaces disclosed herein can lower the mixing draft loss at the uptake/common tunnel connection by angling the connection in the direction of the common tunnel flow. The smaller the upstream angle between the uptake duct and the common tunnel, the lesser the change in the directional momentum of the hot gas and, consequently, the lower the draft losses. By using non-perpendicular interfaces and aligning the uptake duct flow in the direction of the common tunnel flow, the draft loss can be lowered, which then can be used to reduce the common tunnel size or lower the required draft. For example, in some embodiments, the technology described herein can reduce the common tunnel insider diameter to 7-9 feet. The technology could similarly allow a longer common tunnel that would traditionally have been prohibitive due to draft losses. For example, in some embodiments, the common tunnel can be long enough to support 30, 45, 60, or more ovens per side.


From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.

Claims
  • 1. A coking system, comprising: a plurality of coke ovens;a plurality of uptake ducts in fluid communication with the plurality of coke ovens; each of the plurality of uptake ducts having an uptake flow vector of exhaust gas from at least one of the plurality of coke ovens; anda common tunnel having a common flow vector of exhaust gas and configured to transfer the exhaust gas to a venting system; the plurality of coke ovens, plurality of uptake ducts, and common tunnel being fluidly coupled with one another to define a negative pressure exhaust system, whereby a draft is induced within the coking system;the plurality of uptake ducts and common tunnel being fluidly coupled with one another at a plurality of interfaces; at least some of the plurality of interfaces being non-perpendicular, wherein the uptake ducts are disposed at angles with respect to the common tunnel and bias the uptake flow vectors and common flow vector toward a common flow direction, whereby minimizing a static pressure differential between an upstream portion and a downstream portion of the common tunnel and discouraging a draft loss within the coking system;at least one of the plurality of uptake ducts comprising a converging portion, which converges in a direction of the uptake flow vector in a manner that minimizes flow energy losses, and a diverging portion, which defines an interface that modifies the uptake flow vector to have an x-component in common with the common flow vector and reduces draft loss between the uptake flow and the common flow.
  • 2. The coking system of claim 1 wherein the uptake flow vector of each of the plurality of uptake ducts includes an x-component, a y-component, and a z-component and the common flow vector includes an x-component, a y-component, and a z-component; the y-components of the uptake flow vector and the common flow vector disposed in different directions; the z-components of the uptake flow vector and the common flow vector disposed in different directions.
  • 3. The coking system of claim 1 wherein the common tunnel has a common tunnel height, an upper portion above a midpoint of the common tunnel height, and a lower portion below the midpoint of the common tunnel height, and wherein at least some of the uptake ducts interface with the common tunnel at the upper portion or the lower portion, but not both, simultaneously.
  • 4. The coking system of claim 1 wherein at least one non-perpendicular interface comprises at least one of a baffle, gunned surface, contoured duct liner, or convex flow modifier coupled with an inner surface of at least one of the uptake duct or common tunnel and configured to alter at least one of the uptake flow vector or common flow vector.
  • 5. The coking system of claim 4 wherein the baffle, gunned surface, contoured duct liner, or convex flow modifier is integral to at least one of the uptake duct or common tunnel or is retrofitted onto the uptake duct or common tunnel.
  • 6. The coking system of claim 1 wherein the plurality of uptake ducts comprises a first uptake duct in fluid communication with a first coke oven of the plurality of coke ovens and having a first uptake flow vector, and wherein the system further comprises a second uptake duct of the plurality of uptake dusts in fluid communication with the first coke oven or a second coke oven of the plurality of coke ovens and having a second uptake flow vector of exhaust gas.
  • 7. The coking system of claim 6 wherein the first uptake flow vector and common flow vector meet at a non-perpendicular interface, and the second uptake flow vector and common flow vector meet at a perpendicular interface.
  • 8. The coking system of claim 6 wherein the first uptake flow vector and common flow vector meet at a non-perpendicular interface and the second uptake flow vector and common flow vector meet at a non-perpendicular interface.
  • 9. The coking system of claim 6 wherein at least a portion of the first uptake duct is non-perpendicular to the common tunnel by a first angle and at least a portion of the second uptake duct is non-perpendicular to the common tunnel by a second angle different from the first angle.
  • 10. The coking system of claim 6 wherein: the system further comprises a third uptake duct of the plurality of uptake ducts in fluid communication with the first coke oven, the second coke oven, or a third coke oven of the plurality of coke ovens and having a third uptake flow vector of exhaust gas;the first uptake duct, second uptake duct, and third uptake duct are positioned along a lateral side of the common tunnel; andthere is a first distance between the first uptake duct and second uptake duct and a second distance different from the first distance between the second uptake duct and the third uptake duct.
  • 11. The coking system of claim 6 wherein the first uptake duct is positioned on a first lateral side of the common tunnel and the second uptake duct is positioned on a second lateral side of the common tunnel opposite the first lateral side, and wherein the first uptake duct and second uptake duct are laterally offset from one another.
  • 12. The coking system of claim 6 wherein the first uptake duct and second uptake duct are positioned on a common lateral side of the common tunnel, and wherein there are no uptake ducts on an opposing lateral side of the common tunnel.
  • 13. The coking system of claim 1 wherein the common tunnel has one of a non-circular, oval, elongated oval, asymmetrical oval, or rectangular cross-sectional shape.
  • 14. A coking system, comprising: a common tunnel configured to direct a gas from one or more coke ovens to a common stack, wherein the common tunnel has a common tunnel flow with a common tunnel flow vector, and wherein the common tunnel flow vector has an x-component extending along a long axis of the common tunnel, a y-component extending along a width of the common tunnel, and a z-component extending along a height of the common tunnel; the common tunnel having an elliptical cross-sectional shape and a cross-sectional area above a centerline that is greater than a cross-sectional area below the centerline, such that combustion is urged upward within the common tunnel;a coke oven in fluid connection with the common tunnel via an uptake, wherein: the uptake includes an uptake flow having an uptake flow vector with an x-component, a y-component, and a z-component; andthe uptake connects to the common tunnel at an intersection, wherein the uptake is disposed at an angle with respect to the common tunnel;wherein the uptake flow vector z-component has a different direction than the z-component of the common tunnel flow vector, whereby encouraging mixing and combustion of unburned volatile material and oxygen inside the common tunnel.
  • 15. The coking system of claim 14 wherein an inner characteristic dimension of the uptake at least one of increases or decreases in the direction of the intersection.
  • 16. The coking system of claim 14 wherein the uptake further includes an angled baffle at or near the intersection, the baffle configured to redirect the uptake flow.
  • 17. The coking system of claim 14 wherein the z-component of the uptake is in a downward direction, such that buoyancy of gases exiting the uptake are at least partially countered and combustion of the gases are encouraged to occur toward a lower portion of the common tunnel.
US Referenced Citations (285)
Number Name Date Kind
425797 Hunt Apr 1890 A
469868 Thomas et al. Mar 1892 A
845719 Schniewind Feb 1907 A
976580 Krause Jul 1909 A
1140798 Carpenter May 1915 A
1424777 Schondeling Aug 1922 A
1430027 Plantinga Sep 1922 A
1486401 Van Ackeren Mar 1924 A
1572391 Klaiber Feb 1926 A
1677973 Marquard Jul 1928 A
1721813 Rudolf et al. Jul 1929 A
1818370 Wine Aug 1931 A
1818994 Kreisinger Aug 1931 A
1848818 Becker Mar 1932 A
1955962 Jones Apr 1934 A
2075337 Burnaugh Mar 1937 A
2394173 Harris et al. Feb 1946 A
2424012 Bangham et al. Jul 1947 A
2649978 Such Aug 1953 A
2667185 Beavers Jan 1954 A
2723725 Keiffer Nov 1955 A
2756842 Chamberlin et al. Jul 1956 A
2827424 Homan Mar 1958 A
2873816 Emil et al. Feb 1959 A
2902991 Whitman Sep 1959 A
3015893 McCreary Jan 1962 A
3033764 Hannes May 1962 A
3462345 Kernan Aug 1969 A
3511030 Brown et al. May 1970 A
3542650 Kulakov Nov 1970 A
3545470 Paton Dec 1970 A
3592742 Thompson Jul 1971 A
3616408 Hickam Oct 1971 A
3623511 Levin Nov 1971 A
3630852 Nashan et al. Dec 1971 A
3652403 Knappstein et al. Mar 1972 A
3676305 Cremer Jul 1972 A
3709794 Kinzler et al. Jan 1973 A
3710551 Sved Jan 1973 A
3746626 Morrison, Jr. Jul 1973 A
3748235 Pries Jul 1973 A
3784034 Thompson Jan 1974 A
3806032 Pries Apr 1974 A
3811572 Tatterson May 1974 A
3836161 Buhl Sep 1974 A
3839156 Jakobi et al. Oct 1974 A
3844900 Schulte Oct 1974 A
3857758 Mole Dec 1974 A
3875016 Schmidt-Balve et al. Apr 1975 A
3876143 Rossow et al. Apr 1975 A
3876506 Dix et al. Apr 1975 A
3878053 Hyde Apr 1975 A
3894302 Lasater Jul 1975 A
3897312 Armour et al. Jul 1975 A
3906992 Leach Sep 1975 A
3912091 Thompson Oct 1975 A
3917458 Polak Nov 1975 A
3930961 Sustarsic et al. Jan 1976 A
3957591 Riecker May 1976 A
3959084 Price May 1976 A
3969191 Bollenbach et al. Jul 1976 A
3975148 Fukuda et al. Aug 1976 A
3984144 Steinbrecher Oct 1976 A
3984289 Sustarsic et al. Oct 1976 A
4004702 Szendroi Jan 1977 A
4004983 Pries Jan 1977 A
4040910 Knappstein et al. Aug 1977 A
4045299 MacDonald Aug 1977 A
4059885 Oldengott Nov 1977 A
4067462 Thompson Jan 1978 A
4083753 Rogers et al. Apr 1978 A
4086231 Ikio Apr 1978 A
4093245 Connor Jun 1978 A
4100033 Holter Jul 1978 A
4111757 Ciarimboli Sep 1978 A
4124450 MacDonald Nov 1978 A
4135948 Mertens et al. Jan 1979 A
4141796 Clark et al. Feb 1979 A
4145195 Knappstein et al. Mar 1979 A
4147230 Ormond et al. Apr 1979 A
4162546 Shortell et al. Jul 1979 A
4181459 Price Jan 1980 A
4189272 Gregor et al. Feb 1980 A
4194951 Pries Mar 1980 A
4196053 Grohmann Apr 1980 A
4211608 Kwasnoski et al. Jul 1980 A
4211611 Kwasnoski et al. Jul 1980 A
4213828 Calderon Jul 1980 A
4222748 Argo et al. Sep 1980 A
4222824 Flockenhaus et al. Sep 1980 A
4224109 Flockenhaus et al. Sep 1980 A
4225393 Gregor et al. Sep 1980 A
4235830 Bennett et al. Nov 1980 A
4239602 La Bate Dec 1980 A
4248671 Belding Feb 1981 A
4249997 Schmitz Feb 1981 A
4263099 Porter Apr 1981 A
4285772 Kress Aug 1981 A
4287024 Thompson Sep 1981 A
4289584 Chuss et al. Sep 1981 A
4289585 Wegener et al. Sep 1981 A
4296938 Offermann et al. Oct 1981 A
4302935 Cousimano Dec 1981 A
4303615 Jarmell et al. Dec 1981 A
4307673 Caughey Dec 1981 A
4314787 Kwasnik et al. Feb 1982 A
4330372 Cairns et al. May 1982 A
4334963 Stog Jun 1982 A
4336843 Petty Jun 1982 A
4340445 Kucher et al. Jul 1982 A
4342195 Lo Aug 1982 A
4344820 Thompson Aug 1982 A
4344822 Schwartz et al. Aug 1982 A
4366029 Bixby et al. Dec 1982 A
4373244 Mertens et al. Feb 1983 A
4375388 Hara et al. Mar 1983 A
4391674 Velmin et al. Jul 1983 A
4392824 Struck et al. Jul 1983 A
4394217 Holz et al. Jul 1983 A
4395269 Schuler Jul 1983 A
4396394 Li et al. Aug 1983 A
4396461 Neubaum et al. Aug 1983 A
4431484 Weber et al. Feb 1984 A
4440098 Adams Apr 1984 A
4445977 Husher May 1984 A
4446018 Cerwick May 1984 A
4448541 Wirtschafter May 1984 A
4452749 Kolvek et al. Jun 1984 A
4459103 Gieskieng Jul 1984 A
4469446 Goodboy Sep 1984 A
4474344 Bennett Oct 1984 A
4487137 Horvat Dec 1984 A
4498786 Ruscheweyh Feb 1985 A
4506025 Kleeb et al. Mar 1985 A
4508539 Nakai Apr 1985 A
4527488 Lindgren Jul 1985 A
4568426 Orlando et al. Feb 1986 A
4570670 Johnson Feb 1986 A
4614567 Stahlherm et al. Sep 1986 A
4643327 Campbell Feb 1987 A
4645513 Kubota et al. Feb 1987 A
4655193 Blacket Apr 1987 A
4655804 Kercheval et al. Apr 1987 A
4666675 Parker et al. May 1987 A
4680167 Orlando et al. Jul 1987 A
4704195 Janicka et al. Nov 1987 A
4720262 Durr Jan 1988 A
4726465 Kwasnik et al. Feb 1988 A
4793981 Doyle et al. Dec 1988 A
4824614 Jones et al. Apr 1989 A
4919170 Kallinich et al. Apr 1990 A
4929179 Breidenbach et al. May 1990 A
4941824 Holter et al. Jul 1990 A
5052922 Stokman et al. Oct 1991 A
5062925 Durselen et al. Nov 1991 A
5078822 Hodges et al. Jan 1992 A
5087328 Wegerer et al. Feb 1992 A
5114542 Childress et al. May 1992 A
5213138 Presz May 1993 A
5227106 Kolvek Jul 1993 A
5228955 Westbrook, III Jul 1993 A
5318671 Pruitt Jun 1994 A
5423152 Kolvek Jun 1995 A
5447606 Prutt et al. Sep 1995 A
5480594 Wilkerson et al. Jan 1996 A
5542650 Abel et al. Aug 1996 A
5622280 Mays et al. Apr 1997 A
5659110 Herden et al. Aug 1997 A
5670025 Baird Sep 1997 A
5687768 Albrecht et al. Nov 1997 A
5752548 Matsumoto et al. May 1998 A
5787821 Bhat et al. Aug 1998 A
5810032 Hong et al. Sep 1998 A
5816210 Yamaguchi Oct 1998 A
5857308 Dismore et al. Jan 1999 A
5928476 Daniels Jul 1999 A
5968320 Sprague Oct 1999 A
6017214 Sturgulewski Jan 2000 A
6059932 Sturgulewski May 2000 A
6139692 Tamura et al. Oct 2000 A
6152668 Knoch Nov 2000 A
6187148 Sturgulewski Feb 2001 B1
6189819 Racine Feb 2001 B1
6290494 Barkdoll Sep 2001 B1
6412221 Emsbo Jul 2002 B1
6596128 Westbrook Jul 2003 B2
6626984 Taylor Sep 2003 B1
6699035 Brooker Mar 2004 B2
6758875 Reid et al. Jul 2004 B2
6907895 Johnson et al. Jun 2005 B2
6946011 Snyder Sep 2005 B2
6964236 Schucker Nov 2005 B2
7056390 Fratello et al. Jun 2006 B2
7077892 Lee Jul 2006 B2
7314060 Chen et al. Jan 2008 B2
7331298 Taylor et al. Feb 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7497930 Barkdoll et al. Mar 2009 B2
7611609 Valia et al. Nov 2009 B1
7644711 Creel Jan 2010 B2
7722843 Srinivasachar May 2010 B1
7727307 Winkler Jun 2010 B2
7803627 Hodges Sep 2010 B2
7823401 Takeuchi et al. Nov 2010 B2
7827689 Crane et al. Nov 2010 B2
7998316 Barkdoll et al. Aug 2011 B2
8071060 Ukai et al. Dec 2011 B2
8079751 Kapila et al. Dec 2011 B2
8080088 Srinivasachar Dec 2011 B1
8152970 Barkdoll et al. Apr 2012 B2
8236142 Westbrook et al. Aug 2012 B2
8266853 Bloom et al. Sep 2012 B2
8398935 Howell, Jr. et al. Mar 2013 B2
9039869 Kim et al. May 2015 B2
20020134659 Westbrook Sep 2002 A1
20020170605 Shiraishi et al. Nov 2002 A1
20030014954 Ronning et al. Jan 2003 A1
20030015809 Carson Jan 2003 A1
20050087767 Fitzgerald et al. Apr 2005 A1
20060102420 Huber et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070116619 Taylor et al. May 2007 A1
20070251198 Witter Nov 2007 A1
20080028935 Andersson Feb 2008 A1
20080169578 Crane et al. Jul 2008 A1
20080179165 Chen et al. Jul 2008 A1
20080257236 Green Oct 2008 A1
20080271985 Yamasaki Nov 2008 A1
20080289305 Girondi Nov 2008 A1
20090007785 Kimura et al. Jan 2009 A1
20090152092 Kim et al. Jun 2009 A1
20090162269 Barger et al. Jun 2009 A1
20090217576 Kim et al. Sep 2009 A1
20090283395 Hippe Nov 2009 A1
20100095521 Bertini et al. Apr 2010 A1
20100113266 Abe et al. May 2010 A1
20100115912 Worley May 2010 A1
20100287871 Bloom et al. Nov 2010 A1
20100300867 Kim et al. Dec 2010 A1
20100314234 Knoch et al. Dec 2010 A1
20110048917 Kim et al. Mar 2011 A1
20110120852 Kim et al. May 2011 A1
20110174301 Haydock et al. Jul 2011 A1
20110192395 Kim et al. Aug 2011 A1
20110223088 Chang et al. Sep 2011 A1
20110253521 Kim Oct 2011 A1
20110315538 Kim et al. Dec 2011 A1
20120024688 Barkdoll Feb 2012 A1
20120030998 Barkdoll et al. Feb 2012 A1
20120152720 Reichelt et al. Jun 2012 A1
20120180133 Al-Harbi et al. Jul 2012 A1
20120228115 Westbrook Sep 2012 A1
20120247939 Kim et al. Oct 2012 A1
20120305380 Wang et al. Dec 2012 A1
20130045149 Miller Feb 2013 A1
20130216717 Rego et al. Aug 2013 A1
20130220373 Kim Aug 2013 A1
20130306462 Kim et al. Nov 2013 A1
20140033917 Rodgers et al. Feb 2014 A1
20140039833 Sharpe, Jr. et al. Feb 2014 A1
20140048402 Quanci et al. Feb 2014 A1
20140048404 Quanci et al. Feb 2014 A1
20140048405 Quanci et al. Feb 2014 A1
20140061018 Sarpen et al. Mar 2014 A1
20140083836 Quanci et al. Mar 2014 A1
20140182195 Quanci et al. Jul 2014 A1
20140182683 Quanci et al. Jul 2014 A1
20140183023 Quanci et al. Jul 2014 A1
20140183026 Quanci et al. Jul 2014 A1
20140224123 Walters Aug 2014 A1
20140262139 Choi et al. Sep 2014 A1
20140262726 West et al. Sep 2014 A1
20150122629 Freimuth et al. May 2015 A1
20150219530 Li et al. Aug 2015 A1
20150247092 Quanci et al. Sep 2015 A1
20150287026 Yang et al. Oct 2015 A1
20160149944 Obermeier et al. May 2016 A1
20160152897 Quanci et al. Jun 2016 A1
20160160123 Quanci et al. Jun 2016 A1
20160186063 Quanci et al. Jun 2016 A1
20160186064 Quanci et al. Jun 2016 A1
20160186065 Quanci et al. Jun 2016 A1
20160222297 Choi et al. Aug 2016 A1
20170015908 Quanci et al. Jan 2017 A1
20170253803 West et al. Sep 2017 A1
Foreign Referenced Citations (76)
Number Date Country
1172895 Aug 1984 CA
2775992 May 2011 CA
2822841 Jul 2012 CA
2822857 Jul 2012 CA
87212113 Jun 1988 CN
87107195 Jul 1988 CN
2064363 Oct 1990 CN
2521473 Nov 2002 CN
1527872 Sep 2004 CN
2668641 Jan 2005 CN
1957204 May 2007 CN
101037603 Sep 2007 CN
101058731 Oct 2007 CN
101157874 Apr 2008 CN
201121178 Sep 2008 CN
100510004 Jul 2009 CN
101486017 Jul 2009 CN
101497835 Aug 2009 CN
101509427 Aug 2009 CN
102155300 Aug 2011 CN
202226816 May 2012 CN
102584294 Jul 2012 CN
103468289 Dec 2013 CN
1212037 Mar 1966 DE
3231697 Jan 1984 DE
3328702 Feb 1985 DE
10122531 Nov 2002 DE
10154785 May 2003 DE
102005015301 Oct 2006 DE
102006004669 Aug 2007 DE
102006026521 Dec 2007 DE
102009031436 Jan 2011 DE
0208490 Jan 1987 EP
2295129 Mar 2011 EP
725865 Mar 1955 GB
871094 Jun 1961 GB
S5453103 Apr 1979 JP
62285980 Dec 1987 JP
H0319127 Jan 1991 JP
H04178494 Jun 1992 JP
06264062 Sep 1994 JP
H10273672 Oct 1998 JP
H11-131074 May 1999 JP
2000204373 Jul 2000 JP
2001200258 Jul 2001 JP
2002106941 Apr 2002 JP
200341258 Feb 2003 JP
2003071313 Mar 2003 JP
2003292968 Oct 2003 JP
2003342581 Dec 2003 JP
2005263983 Sep 2005 JP
2007063420 Mar 2007 JP
2008231278 Oct 2008 JP
2009144121 Jul 2009 JP
2012102302 May 2012 JP
2013006957 Jan 2013 JP
960008754 Oct 1996 KR
20000042375 Jul 2000 KR
1020050053861 Jun 2005 KR
100737393 Jul 2007 KR
10-0797852 Jan 2008 KR
101318388 Oct 2013 KR
1535880 Jan 1990 SU
201241166 Oct 2012 TW
WO-9012074 Oct 1990 WO
WO-9945083 Sep 1999 WO
WO2005023649 Mar 2005 WO
WO2005115583 Dec 2005 WO
WO-2007103649 Sep 2007 WO
WO-2008034424 Mar 2008 WO
WO-2010107513 Sep 2010 WO
2011000447 Jan 2011 WO
WO-2012029979 Mar 2012 WO
2013023872 Feb 2013 WO
WO2014021909 Feb 2014 WO
WO2014153050 Sep 2014 WO
Non-Patent Literature Citations (76)
Entry
Basset, MD., Winterbone, D.E., and Pearson, R.J. “Calculation of steady flow pressure loss coefficients for pipe junctions”. Proc Instn Mech Engrs vol. 215 Part C. IMechIE 2001.
Costa, N.P., Maia, R., Proenca., Pinho, F.T. “Edge Effects on the Flow Charateristics in a 90 deg Tee Junction”. Transactions of the ASME. vol. 128. pp. 1208-1217. Nov. 2006.
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, West Conshohocken, PA, 2010.
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages.
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546.
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412.
International Search Report and Written Opinion of International Application No. PCT/US2014/028019; dated Jul. 10, 2014; 12 pages.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, Ball, Mark A., et al.
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, West, Gary D., et al.
U.S. Appl. No. 14/655,204, filed Jun. 24, 2015, Quanci, John F. et al.
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, Quanci, John F. et al.
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, Quanci, John F. et al.
U.S. Appl. No. 14/839,551, filed Aug. 28,2015, Quanci, John F. et al.
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, Quanci, John F., et al.
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, Sarpen, Jacob P., et al.
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, West et al.
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, Quanci et al.
U.S. Appl. No. 15/443,246, filed Feb. 27, 2017, Quanci et al.
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67.
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32.
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable In Situ Spark Arrestor.
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method And Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, titled Methods for Handling Coal Processing Emissions and Associated Systems and Devices.
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/921,723, filed Oct. 23, 2015, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/655,204, filed Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven.
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 13/843,166, now U.S. Pat. No. 9,273,250, filed Mar. 15, 2013, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 13/829,588, now U.S. Pat. No. 9,193,915, filed Mar. 14, 2013, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 13/588,996, now U.S. Pat. No. 9,243,186, filed Aug. 17, 2012, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 13/589,004, now U.S. Pat. No. 9,249,357, filed Aug. 17, 2012, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 13/598,394, now U.S. Pat. No. 9,169,439, filed Aug. 29, 2012, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, titled Coke Oven Charging System.
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, titled Burn Profiles for Coke Operations.
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, titled Multl-Modal Beds of Coking Material.
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, titled Multl-Modal Beds of Coking Material.
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, titled Multl-Modal Beds of Coking Material.
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 14,839,493, filed Aug. 28, 2015, titled Method and System for Optimizing Coke Plant Operation and Output.
Chinese Office Action in Chinese Application No. 201480014884.4, dated Oct. 20, 2016.
Extended European Search Report in European Application No. 14768073.0, dated Sep. 30, 2016, 7 pages.
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, and titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012 and titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 14/987,625, filed Jan. 14, 2016, Quanci et al.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, Quanci et al.
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25.
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28.
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358.
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247.
Chinese Office Action in Chinese Application No. 201480014884.4, dated Apr. 22, 2016.
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, Quanci et al.
“Conveyor Chain Designer Guild”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf.
Practical Technical Manual of Refractories, Baoyu Hu, etc., Bejing: Metallurgical Industry Press, Chapter 6; 2004, 6-30.
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29.
“Middletown Coke Company HRSG Maintenance BACT Analysis Option 1—Individual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1-24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new/262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 p. 7 pp. 8-11.
Walker D N et al, “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental impact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23.
Chinese Office Action in Chinese Application No. 201480014884.4; dated Apr. 24, 2017, 8 pages.
Examination Report for European Application No. 14768073.0; dated Oct. 10, 2017; 5 pages.
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, now U.S. Pat. No. 9,476,547, and titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
Related Publications (1)
Number Date Country
20140183024 A1 Jul 2014 US
Continuation in Parts (1)
Number Date Country
Parent 13730673 Dec 2012 US
Child 13830971 US