Field of the Disclosure
The present disclosure relates to a non-reciprocal circuit element, and particularly relates to a non-reciprocal circuit element such as an isolator or a circulator used in the microwave bands.
Description of the Related Art
Hitherto, a non-reciprocal circuit element such as an isolator or a circulator has characteristics of transmitting signals only in a predetermined specific direction and not transmitting signals in the opposite direction. By utilizing the characteristics, for example, the isolator is used for a transmitting circuit unit of a mobile communication apparatus such as a cellular phone.
As such a type of non-reciprocal circuit element, an isolator is known in which, as shown in
The isolator has low insertion loss and is able to operate in a wide band. Patent Document 1 describes a non-reciprocal circuit element that basically has such a circuit configuration to allow isolation characteristics to be adjusted, without deterioration of insertion loss, by making the capacitance element C11 as a variable capacitance element or using a switching element to make a resonance capacitance variable.
Meanwhile, the magnetic permeability of the ferrite and the magnetic force of the permanent magnet have unique temperature characteristics. It is possible to adjust the isolation characteristics of the ferrite and the permanent magnet at normal temperature, but the isolation characteristics are not able to completely follow the characteristics variation caused due to temperature change, and the isolation characteristics and the insertion loss characteristics vary from set values.
The reason why the isolation characteristics deteriorate is that, due to the temperature characteristics of the ferrite and the permanent magnet, the effective values of the inductors L1 and L2 change, so that the resonant frequencies of an LC resonant circuit composed of L1 and C11 and an LC resonant circuit composed of L2 and C2 vary. To prevent this, it is necessary to prepare a magnet and a ferrite having temperature characteristics adjusted to a wide band, or to adjust the capacitance value of the resonant capacitance element C11 such that variation of the resonant frequency is cancelled. However, it is very difficult to prepare materials having temperature characteristics adjusted to the wide band. In addition, temperature detection with high accuracy and capacitance control with respect to the temperature are required for the adjustment of the capacitance element C11, which is not practical.
Patent Document 1: International Publication No. 2012/020613
An object of the present disclosure is to provide a non-reciprocal circuit element that is able to suppress the characteristics variation with respect to temperature without changing a microwave magnetic material or the material of a magnet.
A non-reciprocal circuit element according to a first aspect of the present disclosure includes: a magnetic material to which a DC magnetic field is applied; a plurality of center electrodes disposed on the magnetic material so as to intersect each other in an insulated state; a terminal resistor connected between input and output ports and in parallel with one of the center electrodes; a variable capacitance element connected between the input and output ports and in parallel with the terminal resistor; and a thermistor element connected to a control power supply circuit of the variable capacitance element and in series with the variable capacitance element.
A non-reciprocal circuit element according to a second aspect of the present disclosure includes: a magnetic material to which a DC magnetic field is applied; and a first center electrode, a second center electrode, and a third center electrode disposed on the magnetic material so as to intersect each other in an insulated state, wherein one end of the first center electrode is a first port, one end of the second center electrode is a second port, and one end of the third center electrode is a third port, other ends of the first center electrode, the second center electrode, and the third center electrode are connected to each other and connected to a ground terminal, capacitance elements are connected in parallel with the first center electrode, the second center electrode, and the third center electrode, respectively, a variable capacitance element is connected between the ground terminal and grand and in series with an inductor element, and a thermistor element is connected to a control power supply circuit of the variable capacitance element and in series with the variable capacitance element.
A non-reciprocal circuit element according to a third aspect of the present disclosure includes: a magnetic material to which a DC magnetic field is applied; and a first center electrode, a second center electrode, and a third center electrode disposed on the magnetic material so as to intersect each other in an insulated state, wherein one end of the first center electrode is a first port, one end of the second center electrode is a second port, and one end of the third center electrode is a third port, other ends of the first center electrode, the second center electrode, and the third center electrode are connected to each other and connected to a ground terminal, variable capacitance elements are connected in parallel with the first center electrode, the second center electrode, and the third center electrode, respectively, and a thermistor element is connected to a control power supply circuit of each variable capacitance element and in series with the variable capacitance element.
The non-reciprocal circuit element according to the first aspect is a two-port isolator, and the non-reciprocal circuit elements according to the second and third aspects are three-port circulators. In each of the non-reciprocal circuit elements, by selecting a thermistor element having appropriate temperature characteristics, a voltage required to exhibit a capacitance value for corresponding to temperature change of the variable capacitance element is provided to the variable capacitance element in a state where a control voltage is constant. Accordingly, variation of characteristics with respect to temperature is suppressed, and change of the microwave magnetic material and the material of a magnet or complicated control becomes unnecessary.
According to the present disclosure, it is possible to suppress the characteristics variation with respect to temperature with a simple configuration without changing the microwave magnetic material or the material of the magnet.
Hereinafter, embodiments of the non-reciprocal circuit element according to the present disclosure will be described with reference to the accompanying drawings. In the respective drawings, the same elements and portions are designated by like reference numerals, and the overlap description is omitted.
(First Embodiment, see
A non-reciprocal circuit element 1A according to a first embodiment is a lumped constant type two-port isolator as shown in
A capacitor CS1 for matching an input impedance and a grounded capacitor CA are connected to the input port P1, and a capacitor SC2 for matching an output impedance is connected to the output port P2.
Furthermore, a thermistor element S is connected to a control power supply circuit (DC power supply E) of the variable capacitor C11 and in series with the capacitor C11. The capacitance value of the variable capacitor C11 varies in response to change of a voltage applied by the control power supply circuit. A variable capacitance element using a ferroelectric, for example, a BST (barium strontium titanate) element, may be suitably used as the variable capacitor C11.
The configuration of a main part of the non-reciprocal circuit element 1A will be described with reference to
In the non-reciprocal circuit element 1A, when a high-frequency signal is inputted through the output port P2, the high-frequency signal is attenuated (isolated) by a parallel resonant circuit formed by the first center electrode 35 and the variable capacitor C11. Even when a voltage by the DC power supply E is constant, since the resistance value of the thermistor element S changes in response to temperature, the voltage applied to the variable capacitor C11 changes. Accordingly, characteristics change of the ferrite 32 or the permanent magnet that changes depending on the temperature is compensated for so that variation of the isolation characteristics (variation of the resonant frequency) is cancelled. In addition, the attenuation is adjusted by selecting the impedance of the terminal resistor R.
Meanwhile, during the operation in which a high-frequency current flows from the input port P1 to the output port P2, a large high-frequency current flows through the second center electrode 36, and almost no high-frequency current flows through the terminal resistor R and the variable capacitor C11. Thus, even when the variable capacitor C11 is added, it is possible to neglect loss caused due to the addition of the variable capacitor C11, and the insertion loss does not increase.
Regarding the isolation characteristics of the non-reciprocal circuit element 1A, the curves A, B, and C at 25° C., 85° C., and −35° C. almost overlap each other as shown in
The intersection angle between the center electrodes 35 and 36 is set as necessary, so that the input impedance and the insertion loss are adjusted. In addition, by winding the second center electrode 36 on the ferrite 32 a plurality of times, the inductance of the second center electrode 36 increases, so that the insertion loss decreases and the operating frequency band also expands.
(Second Embodiment, see
In a non-reciprocal circuit element 1B (two-port isolator) according to a second embodiment, as shown in
By connecting the thermistor elements S1 and S2 in series with the variable capacitors C12 and C13 connected in parallel with the capacitor CA and C2 as in the second embodiment, it is possible to suppress the variation of the isolation characteristics or the variation of the insertion loss characteristics that is caused due to temperature change. As shown by curves A (25° C.), B (85° C.), and C (−35° C.) in
(Third Embodiment, see
A non-reciprocal circuit element 1C according to a third embodiment is a lumped constant type three-port circulator having an equivalent circuit shown in
The other ends of the respective center electrodes 121, 122, and 123 are connected to each other and are connected to ground via an inductor Lg and a capacitor Cg that are connected in series. Capacitors C21, C22, and C23 are connected in parallel with the center electrodes 121, 122, and 123, respectively. A capacitor Cs1 is connected between the first port P11 and a first terminal 141, a capacitor Cs2 is connected between the second port P12 and a second terminal 142, and a capacitor Cs3 is connected between the third port P13 and a third terminal 143.
Furthermore, a variable capacitor C14 is connected in parallel with the capacitor Cg, and a thermistor element S3 and a DC power supply E3 therefor are connected.
In the three-port circulator according to the third embodiment, a high-frequency signal inputted through the second terminal 142 (second port P12) is outputted from the first terminal 141 (first port P11), a high-frequency signal inputted through a first terminal 141 (first port P11) is outputted from the third terminal 143 (third port P13), and a high-frequency signal inputted through the third terminal 143 (third port P13) is outputted from the second terminal 142 (second port P12).
By connecting the thermistor element S3 in series with the variable capacitor C14 connected in parallel with the capacitor Cg as in the third embodiment, it is possible to suppress the variation of the isolation characteristics or the variation of the insertion loss characteristics that is caused due to temperature change. As shown by curves A′ (25° C.), B′ (85° C.), and C′ (−35° C.) in
The capacitor C14 may be omitted, and the capacitor Cg may be a variable capacitor.
(Fourth Embodiment, see
A non-reciprocal circuit element 1D according to a fourth embodiment is a lumped constant type three-port circulator having an equivalent circuit shown in
That is, the variable capacitor C14, the thermistor element S3, and the DC power supply E3 with respect to the capacitor Cg are omitted, and these elements C14, S3, and E3 are connected to each of the capacitors C21, C22, and C23. In the fourth embodiment as well, it is possible to suppress the variation of the characteristics of the non-reciprocal circuit element 1D that is caused due to temperature change, similarly as in the first, second, and third embodiments.
(Other Embodiments)
The non-reciprocal circuit element according to the present disclosure is not limited to the embodiments described above, and various changes may be made within the scope of the present disclosure.
For example, when the N pole and the S pole of the permanent magnet are inverted, the input port and the output port are interchanged with each other. The detailed configurations of the ferrite and the permanent magnet and the shape of each center electrode may be variously changed.
As described above, the present disclosure is useful for a non-reciprocal circuit element, and is excellent particularly in that it is possible to suppress the characteristics variation with respect to temperature with a simple configuration.
1A to 1D non-reciprocal circuit element
32 ferrite
35, 36, 121 to 123 center electrode
41 permanent magnet
P1 to P3, P11 to P13 port
C11 to C14 variable capacitor
S, S1, S2, S3 thermistor element
E, E1, E2, E3 power supply
R terminal resistor
Number | Date | Country | Kind |
---|---|---|---|
2013-247325 | Nov 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6215371 | Kurahashi | Apr 2001 | B1 |
8130054 | Martin | Mar 2012 | B1 |
20080309426 | Furuta | Dec 2008 | A1 |
20130147574 | Wada | Jun 2013 | A1 |
20140340166 | Wada | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
2008-085981 | Apr 2008 | JP |
2008-109391 | May 2008 | JP |
2011-055222 | Mar 2011 | JP |
2013-145945 | Jul 2013 | JP |
2012020613 | Feb 2012 | WO |
2013118355 | Aug 2013 | WO |
Entry |
---|
International Search Report issued in Application No. PCT/JP2014/075158 dated Jan. 6, 2015. |
Written Opinion issued in Application No. PCT/JP2014/075158 dated Jan. 6, 2015. |
Number | Date | Country | |
---|---|---|---|
20160240906 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2014/075158 | Sep 2014 | US |
Child | 15142423 | US |